JP3987896B2 - Method and apparatus for purifying ammonia-containing wastewater - Google Patents

Method and apparatus for purifying ammonia-containing wastewater Download PDF

Info

Publication number
JP3987896B2
JP3987896B2 JP2002156116A JP2002156116A JP3987896B2 JP 3987896 B2 JP3987896 B2 JP 3987896B2 JP 2002156116 A JP2002156116 A JP 2002156116A JP 2002156116 A JP2002156116 A JP 2002156116A JP 3987896 B2 JP3987896 B2 JP 3987896B2
Authority
JP
Japan
Prior art keywords
gas
catalyst
water
component
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002156116A
Other languages
Japanese (ja)
Other versions
JP2003340440A (en
Inventor
三郎 成田
英智 野田
義人 森
雅雄 青木
博文 吉川
浩 石坂
成仁 ▲高▼本
隆則 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Chubu Electric Power Co Inc filed Critical Babcock Hitachi KK
Priority to JP2002156116A priority Critical patent/JP3987896B2/en
Publication of JP2003340440A publication Critical patent/JP2003340440A/en
Application granted granted Critical
Publication of JP3987896B2 publication Critical patent/JP3987896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は排水浄化方法に係り、特に火力発電所から排出される排水中のアンモニア(NH3 )を効率よく窒素(N2 )と水(H2 O)に無害化することができるアンモニア含有排水の浄化方法及び装置に関する。
【0002】
【従来の技術】
近年、地球環境保全に対する関心の高まりや、平成5年に海域の富栄養化対策として規制が施行されたこともあり、排水中の窒素除去に対して新しい処理技術の開発が求められている。これに対し、従来から主に以下の方法によって排水中の窒素除去(脱窒)が行われてきた。
【0003】
(1)生物処理法:水中の有機態窒素をバクテリアを用いて無機化、無害化する方法。
(2)不連続的塩素処理法:次亜塩素酸ナトリウムを用いてNH3 を酸化分解する方法。
(3)イオン交換法:ゼオライトを用いてNH3 を吸着させる方法。
(4)アンモニアストリッピング法:NH3 含有排水を空気または蒸気を用いて空気中に放散除去する方法(環境創造、8、(9)、67(1987)など)。
【0004】
排水中のBODが高い場合には、(1)の生物脱窒法が用いられるが、化学工場のプロセスからの排水や排水処理後の排水など、窒素の大部分がアンモニアやアンモニウムイオンなどアンモニア態窒素である排水の処理には、(2)、(3)および(4)の方法が適用されている。
【0005】
上記従来技術は以下に示す問題点を有している。
すなわち、(1)の方法は、生物反応の反応速度が遅いために処理に必要な反応槽が大きくなり、大きな設置スペースが必要となるほか、余剰汚泥が発生するという問題を生じる。(2)の方法は、完全なアンモニア除去には次亜塩素酸ナトリウムを化学量論的必要量以上添加する必要があるため、残留塩素の処理および有機塩素化合物の生成という問題を生じる。さらに(3)の方法は、ゼオライト再生時に高濃度アンモニアイオンを含んだ排水が生じるためその処理が必要となり、(4)はNH3 を気相に移行後、NH3 含有ガスが大気放散されるため2次公害になるという問題がある。
【0006】
この中で、(4)のストリッピング法は比較的処理が簡単で設備費、運転費が安いため他方法に較べて有利であるため、分離した高濃度のNH3 ガスを触媒で酸化分解する方法と組合わせて総合的に無害化する方式が、現有のし尿処理施設においても採用されている。
【0007】
しかし、ストリッピング触媒酸化方式ではNH3 酸化時に多量のNOxを発生するため、NH3 酸化触媒塔以外にNOx還元触媒塔を設置する必要がある。さらに、発明者らの検討によれば本方式ではNH3 酸化時にN2 Oが多量に発生することがわかった。N2 OはCO2 と同じく地球温暖化に寄与する物質であり、これが多量に大気に放出されることはNH3 を放出すると同等、地球環境において有害であり望ましくない。以上のように、従来技術におけるNH3 含有排水処理は数多くの問題点を有し、また方式によっては新たにさまざまな2次公害物質を発生させる発生源となりかねないという問題を有していた。
【0008】
この問題に関しては、特開2000−317272(出願人:バブコック日立株式会社)なる発明が提案されている。図4は、前記、特開2000−317272の発明を石炭焚きや重油焚きの火力発電所から排出される排水などのアンモニア態窒素を含有する排水に適用した場合の排ガス処理のフローを示す説明図である。図において、排水AおよびアルカリBはそれぞれ配管1および2からタンク3に供給され、タンク3内で混合された後、ポンプ4により予熱器5に送られる。予熱器5で約100℃まで予熱された排水Aは、配管6を通してストリッピング塔7の上部へ供給される。ストリッピング塔7の内部には充填物8が入っており、キャリアガスとして塔下部の配管9および16から供給された蒸気Cおよび空気Dは排水Aと塔内で効率よく接触しながら塔内を上昇し、高濃度のアンモニアガスを含むガスが得られる。得られたガス中のNH3 濃度数千〜数万ppm である。得られたガスは必要に応じて配管10から供給された空気Dによって希釈され、場合によっては予熱器11で所定の温度まで予熱された後、触媒塔12に導かれる。ストリッピングされたアンモニアガスは触媒13上で酸化分解し、N2 とH2 Oに分解され配管14から大気へ放出される。この触媒は、窒素酸化物のNH3 による還元活性を有する第1成分とNH3 から窒素酸化物(NOx)を生成させる活性を有する第2成分とからなる。また、このときの触媒層13での反応温度は250〜450℃、好ましくは350〜400℃である。ストリッピング塔7の下部の配管15からは、アンモニアを除去された排水Eが排出される。
【0009】
【発明が解決しようとする課題】
上記のNH3 含有排水処理方法は、2次公害物質の発生がきわめて少なく、運転が容易であるという特徴を有するが、触媒層で処理するアンモニアを含むガスの性状によっては触媒塔出口のNH3 濃度が高くなるという問題があり、この問題は触媒を長期間使用すると顕著になることが判明した。
【0010】
本発明の目的は、これらの課題を解決し、長期間使用時における触媒性能の低下を防止し、有害物質の発生量を低減することができるアンモニア含有排水の浄化方法および装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、アンモニア含有排ガスの浄化触媒の長期性能試験を行っている過程で、触媒が劣化すると、排ガス中の水分濃度が触媒のNH3 分解率に大きく影響することを見出し、鋭意研究の結果、本発明に到達した。すなわち、本願で特許請求する発明は以下のとおりである。
【0012】
(1)アンモニア(NH3 )含有排水中のNH3 を無害化するNH3 含有排水の浄化方法において、前記NH3 含有排水とキャリアガスを接触させてNH3 含有排水からNH3 を気相中に移行させる工程と、該工程で発生したNH3 を含むガスをそのまま冷却して水分の一部を凝縮除去し、その水分濃度を25%以下とする工程と、該工程で水分の一部を除去されたNH3 含有ガスを加熱する工程と、該加熱工程で加熱されたNH3 含有ガスを、チタン(Ti)、タングステン(W)、及びバナジウム(V)を含む第1成分と、白金(Pt)とシリカ(SiO )を含む第2成分とからなり、第1成分と第2成分の比が99.8:0.2である触媒に接触させて前記NH3 を窒素と水に分解する工程を含むことを特徴とするNH3 含有排水の浄化方法。
【0018】
)アンモニア(NH3 )含有排水中の前記NH3 を無害化するNH3 含有排水の浄化装置において、前記NH3 含有排水とキャリアガスを接触させてNH3 含有排水からNH3 を気相中に移行させる手段と、該手段で発生したNH3 を含むガスをそのまま冷却して水分の一部を凝縮除去し、その水分濃度を25%以下とする手段と、該手段で水分の一部を除去されたNH3 含有ガスを加熱する手段と、該加熱手段で加熱されたNH3 含有ガスを、チタン(Ti)、タングステン(W)、及びバナジウム(V)を含む第1成分と、白金(Pt)とシリカ(SiO )を含む第2成分とからなり、第1成分と第2成分の比が99.8:0.2である触媒に接触させて前記NH3 を窒素と水に分解する手段とを含むことを特徴とするNH3 含有排水の浄化装置。
【0023】
本発明において、NH3 含有排水からNH3 を気相に移行する手段としては、例えばキャリアガスを排水に吹込んだり、キャリアガス中に排水を噴霧したりしてガス中のアンモニアを気相中にストリッピングする方法が用いられる。ストリッピングは液のpHが10以上であればそのまま、低い場合は水酸化ナトリウムや消石灰などのアルカリを加えて10以上にし、これに空気を接触させ、空気をキャリアガスに用いてアンモニアガスを放散させる。キャリアガスは空気の他、水蒸気でもよいが、キャリアガスを用いずに行ってもよい。
【0024】
NH3 含有ガスを加熱する手段としては、バーナ、蒸気や触媒装置出口ガスなどの高温のガスとの熱交換など通常の予熱方法でよいが、ガスを循環させる場合は、ガス組成、特に酸素濃度を変化させない方法(例えば熱交換)が好ましい。なお、脱硝機能を備えたNH3 分解触媒の場合は、触媒層の温度は250〜450℃、好ましくは350〜400℃の範囲にすることが重要であり、ゼオライト系触媒の場合は450〜600℃にすることが好ましいが、いずれにしても触媒の特性に基づいて適正な温度を選択すればよい。
【0025】
なお、ここでいうNH3 含有排水とは、下水およびし尿処理施設などから排出される排水や、石炭焚き、重油焚きの火力発電所から排出される排ガス中の燃焼灰およびSO2 ガスを除去するために設置された、乾式電気集塵装置および湿式脱硫装置から排出される排水など、アンモニア態窒素を含有する排水を意味する。また、有機態窒素含有排水中の有機態窒素を一般の生物処理によってストリッピング可能なNH3 態窒素に分解した後の排水や、従来技術のイオン交換法でのゼオライト再生時に排出される高濃度NH3 含有排水など、前処理することによってNH3 態窒素に変換させた排水も含まれる。
【0026】
【作用】
本発明において用いられる、脱硝機能を備えたNH3 分解触媒の細孔モデルを図5に示す。図5において、この触媒の細孔は、NOをNH3 によって還元する成分が形成するマクロポア内(第1成分)のところどころに、シリカの多孔質が形成するミクロポアが存在する構造になっており、そのミクロポア内にNH3 からNOxを生成させる活性を有する成分(第2成分)が担持されている。NH3 は、触媒内部のマクロポア内に拡散し、第2成分上で(1)式に従って酸化されてNOとなり、触媒の外に拡散していく過程でマクロポア内に吸着したNH3 と衝突し、(2)式の反応によってN2 に還元され、全体としては、(3)式に示すようになる。
【0027】
【数1】
NH3 +5/4O2 →NO+3/2H2 O ……(1)
NH3 +NO+1/4O2 →N2 +3/2H2 O ……(2)
NH3 +3/4O2 →1/2N2 +3/2H2 O ……(3)
このように、脱硝機能を備えたNH3 分解触媒では、NH3 の酸化反応および生成したNOとNH3 による還元反応が触媒内部で進行するため、NOやNO生成過程で発生すると思われるN2 Oをほとんど生成することなく、NH3 をN2 に還元することができる。また、触媒としてゼオライトを使用した場合も、NOやN2 Oの生成がきわめて少ない。
【0028】
しかし、このような触媒を用いた場合でも、ガス中の水分濃度が高くなると触媒塔出口でのNH3 濃度が高くなる(NH3 分解率が低下する)現象が認められた。水分濃度の増加によるNH3 分解率低下の理由は明らかでないが、これを防止するために、例えばストリッピング塔から排出されたガスを冷却することにより、ガス中の水分の一部が凝縮し、アンモニアの分解率が大幅に向上することが判明した。ガスを冷却する手段としては、ストリッピング塔に供給する排水と熱交換することが好ましく、熱効率の点からも有効である。
【0029】
【発明の実施の形態】
以下、本発明を図面に示す実施例により詳細に説明する。
図1は、本発明のNH3 含有排水の処理方法を火力発電所から排出されるアンモニア態窒素を含有する排水に適用した場合の装置系統を示す説明図である。この装置は、NH3 含有排水とキャリアガスを接触させてNH3 含有排水からNH3 を気相中に移行させる手段としてのストリッピング塔7と、該ストリッピング塔7で発生したNH3 を含むガス中の水分の一部を除去する手段としてのガス冷却器17と、該冷却器17で水分の一部を除去されたNH3 含有ガスを加熱する手段としての予熱器11と、該予熱器11で、加熱されたNH3 含有ガスを触媒に接触させて前記NH3 を窒素と水に分解する手段としての触媒塔12とから主として構成される。
【0030】
図において、排水AおよびアルカリBはそれぞれ配管1および2からタンク3に供給され、タンク3内で混合された後、ポンプ4により予熱器5に送られる。予熱器5で約100℃まで予熱された排水Aは、配管6を通してストリッピング塔7の上部へ供給される。ストリッピング塔7の内部には充填物8が入っており、キャリアガスとしての塔下部の配管9および16から供給された蒸気Cおよび空気Dは排水Aと塔内で効率よく接触しながら塔内を上昇し、高濃度のアンモニアガスを含むガスが得られる。得られたガス中のNH3 濃度数千〜数万ppm である。得られたガスはガス冷却器17に送られ、配管18から供給された冷却水Fにより、ガス中の水分の一部が凝縮・除去される。凝縮・除去された水分は、管路19からタンク3に戻される。管路19からタンク3に戻された水の中にはわずかながらアンモニアが含まれているので再処理する場合もあるが、含まれるアンモニアの濃度によっては、処理した排水Eとともにそのまま放流してもよい。水分の一部が除去されたガスは必要に応じて配管10から供給された空気Dによって希釈され、場合によっては予熱器11で所定の温度まで予熱された後、触媒塔12に導かれる。ストリッピングされたアンモニアガスは触媒13上で酸化分解し、N2 とH2 Oに分解され配管14から大気へ放出される。触媒塔出口での水分濃度が触媒塔出口に設置された水分濃度測定装置20により測定され、この測定値に応じて配管18から供給される冷却水Fの流量が制御される。ストリッピング塔7の下部の配管15からは、アンモニアを除去された排水Eが排出される。なお、ここで用いた触媒は、窒素酸化物のNH3 による還元活性を有する第1成分とNH3 から窒素酸化物(NOx)を生成させる活性を有する第2成分とからなる。また、このときの触媒層13での反応温度は250〜450℃、好ましくは350〜400℃である。
【0031】
次に、本発明の具体的実施例を説明する。
実施例1
メタチタン酸スラリ(TiO2 含有量:30wt%、SO4 含有量:8wt%)67kgにパラタングステン酸アンモニウム((NH4 1010・W1246・6H2 O)2.5kg、メタバナジン酸アンモニウム2.33kgとを加えてニーダを用いて混練し、得られたペーストを造粒した後乾燥し、550℃で2時間焼成し、得られた顆粒を粉砕して第1成分である触媒粉末とした。この粉末の組成はTi/W/V=91/5/4(原子比)である。一方、1.33×10-2wt%の塩化白金酸(H2 〔PtCl6 〕・6H2 O)1Lに、微粒シリカ粉末(富田製薬社製、商品名・マイコンF)500gを加えて砂浴上で蒸発乾固し、空気中、500℃で2時間焼成して0.01wt%Pt・SiO2 を調製し、第2成分の触媒粉末とした。
【0032】
次に、第1成分20kgと第2成分40.1gにシリカ・アルミナ系無機繊維5.3kg、水17kgを加えてニーダで混練し、触媒ペーストを得、これとは別にEガラス性繊維でできた網状物にチタニア、シリカゾル、ポリビニールアルコールのスラリを含浸し、150℃で乾燥して触媒基材とし、この触媒基材間に前記触媒ペーストを挟持させて圧延ローラを通して圧延して板状体とし、この板状体を12時間大気中で風乾した後、500℃で2時間焼成して脱硝機能を備えたNH3 分解触媒とした。なお、本触媒中の第1成分と第2成分の第2成分/第1成分比は0.2/99.8である。
【0033】
本触媒を用いて、図1に示した装置および表1に示した条件で排水処理試験を行った。触媒塔出口のガス中のアンモニア濃度に及ぼす触媒塔でのガス中の水分濃度の影響を図2に示す。
【0034】
【表1】

Figure 0003987896
図2に示す結果から明らかなように、触媒層入口での水分濃度を25%以下に維持することにより、触媒塔出口でのガス中のアンモニア濃度を低減することができる。水分濃度が低いほど触媒塔出口でのガス中のアンモニア濃度を低くすることができるが、必要以上に水分濃度を低くすると、冷却水Fの供給量や予熱器11での加熱エネルギーが増加することになる。触媒や排水組成によっても異なるが、アンモニア分解率を維持するに適切な水分濃度はおおむね15〜25%、好ましくは20〜25%であった。
【0035】
上記実施例によれば、ガス中の水分濃度を低減することにより、アンモニア濃度の低減の効果に加えて、予熱器11で所定の温度まで予熱するために必要な加熱エネルギーを低減することができる。
【0036】
上記実施例では、ガス冷却器を用いてガス温度を低下させ、ガス中の水分を凝縮・除去しているが、例えばガス中に温度の低い水を噴霧したり、水分を吸収する物質を使用してガス中の水分を除去するなど、ガス中の水分濃度を減少させることが可能な、いずれの方法を用いることが可能である。
【0037】
図3は、本発明の他の実施例を示す排水処理方法の装置系統を示す説明図である。この実施例では、ストリッピング塔7に供給する排水をガス冷却器17に供給してストリッピング塔出口ガスを冷却し、ガス中の水分濃度を低減するとともに排水の温度を高め、加熱に必要なエネルギーを低減している。すなわち、図3において、排水AおよびアルカリBはそれぞれ配管1および2からタンク3に供給され、タンク3内で混合された後、その一部がポンプ4により分配器21を通じてガス冷却器17に送られる。排水Aはガス冷却器17でストリッピング塔7出口ガスにより加熱され、必要に応じて予熱器5で約100℃まで予熱され、配管22を通してストリッピング塔7の上部へ供給される。また、ガス冷却器17に送られなかった排水Aは、予熱器5で約100℃まで予熱され、配管6を通してストリッピング塔7の上部へ供給される。ストリッピング塔7の内部には充填物8が入っており、キャリアガスとしての塔下部の配管9および16から供給された蒸気Cおよび空気Dは排水Aと塔内で効率よく接触しながら塔内を上昇し、高濃度のアンモニアガスを含むガスが得られる。得られたガス中のNH3 濃度数千〜数万ppm である。得られたガスはガス冷却器17に送られ、配管22から供給された排水Aにより冷却され、ガス中の水分の一部が凝縮・除去される。凝縮・除去された水分は、管路19からタンク3に戻される。水分の一部が除去されたガスは必要に応じて配管10から供給された空気Dによって希釈され、場合によっては予熱器11で所定の温度まで予熱された後、触媒塔12に導かれる。ストリッピングされたアンモニアガスは触媒13上で酸化分解し、N2 とH2 Oに分解され配管14から大気へ放出される。触媒塔出口での水分濃度が触媒塔出口に設置された水分濃度測定装置20により測定され、この測定値に応じて分配器21を通じて配管22から供給される排水Aの流量が制御される。ストリッピング塔7の下部の配管15からは、アンモニアを除去された排水Eが排出される。
【0038】
なお、実施例1の中の触媒として請求項9に記載された成分のものも、(現在の実施例中に記載された成分のものと)同等の効果が期待でき使用できる。
【0039】
【発明の効果】
請求項1または2記載の発明によれば、触媒が劣化しても触媒塔出口でのNH3 濃度を低減でき、また触媒性能を高く維持できることにより、ガスや排水の加熱エネルギーも低減することができる。
【図面の簡単な説明】
【図1】本発明のアンモニア含有排水の浄化方法の装置系統を示す説明図。
【図2】図1の装置を用いて行った本発明の実験データを示す図。
【図3】本発明の他の実施例を示すアンモニア含有排水の浄化方法の装置系統を示す説明図。
【図4】従来のアンモニア含有排水の浄化方法を示す説明図。
【図5】本発明に用いる触媒の効果を説明する模式図。
【符号の説明】
1…配管、2…配管、3…タンク、4…ポンプ、5…予熱器、6…配管、7…ストリッピング塔、8…充填物、9…配管、10…配管、11…予熱器、12…触媒塔、13…触媒、14…配管、15…配管、16…配管、17…ガス冷却器、18…配管、19…管路、20…水分濃度測定装置、21…分配器、22…配管、A…排水、B…アルカリ、C…蒸気、D…空気、E…排水、F…冷却水、G…ガス。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wastewater purification method, and in particular, ammonia-containing wastewater that can efficiently detoxify ammonia (NH 3 ) in waste water discharged from a thermal power plant into nitrogen (N 2 ) and water (H 2 O). The present invention relates to a purification method and apparatus.
[0002]
[Prior art]
In recent years, interest in global environmental conservation has increased, and regulations have been enforced as measures for eutrophication of sea areas in 1993, and therefore, development of new treatment techniques for nitrogen removal from wastewater is required. On the other hand, nitrogen removal (denitrification) in wastewater has been conventionally performed mainly by the following method.
[0003]
(1) Biological treatment method: A method of mineralizing and detoxifying organic nitrogen in water using bacteria.
(2) Discontinuous chlorination method: A method in which NH 3 is oxidatively decomposed using sodium hypochlorite.
(3) Ion exchange method: A method of adsorbing NH 3 using zeolite.
(4) Ammonia stripping method: A method in which NH 3 -containing wastewater is diffused and removed into the air using air or steam (environmental creation, 8, (9), 67 (1987), etc.).
[0004]
When the BOD in the wastewater is high, the biological denitrification method (1) is used, but most of the nitrogen, such as wastewater from chemical factory processes and wastewater after wastewater treatment, is ammonia nitrogen such as ammonia and ammonium ions. The methods (2), (3), and (4) are applied to the wastewater treatment.
[0005]
The above prior art has the following problems.
That is, in the method (1), the reaction rate of the biological reaction is slow, so that the reaction tank necessary for the treatment becomes large, a large installation space is required, and surplus sludge is generated. In the method (2), since it is necessary to add sodium hypochlorite or more in a stoichiometric amount for complete ammonia removal, there arises a problem of treatment of residual chlorine and generation of an organic chlorine compound. The method of addition (3), the process for waste water containing a high concentration of ammonium ions during the zeolite regeneration occurs is required, (4) after the migration, NH 3 containing gas is air dissipate NH 3 in the gas phase Therefore, there is a problem of secondary pollution.
[0006]
Of these, the stripping method (4) is relatively easy to process and is advantageous over other methods because of its low equipment and operating costs. Therefore, the separated high concentration NH 3 gas is oxidized and decomposed with a catalyst. A method of comprehensively detoxifying in combination with the method is also adopted in existing human waste treatment facilities.
[0007]
However, since the stripping catalytic oxidation method generates a large amount of NOx during NH 3 oxidation, it is necessary to install a NOx reduction catalyst tower in addition to the NH 3 oxidation catalyst tower. Further, according to the study by the inventors, it was found that a large amount of N 2 O is generated during the NH 3 oxidation in this method. N 2 O is a substance that contributes to global warming, like CO 2, and its release to the atmosphere in a large amount is as harmful as the NH 3 and is undesirable in the global environment. As described above, the NH 3 -containing wastewater treatment in the prior art has a number of problems and, depending on the method, has a problem that it may become a source for newly generating various secondary pollutants.
[0008]
Regarding this problem, an invention disclosed in Japanese Patent Application Laid-Open No. 2000-317272 (Applicant: Babcock Hitachi Ltd.) has been proposed. FIG. 4 is an explanatory diagram showing the flow of exhaust gas treatment when the invention of Japanese Patent Laid-Open No. 2000-317272 is applied to wastewater containing ammonia nitrogen such as wastewater discharged from coal-fired or heavy oil-fired thermal power plants. It is. In the figure, drainage A and alkali B are respectively supplied from pipes 1 and 2 to a tank 3, mixed in the tank 3, and then sent to a preheater 5 by a pump 4. Waste water A preheated to about 100 ° C. by the preheater 5 is supplied to the upper part of the stripping tower 7 through the pipe 6. The inside of the stripping tower 7 contains a packing 8, and the vapor C and air D supplied as carrier gases from the pipes 9 and 16 at the bottom of the tower are brought into contact with the waste water A in the tower while efficiently contacting the inside of the tower. Ascending, a gas containing a high concentration of ammonia gas is obtained. The concentration of NH 3 in the obtained gas is several thousand to several tens of thousands ppm. The obtained gas is diluted with the air D supplied from the pipe 10 as necessary, and after being preheated to a predetermined temperature by the preheater 11, it is led to the catalyst tower 12. The stripped ammonia gas is oxidatively decomposed on the catalyst 13, decomposed into N 2 and H 2 O, and released from the pipe 14 to the atmosphere. This catalyst, and a second component having a first nitrogen oxide from the ingredients and NH 3 activity to generate (NOx) having a reducing activity by NH 3 nitrogen oxides. Moreover, the reaction temperature in the catalyst layer 13 at this time is 250-450 degreeC, Preferably it is 350-400 degreeC. The drainage E from which ammonia has been removed is discharged from the pipe 15 at the bottom of the stripping tower 7.
[0009]
[Problems to be solved by the invention]
The NH 3 -containing wastewater treatment method is characterized in that the generation of secondary pollutants is extremely small and the operation is easy, but depending on the properties of the gas containing ammonia to be treated in the catalyst layer, the NH 3 at the catalyst tower outlet There is a problem that the concentration becomes high, and it has been found that this problem becomes prominent when the catalyst is used for a long time.
[0010]
An object of the present invention is to provide a purification method and apparatus for ammonia-containing wastewater that solves these problems, prevents a decrease in catalyst performance during long-term use, and can reduce the amount of harmful substances generated. is there.
[0011]
[Means for Solving the Problems]
In the process of conducting a long-term performance test of a purification catalyst for ammonia-containing exhaust gas, the present inventors have found that when the catalyst deteriorates, the moisture concentration in the exhaust gas greatly affects the NH 3 decomposition rate of the catalyst. As a result, the present invention has been achieved. That is, the invention claimed in the present application is as follows.
[0012]
(1) ammonia (NH 3) in the method for purifying NH 3 containing waste water to detoxify the NH 3 in containing waste water, wherein the NH 3 containing waste water and the carrier gas is contacted with by the NH 3 in the gas phase from the NH 3 containing effluent And a step of cooling the gas containing NH 3 generated in the step as it is to condense and remove a part of the water to make the water concentration 25% or less, and a part of the water in the step heating the removed NH 3 containing gas, the NH 3 containing gas heated by the heating step, a first component comprising a titanium (Ti), tungsten (W), and vanadium (V), platinum ( Pt) and a second component containing silica (SiO 2 ), and the NH 3 is decomposed into nitrogen and water by contacting with a catalyst having a ratio of the first component to the second component of 99.8: 0.2. Purification method of wastewater containing NH 3 characterized by including a process Law.
[0018]
(2) ammonia (NH 3) in the purification system of the NH 3 containing waste water to detoxify the NH 3 in containing waste water, the NH 3 from the NH 3 containing wastewater is brought into contact with the NH 3 containing effluent and carrier gas vapor phase A means for transferring to the inside, a means for condensing and removing a part of the water by cooling the gas containing NH 3 generated by the means as it is, and a part of the water by the means for reducing the water concentration to 25% or less. means for heating the NH 3 containing gas which has been removed, the NH 3 containing gas heated by the heating means, a first component comprising a titanium (Ti), tungsten (W), and vanadium (V), platinum (Pt) and a second component containing silica (SiO 2 ), which is brought into contact with a catalyst having a ratio of the first component to the second component of 99.8: 0.2 to convert the NH 3 into nitrogen and water. NH 3 containing waste water, characterized in that it comprises decomposing means Purifying device.
[0023]
In the present invention, as means for transferring NH 3 from the NH 3 -containing wastewater to the gas phase, for example, carrier gas is blown into the wastewater, or wastewater is sprayed into the carrier gas, so that ammonia in the gas is introduced into the gas phase. A stripping method is used. If the pH of the liquid is 10 or more, stripping is left as it is, and if it is low, alkali such as sodium hydroxide or slaked lime is added to make it 10 or more, air is brought into contact with this, and ammonia gas is diffused using air as a carrier gas. Let The carrier gas may be water or water vapor, but may be carried out without using the carrier gas.
[0024]
As a means for heating the NH 3 -containing gas, a normal preheating method such as heat exchange with a high-temperature gas such as a burner, steam or catalyst device outlet gas may be used, but when the gas is circulated, the gas composition, particularly the oxygen concentration A method that does not change the temperature (for example, heat exchange) is preferable. In the case of an NH 3 decomposition catalyst having a denitration function, the temperature of the catalyst layer is important to be in the range of 250 to 450 ° C., preferably 350 to 400 ° C., and in the case of a zeolitic catalyst, 450 to 600 However, in any case, an appropriate temperature may be selected based on the characteristics of the catalyst.
[0025]
The NH 3 -containing waste water here refers to waste water discharged from sewage and human waste treatment facilities, and combustion ash and SO 2 gas in exhaust gas discharged from coal-fired and heavy oil-fired thermal power plants. It means the waste water containing ammonia nitrogen, such as the waste water discharged from the dry electrostatic precipitator and wet desulfurizer installed. In addition, wastewater after decomposition of organic nitrogen in organic nitrogen-containing wastewater into NH 3 state nitrogen that can be stripped by general biological treatment, and high concentration discharged during zeolite regeneration by the conventional ion exchange method Wastewater that has been converted to NH 3 nitrogen by pretreatment, such as NH 3 -containing wastewater, is also included.
[0026]
[Action]
FIG. 5 shows a pore model of the NH 3 decomposition catalyst having a denitration function used in the present invention. In FIG. 5, the pores of this catalyst have a structure in which micropores formed by silica porous exist in the macropores (first component) formed by components that reduce NO with NH 3 . A component (second component) having an activity of generating NOx from NH 3 is supported in the micropore. NH 3 diffuses into the macropore inside the catalyst, is oxidized according to the formula (1) on the second component to become NO, collides with NH 3 adsorbed in the macropore in the process of diffusing out of the catalyst, It is reduced to N 2 by the reaction of the formula (2), and as a whole, it is as shown in the formula (3).
[0027]
[Expression 1]
NH 3 + 5 / 4O 2 → NO + 3 / 2H 2 O (1)
NH 3 + NO + 1 / 4O 2 → N 2 + 3 / 2H 2 O (2)
NH 3 + 3 / 4O 2 → 1 / 2N 2 + 3 / 2H 2 O (3)
Thus, in the NH 3 decomposing catalyst having a denitrating function, N 2 the oxidation reaction and reduction reaction with the generated NO and NH 3 in the NH 3 is believed to proceed within the catalyst, occurs with NO and NO generation process NH 3 can be reduced to N 2 with little production of O. In addition, when zeolite is used as the catalyst, the production of NO and N 2 O is extremely small.
[0028]
However, even when such a catalyst was used, a phenomenon was observed in which the NH 3 concentration at the catalyst tower outlet increased (NH 3 decomposition rate decreased) when the moisture concentration in the gas increased. The reason for the decrease in NH 3 decomposition rate due to an increase in moisture concentration is not clear, but in order to prevent this, for example, by cooling the gas discharged from the stripping tower, a part of the moisture in the gas is condensed, It was found that the decomposition rate of ammonia was greatly improved. As a means for cooling the gas, it is preferable to exchange heat with the wastewater supplied to the stripping tower, which is also effective from the viewpoint of thermal efficiency.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
FIG. 1 is an explanatory diagram showing an apparatus system when the method for treating NH 3 -containing waste water of the present invention is applied to waste water containing ammonia nitrogen discharged from a thermal power plant. The apparatus includes a stripping column 7 of the NH 3 is brought into contact with NH 3 containing waste water and the carrier gas from the NH 3 containing wastewater as a means for shifting the gas phase, the NH 3 generated by the stripping column 7 A gas cooler 17 as a means for removing a part of the moisture in the gas, a preheater 11 as a means for heating the NH 3 -containing gas from which a part of the moisture has been removed by the cooler 17, and the preheater 11 mainly comprises a catalyst tower 12 as a means for bringing the heated NH 3 -containing gas into contact with the catalyst to decompose the NH 3 into nitrogen and water.
[0030]
In the figure, drainage A and alkali B are respectively supplied from pipes 1 and 2 to a tank 3, mixed in the tank 3, and then sent to a preheater 5 by a pump 4. Waste water A preheated to about 100 ° C. by the preheater 5 is supplied to the upper part of the stripping tower 7 through the pipe 6. The inside of the stripping tower 7 contains a packing 8, and the steam C and air D supplied from the pipes 9 and 16 at the bottom of the tower as carrier gas are in contact with the waste water A in the tower efficiently. To obtain a gas containing high-concentration ammonia gas. The concentration of NH 3 in the obtained gas is several thousand to several tens of thousands ppm. The obtained gas is sent to the gas cooler 17, and a part of moisture in the gas is condensed and removed by the cooling water F supplied from the pipe 18. The condensed and removed water is returned to the tank 3 from the pipe line 19. The water returned to the tank 3 from the pipeline 19 contains a slight amount of ammonia and may be reprocessed. However, depending on the concentration of the ammonia contained, it may be discharged as it is together with the treated wastewater E. Good. The gas from which a part of the moisture has been removed is diluted with the air D supplied from the pipe 10 as necessary. In some cases, the gas is preheated to a predetermined temperature by the preheater 11 and then guided to the catalyst tower 12. The stripped ammonia gas is oxidatively decomposed on the catalyst 13, decomposed into N 2 and H 2 O, and released from the pipe 14 to the atmosphere. The moisture concentration at the catalyst tower outlet is measured by a moisture concentration measuring device 20 installed at the catalyst tower outlet, and the flow rate of the cooling water F supplied from the pipe 18 is controlled according to this measured value. The drainage E from which ammonia has been removed is discharged from the pipe 15 at the bottom of the stripping tower 7. Here, the catalyst used was composed of a second component having a first nitrogen oxide from the ingredients and NH 3 activity to generate (NOx) having a reducing activity by NH 3 nitrogen oxides. Moreover, the reaction temperature in the catalyst layer 13 at this time is 250-450 degreeC, Preferably it is 350-400 degreeC.
[0031]
Next, specific examples of the present invention will be described.
Example 1
Metatitanic acid slurry (TiO 2 content: 30wt%, SO 4 content: 8 wt%) 67 kg of ammonium paratungstate ((NH 4) 10 H 10 · W 12 O 46 · 6H 2 O) 2.5kg, metavanadate 2.33 kg of ammonium was added and kneaded using a kneader. The resulting paste was granulated, dried, calcined at 550 ° C. for 2 hours, and the resulting granule was pulverized to obtain catalyst powder as the first component It was. The composition of this powder is Ti / W / V = 91/5/4 (atomic ratio). On the other hand, 1 g of 1.33 × 10 -2 wt% chloroplatinic acid (H 2 [PtCl 6 ] · 6H 2 O) is added with 500 g of fine silica powder (trade name / Microcomputer F, manufactured by Tomita Pharmaceutical Co., Ltd.) Evaporated to dryness on a bath, and calcined in air at 500 ° C. for 2 hours to prepare 0.01 wt% Pt · SiO 2, which was used as the second component catalyst powder.
[0032]
Next, 5.3 kg of silica / alumina based inorganic fiber and 17 kg of water are added to 20 kg of the first component and 40.1 g of the second component and kneaded with a kneader to obtain a catalyst paste, which is made of E glassy fibers. A net-like material is impregnated with a slurry of titania, silica sol, and polyvinyl alcohol, dried at 150 ° C. to form a catalyst base material, and the catalyst paste is sandwiched between the catalyst base materials and rolled through a rolling roller to obtain a plate-like body. The plate-like body was air-dried for 12 hours in the air, and then calcined at 500 ° C. for 2 hours to obtain an NH 3 decomposition catalyst having a denitration function. In addition, the 2nd component / 1st component ratio of the 1st component in this catalyst and a 2nd component is 0.2 / 99.8.
[0033]
Using this catalyst, a wastewater treatment test was conducted using the apparatus shown in FIG. 1 and the conditions shown in Table 1. FIG. 2 shows the influence of the moisture concentration in the gas in the catalyst tower on the ammonia concentration in the gas at the catalyst tower outlet.
[0034]
[Table 1]
Figure 0003987896
As is clear from the results shown in FIG. 2, the ammonia concentration in the gas at the catalyst tower outlet can be reduced by maintaining the water concentration at the catalyst layer inlet at 25% or less. The lower the moisture concentration, the lower the ammonia concentration in the gas at the catalyst tower outlet. However, if the moisture concentration is lowered more than necessary, the amount of cooling water F supplied and the heating energy in the preheater 11 will increase. become. Although depending on the catalyst and the wastewater composition, the water concentration suitable for maintaining the ammonia decomposition rate was generally 15 to 25%, preferably 20 to 25%.
[0035]
According to the embodiment, by reducing the moisture concentration in the gas, in addition to the effect of reducing the ammonia concentration, it is possible to reduce the heating energy required for preheating to a predetermined temperature in the preheater 11. .
[0036]
In the above embodiment, the gas cooler is used to lower the gas temperature to condense and remove the moisture in the gas. For example, a gas that sprays water at a low temperature or absorbs moisture is used in the gas. Then, any method that can reduce the moisture concentration in the gas, such as removing moisture in the gas, can be used.
[0037]
FIG. 3 is an explanatory view showing an apparatus system of a wastewater treatment method according to another embodiment of the present invention. In this embodiment, the waste water supplied to the stripping tower 7 is supplied to the gas cooler 17 to cool the stripping tower outlet gas, and the moisture concentration in the gas is reduced and the temperature of the waste water is increased, which is necessary for heating. Energy is reduced. That is, in FIG. 3, drainage A and alkali B are respectively supplied from the pipes 1 and 2 to the tank 3, mixed in the tank 3, and then partly sent to the gas cooler 17 through the distributor 21 by the pump 4. It is done. The waste water A is heated by the gas discharged from the stripping tower 7 at the gas cooler 17, preheated to about 100 ° C. by the preheater 5 as necessary, and supplied to the upper part of the stripping tower 7 through the pipe 22. The waste water A that has not been sent to the gas cooler 17 is preheated to about 100 ° C. by the preheater 5, and is supplied to the upper portion of the stripping tower 7 through the pipe 6. The inside of the stripping tower 7 contains a packing 8, and the steam C and air D supplied from the pipes 9 and 16 at the bottom of the tower as carrier gas are in contact with the waste water A in the tower efficiently. To obtain a gas containing high-concentration ammonia gas. The concentration of NH 3 in the obtained gas is several thousand to several tens of thousands ppm. The obtained gas is sent to the gas cooler 17 and cooled by the waste water A supplied from the pipe 22, and a part of the moisture in the gas is condensed and removed. The condensed and removed water is returned to the tank 3 from the pipe line 19. The gas from which a part of the moisture has been removed is diluted with the air D supplied from the pipe 10 as necessary. In some cases, the gas is preheated to a predetermined temperature by the preheater 11 and then guided to the catalyst tower 12. The stripped ammonia gas is oxidatively decomposed on the catalyst 13, decomposed into N 2 and H 2 O, and released from the pipe 14 to the atmosphere. The moisture concentration at the catalyst tower outlet is measured by the moisture concentration measuring device 20 installed at the catalyst tower outlet, and the flow rate of the waste water A supplied from the pipe 22 through the distributor 21 is controlled according to the measured value. The drainage E from which ammonia has been removed is discharged from the pipe 15 at the bottom of the stripping tower 7.
[0038]
In addition, the thing of the component described in Claim 9 as a catalyst in Example 1 can anticipate the equivalent effect (with the thing of the component described in the present Example), and can be used.
[0039]
【The invention's effect】
According to the first or second aspect of the invention, even if the catalyst is deteriorated, the NH 3 concentration at the outlet of the catalyst tower can be reduced, and the catalyst performance can be maintained high, thereby reducing the heating energy of gas and waste water. it can.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an apparatus system of a method for purifying ammonia-containing waste water according to the present invention.
FIG. 2 is a diagram showing experimental data of the present invention conducted using the apparatus of FIG.
FIG. 3 is an explanatory diagram showing an apparatus system of a method for purifying ammonia-containing wastewater according to another embodiment of the present invention.
FIG. 4 is an explanatory view showing a conventional method for purifying ammonia-containing wastewater.
FIG. 5 is a schematic diagram for explaining the effect of the catalyst used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Pipe, 2 ... Pipe, 3 ... Tank, 4 ... Pump, 5 ... Preheater, 6 ... Pipe, 7 ... Stripping tower, 8 ... Packing, 9 ... Pipe, 10 ... Pipe, 11 ... Preheater, 12 ... catalyst tower, 13 ... catalyst, 14 ... pipe, 15 ... pipe, 16 ... pipe, 17 ... gas cooler, 18 ... pipe, 19 ... pipe, 20 ... moisture concentration measuring device, 21 ... distributor, 22 ... pipe , A ... drainage, B ... alkali, C ... steam, D ... air, E ... drainage, F ... cooling water, G ... gas.

Claims (2)

アンモニア(NH3 )含有排水中のNH3 を無害化するNH3 含有排水の浄化方法において、前記NH3 含有排水とキャリアガスを接触させてNH3 含有排水からNH3 を気相中に移行させる工程と、該工程で発生したNH3 を含むガスをそのまま冷却して水分の一部を凝縮除去し、その水分濃度を25%以下とする工程と、該工程で水分の一部を除去されたNH3 含有ガスを加熱する工程と、該加熱工程で加熱されたNH3 含有ガスを、チタン(Ti)、タングステン(W)、及びバナジウム(V)を含む第1成分と、白金(Pt)とシリカ(SiO )を含む第2成分とからなり、第1成分と第2成分の比が99.8:0.2である触媒に接触させて前記NH3 を窒素と水に分解する工程を含むことを特徴とするNH3 含有排水の浄化方法。In the ammonia (NH 3) method for purifying NH 3 containing waste water to detoxify the NH 3 in containing waste water, the NH 3 is shifted in the vapor phase the NH 3 by contacting the waste water containing the carrier gas from the NH 3 containing effluent The process, the gas containing NH 3 generated in the process was cooled as it was, and a part of the water was condensed and removed , and the water concentration was reduced to 25% or less, and a part of the water was removed in the process. heating the NH 3 containing gas, the NH 3 containing gas heated by the heating step, a first component comprising a titanium (Ti), tungsten (W), and vanadium (V), and platinum (Pt) A step of decomposing NH 3 into nitrogen and water by contacting with a catalyst comprising a second component containing silica (SiO 2 ) and having a ratio of the first component to the second component of 99.8: 0.2. A method for purifying NH 3 -containing wastewater, comprising: アンモニア(NH3 )含有排水中の前記NH3 を無害化するNH3 含有排水の浄化装置において、前記NH3 含有排水とキャリアガスを接触させてNH3 含有排水からNH3 を気相中に移行させる手段と、該手段で発生したNH3 を含むガスをそのまま冷却して水分の一部を凝縮除去し、その水分濃度を25%以下とする手段と、該手段で水分の一部を除去されたNH3 含有ガスを加熱する手段と、該加熱手段で加熱されたNH3 含有ガスを、チタン(Ti)、タングステン(W)、及びバナジウム(V)を含む第1成分と、白金(Pt)とシリカ(SiO )を含む第2成分とからなり、第1成分と第2成分の比が99.8:0.2である触媒に接触させて前記NH3 を窒素と水に分解する手段とを含むことを特徴とするNH3 含有排水の浄化装置。In purifier of NH 3 containing waste water to detoxify the NH 3 of ammonia (NH 3) in the waste water containing, migrate NH 3 from NH 3 containing waste water is brought into contact with the NH 3 containing waste water and the carrier gas in the gas phase And a means for cooling the gas containing NH 3 generated by the means as it is to condense and remove a part of the water, so that the water concentration is 25% or less, and a part of the water is removed by the means. means for heating the NH 3 containing gas, the NH 3 containing gas heated by the heating means, a titanium (Ti), tungsten (W), and vanadium (V) and the first component containing, platinum (Pt) And a second component containing silica (SiO 2 ) , contacting the catalyst with a ratio of the first component to the second component of 99.8: 0.2 to decompose NH 3 into nitrogen and water Purification equipment for NH 3 -containing wastewater characterized by containing Place.
JP2002156116A 2002-05-29 2002-05-29 Method and apparatus for purifying ammonia-containing wastewater Expired - Fee Related JP3987896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156116A JP3987896B2 (en) 2002-05-29 2002-05-29 Method and apparatus for purifying ammonia-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002156116A JP3987896B2 (en) 2002-05-29 2002-05-29 Method and apparatus for purifying ammonia-containing wastewater

Publications (2)

Publication Number Publication Date
JP2003340440A JP2003340440A (en) 2003-12-02
JP3987896B2 true JP3987896B2 (en) 2007-10-10

Family

ID=29772464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156116A Expired - Fee Related JP3987896B2 (en) 2002-05-29 2002-05-29 Method and apparatus for purifying ammonia-containing wastewater

Country Status (1)

Country Link
JP (1) JP3987896B2 (en)

Also Published As

Publication number Publication date
JP2003340440A (en) 2003-12-02

Similar Documents

Publication Publication Date Title
EP0787521B1 (en) Method and apparatus for treating combustion exhaust gases
JP4350081B2 (en) Exhaust gas treatment method and apparatus
JP3655802B2 (en) Waste water treatment method and waste water treatment apparatus using the method
KR20160102474A (en) Ammonia decomposition catalyst
CN109414647B (en) Method for low-temperature gas cleaning and catalyst used for method
JP2008132413A (en) Combustion exhaust gas treatment apparatus and wastewater treatment method of wet type dust collector
WO2005054126A1 (en) Carbon material and flue gas treatment apparatus
KR100799049B1 (en) Process and apparatus for treating ammonia-containing waste water
US6814948B1 (en) Exhaust gas treating systems
JP3987896B2 (en) Method and apparatus for purifying ammonia-containing wastewater
KR100733689B1 (en) Method and apparatus for treating ammonia-containing effluent water
JP4175903B2 (en) Method and apparatus for treating liquid ammonia remaining in tank
JP3366417B2 (en) Prevention method of ammonium sulfate precipitation in selective reduction denitration method
JP2004066009A (en) Carbon material and equipment for treating flue gas
JP2001025778A (en) Method for cleaning ammonia-containing waste water
JP2009149460A (en) Surface modification method of carbonaceous material, and carbonaceous material or activated carbon fiber
JP2002052381A (en) Method and apparatus for cleaning ammonia-containing wastewater
JP2002066538A (en) Method and apparatus cleaning ammonia-containing waste water
JP2002052379A (en) Method and apparatus for cleaning ammonia-containing wastewater
JP2002052380A (en) Method and apparatus for cleaning ammonia-containing wastewater
KR100785523B1 (en) Amonia oxidation catalyst and removal method of ammonia using the same
JP2000317272A (en) Method for purification of ammonia-containing waste water
JP2004188308A (en) Method and equipment for cleaning ammonia-containing waste water
EP1362832A1 (en) Method for purifying effluent water containing ammonia
JP3949358B2 (en) Method and apparatus for treating quaternary ammonium salt-containing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees