JP3987707B2 - Steam trap monitoring device - Google Patents

Steam trap monitoring device Download PDF

Info

Publication number
JP3987707B2
JP3987707B2 JP2001330702A JP2001330702A JP3987707B2 JP 3987707 B2 JP3987707 B2 JP 3987707B2 JP 2001330702 A JP2001330702 A JP 2001330702A JP 2001330702 A JP2001330702 A JP 2001330702A JP 3987707 B2 JP3987707 B2 JP 3987707B2
Authority
JP
Japan
Prior art keywords
steam
trap
temperature
detection information
steam supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001330702A
Other languages
Japanese (ja)
Other versions
JP2003130289A (en
Inventor
康祐 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tlv Co Ltd
Original Assignee
Tlv Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tlv Co Ltd filed Critical Tlv Co Ltd
Priority to JP2001330702A priority Critical patent/JP3987707B2/en
Publication of JP2003130289A publication Critical patent/JP2003130289A/en
Application granted granted Critical
Publication of JP3987707B2 publication Critical patent/JP3987707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は蒸気トラップの監視装置に関し、詳しくは、センサの検出情報に基づいて蒸気トラップの作動状態判定(特にトラップ閉塞の検出)を行なう蒸気トラップ監視装置に関する。
【0002】
【従来の技術】
従来、蒸気トラップの作動状態判定の1つとして、蒸気トラップにおいて復水の排出が円滑に行なわれなくなるトラップ閉塞(すなわち、トラップ詰まり)が生じたことを検出するには、蒸気トラップの温度、又は、蒸気使用系での発生復水を蒸気トラップに導く復水導入路の下流側部分の温度、又は、蒸気トラップからの復水導出路の温度を検出する温度センサを設け、この温度センサの検出情報に基づきトラップ閉塞を検出していた。
【0003】
すなわち、トラップ閉塞が生じると、トラップ内部やトラップへの復水導入路の下流側部分(トラップ近傍部分)に復水が滞留してその滞留復水が放熱により温度低下することでトラップの温度や復水導入路の下流側部分の温度が低下し、また、トラップからの復水導出路では温水である復水の排出が無くなることでその復水導出路の温度が低下することから、これらの温度低下を上記の温度センサにより検出することでトラップ閉塞を検出するようにしていた(特開2000−35194号公報、特開平6−137490号公報、特開平6−129600号公報参照)。
【0004】
【発明が解決しようとする課題】
しかし、トラップ温度の低下や復水導入路の下流側部分の温度低下、また、復水導出路の温度低下は、蒸気使用系に対する蒸気供給の停止で蒸気使用系及びそれに配備の蒸気トラップが休止状態になった際にも生じるものであって、条件によっては、この蒸気供給の停止によるトラップ休止で生じる上記の温度低下がトラップ閉塞により生じる前記の温度低下と形態面で酷似したものになる場合がある。
【0005】
この為、前記温度センサによる検出温度(トラップ温度又は復水導入路の下流側部分の温度又は復水導出路の温度)の低下形態の差異によりトラップ休止とトラップ閉塞との判別を行なうにしても両者の正確な判別が難しい場合があり、このことから、前記した従来の監視装置では、蒸気供給の停止による単なるトラップ休止であるにもかかわらず、その蒸気供給の停止時にトラップ閉塞の誤検出を生じ易く、この点でトラップ監視機能が低いものになる問題があった。
【0006】
この実情に鑑み、本発明の主たる課題は、合理的な監視構成の採用により上記の問題を効果的に解消する点にある。
【0007】
【課題を解決するための手段】
〔1〕請求項1に係る発明は蒸気トラップ監視装置に係り、その特徴は、
蒸気使用系に装備した蒸気トラップの温度、又は、その蒸気トラップに前記蒸気使用系での発生復水を導く復水導入路の下流側部分の温度、又は、その蒸気トラップからの復水導出路の温度を検出する温度センサを設けるとともに、
前記蒸気使用系に対する蒸気供給状態を検出する蒸気供給検出手段を設け、
前記温度センサの検出情報と前記蒸気供給検出手段の検出情報とに基づいて前記蒸気トラップの作動状態を判定する判定手段を設け、
前記蒸気供給検出手段が、前記蒸気使用系に対する蒸気供給路に介装された弁の開閉状態を検出する開閉センサである点にある。
【0008】
つまり、この構成によれば、蒸気使用系に対する蒸気供給状態を検出する蒸気供給検出手段の検出情報に基づき、蒸気使用系及びそれに配備の蒸気トラップが蒸気供給停止下の休止状態にあるか否かを判別できるから、上記温度センサの検出温度(トラップ温度又は復水導入路の下流側部分の温度又は復水導出路の温度)が低下したとき、その低下形態がトラップ休止の場合とトラップ閉塞の場合とで酷似していたとしても、その温度低下が蒸気供給の停止によるトラップ休止で生じたものか、あるいは、対象トラップでのトラップ閉塞の発生により生じたものかを、蒸気供給検出手段の検出情報(略言すれば、蒸気使用系及びそれに配備の蒸気トラップが休止状態にあるか否かの検出情報)に基づいて判定手段に正確に判別させることができる。
【0009】
そして、このことにより、蒸気使用系に対する蒸気供給の停止で蒸気使用系及びそれに配備の蒸気トラップが休止状態になった際のトラップ閉塞の誤検出を効果的に防止することができて、トラップ作動状態の判定としてのトラップ閉塞の検出をより精度良く判定手段に行なわせることができ、この点で、先述した従来の監視装置に比べトラップ監視機能を効果的に高めることができる。
【0010】
なお、請求項1に係る発明の実施において、上記温度センサにより蒸気トラップの温度を検出する場合、トラップの内部温度あるいはトラップ構成部材の温度のいずれを検出するようにしてもよく、同様に、上記温度センサにより復水導入路の下流側部分の温度や復水導出路の温度を検出する場合、それら復水導入路や復水導出路の内部温度あるいはそれら復水導入路や復水導出路を形成する管材の温度のいずれを検出するようにしてもよい。
【0011】
また、判定手段はトラップ閉塞の検出とともに、温度センサの検出情報あるいは蒸気供給手段の検出情報を用いてトラップ閉塞の検出以外のトラップ作動状態の判定も合わせ行なうものにしてもよい。
【0012】
そしてまた、請求項1に係る発明では、蒸気供給検出手段が、前記蒸気使用系に対する蒸気供給路に介装された弁の開閉状態を検出する開閉センサであることを特徴とする。
【0013】
つまり、蒸気使用系に対する蒸気供給の断続をその蒸気使用系に対する蒸気供給路に介装した弁により行なう場合、その弁の開閉状態を検出すれば、蒸気使用系及びそれに配備の蒸気トラップが休止状態にあるか否かを判別することができる。
【0014】
したがって、その介装弁の開閉状態を検出する開閉センサの検出情報に基づき、蒸気使用系及びそれに配備の蒸気トラップが休止状態にあるか否かを判別させる形態で、その開閉センサの検出情報と前記温度センサの検出情報とに基づきトラップ閉塞を判定手段に精度良く検出させる。
【0015】
すなわち、前記温度センサの検出温度(トラップ温度又は復水導入路の下流側部分の温度又は復水導出路の温度)が低下したとき、上記介装弁が閉弁状態にあれば、その温度低下は蒸気供給の停止によるトラップ休止で生じたものであると判定させ、一方、その検出温度の低下に対し上記介装弁が開弁状態にあれば、その温度低下は対象トラップでのトラップ閉塞により生じたものであると判定させる判別形態を採り、これにより、蒸気供給の停止で蒸気使用系及びそれに配備の蒸気トラップが休止状態になった際のトラップ閉塞の誤検出を効果的に防止した状態でトラップ閉塞を判定手段に精度良く検出させる。
【0016】
〔2〕請求項2に係る発明は蒸気トラップ監視装置に係り、その特徴は、
蒸気使用系に装備した蒸気トラップの温度、又は、その蒸気トラップに前記蒸気使用系での発生復水を導く復水導入路の下流側部分の温度、又は、その蒸気トラップからの復水導出路の温度を検出する温度センサを設けるとともに、
前記蒸気使用系に対する蒸気供給状態を検出する蒸気供給検出手段を設け、
前記温度センサの検出情報と前記蒸気供給検出手段の検出情報とに基づいて前記蒸気トラップの作動状態を判定する判定手段を設け、
前記蒸気供給検出手段が、前記蒸気使用系への蒸気供給を制御する制御手段の生成信号に基づいて前記蒸気使用系に対する蒸気供給状態を検出する信号判読手段である点にある。
【0017】
つまり、請求項2に係る発明は、蒸気供給検出手段として上記信号判読手段を採用する点でのみ請求項1に係る発明と相違するが、蒸気使用系に対する蒸気供給を制御手段により制御する場合、その制御手段の生成信号を判読すれば、蒸気使用系に対する蒸気供給状態を検出することができるから、その検出情報により蒸気使用系及びそれに配備の蒸気トラップが休止状態にあるか否かを判別することができる。
【0018】
したがって、上記構成では、蒸気供給制御を行なう制御手段の生成信号に基づき、蒸気使用系及びそれに配備の蒸気トラップが休止状態にあるか否かを判別させる形態で、その生成信号と前記温度センサの検出情報とに基づきトラップ閉塞を判定手段に精度良く検出させる。
【0019】
すなわち、上記制御手段の生成信号が蒸気使用系に対する蒸気供給の停止を示すものである状況で前記温度センサの検出温度(トラップ温度又は復水導入路の下流側部分の温度又は復水導出路の温度)が低下したときには、その温度低下は蒸気供給の停止によるトラップ休止で生じたものであると判定させ、一方、上記制御手段の生成信号が蒸気使用系に対する蒸気供給の実施を示すものである状況で前記温度センサの検出温度が低下したときには、その温度低下は対象トラップでのトラップ閉塞により生じたものであると判定させる判別形態を採り、これにより、蒸気供給の停止で蒸気使用系及びそれに配備の蒸気トラップが休止状態になった際のトラップ閉塞の誤検出を効果的に防止した状態でトラップ閉塞を判定手段に精度良く検出させる。
【0020】
なお、請求項2に係る発明の実施において、上記生成信号は、本来の蒸気供給制御に用いる生成信号、あるいは、蒸気使用系に対する蒸気供給状態の検出のための専用生成信号のいずれであってもよい。
【0021】
〔3〕請求項3に係る発明は、請求項1又は2に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記温度センサの検出情報、及び、前記蒸気供給検出手段の検出情報を無線通信により中央管理装置に送る通信用の端末器を設けてある点にある。
【0022】
つまり、この構成によれば、前記温度センサの検出情報及び前記蒸気供給検出手段の検出情報を無線通信により中央管理装置に送るから、それら検出情報を信号線を通じて中央管理装置に送る有線式通信を採用するに比べ、信号線の施設を不要化して装置の施設を容易にすることができ、この点で、温度センサや蒸気供給検出手段を配備する箇所と中央管理装置の配備箇所との間の距離が大きい場合や、それら配備箇所の間に信号線施設の障害になる障害物が存在するような場合に好適な蒸気トラップ監視装置にすることができる。
【0023】
そして特に、分散配備された複数の蒸気トラップを監視対象トラップとする場合、上記端末器を複数設けて、それら端末器を各々の担当トラップの近傍に配備する形態を採れば、温度センサと端末器との接続や蒸気供給検出手段と端末器との接続も容易にすることができて、装置施設の容易化を一層効果的に達成することができる。
【0024】
なお、請求項3に係る発明の実施において、中央管理装置では、前記判定手段によるトラップ作動状態の判定や、その判定結果の記録、あるいは、各検出情報の記録などの処理を行なわせるが、判定手段よるトラップ作動状態の判定は必ずしも中央管理装置の側で実施する必要はなく、例えば、判定手段よるトラップ作動状態の判定を端末器の側で行なうようにして、その判定結果を各検出情報と同様に無線通信により中央管理装置に送るなどの装置構成にしてもよい。
【0025】
〔4〕請求項4に係る発明は、請求項3に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
対応する蒸気トラップが共通の前記温度センサ及び前記蒸気供給検出手段について、その温度センサの検出情報を前記中央管理装置に送る前記端末器と、その蒸気供給検出手段の検出情報を前記中央管理装置に送る前記端末器とを各別に設けてある点にある。
【0026】
つまり、この構成によれば、温度センサの検出情報を送る側の端末器については、その端末器が担当する温度センサの近傍に配置し、また、蒸気供給検出手段の検出情報を送る側の端末器については、その端末器が担当する蒸気供給検出手段の近傍に配置することができるから、対応蒸気トラップが共通の温度センサと蒸気供給検出手段とについて、それらの配備箇所が互いに離れている場合に、それらの検出情報を共通の1つの端末器により中央管理装置に送るに比べ、温度センサと端末器との接続、及び、蒸気供給検出手段と端末器との接続を一層容易にすることができ、これにより、装置の施設を一層容易にすることができる。
【0027】
なお、請求項4に係る発明を実施するのに、温度センサの検出情報を送る側の端末器や、蒸気供給検出手段の検出情報を送る側の端末器を、他の蒸気トラップについての温度センサや蒸気供給検出手段の並列接続も可能な構成にすれば、互いの配備箇所が近い温度センサや蒸気供給検出手段については、それらの近傍に配置した1つの端末器により夫々の検出情報を中央管理装置に送る形態を採ることができ、この点で、分散配備された複数の蒸気トラップを監視対象トラップとする場合に装置施設の容易化を一層効果的に達成することができる。
【0028】
【発明の実施の形態】
図1は工場やプラント等に分散配備された多数の蒸気トラップ1の状態を無線通信を用いて監視する監視システムを示し、監視対象である蒸気トラップ1の夫々に状態検出用のセンサ2を装備するとともに、無線通信により中央管理装置3と情報交換する通信用の複数の端末器4を各々の担当トラップ1の近傍に位置させて配備し、これら端末器4に各々の担当トラップ1の装備センサ2をリード線5を介して接続してある。
【0029】
また、複数の中継器6を分散配備し、これら中継器6により端末器4の夫々と中央管理装置3との間での無線通信(本例ではスペクトル拡散方式の無線通信)を中継する。
【0030】
端末器4には、図2に示す如く、1つのセンサ2の接続のみが可能なシングル用端末器4Sと、複数のセンサ2の並列接続が可能なマルチ用端末器4Mとの二種があり、いずれの端末器4(4S,4M)も、図3に示す如く、マイクロプロセッサを用いたデジタル回路部7、センサ2を接続するアナログ回路部8、アンテナ9aを用いて情報の送受信を行なう通信部9、アナログ回路部8及び通信部9への供給電力を制御する電源制御部10、電源電池11、設定情報などを記憶する記憶部12、LEDを用いた警報灯13を備えており、マルチ用端末器4Mのアナログ回路部8には、複数の接続センサ2の検出情報を順次に入力するための入力切換用スイッチ回路8aを設けてある。
【0031】
各端末器4のデジタル回路部7は、中央管理装置3から無線通信により付与された設定情報に従い設定時間(例えば1分間〜24時間の間の範囲から選択した時間)ごとに周期的に、あるいは設定時刻において定時的に、アナログ回路部8を電源制御部10による供給電力制御により休眠状態から覚醒状態にして、接続センサ2の検出情報を入力(マルチ用端末器4Mでは、デジタル回路部7による入力切換用スイッチ回路8aの操作により複数の接続センサ2の検出情報を順次に入力)し、この入力処理の後、電源制御部10による供給電力制御によりアナログ回路部8を再び休眠状態に戻す。また、入力したセンサ検出情報はデジタル回路部7で処理する。
【0032】
そして、センサ検出情報の入力に続き、各端末器4のデジタル回路部7は、通信部9を同じく電源制御部10による供給電力制御により休眠状態から覚醒状態にして、デジタル回路部7で処理したセンサ検出情報を中央管理装置3へ送信するとともに中央管理装置3からの指示情報を受信し、この通信処理の後、電源制御部10による供給電力制御により通信部9を再び休眠状態に戻す。
【0033】
つまり、このようにアナログ回路部8及び通信部9を供給電力制御により必要時にのみ覚醒状態にすることで消費電力を節減し、これにより電源電池11の交換を長期間にわたって不要にする。
【0034】
なお、各端末器4のデジタル回路部7は、通信部9が休眠状態下において自身宛ての中央管理装置3からの信号を受信したときには、それに対する対応のために通信部9を一時的に覚醒状態にする。
【0035】
また、各端末器4のデジタル回路部7は、電源電池11の出力電圧及び通信部9で受信する信号の信号強度を監視するとともに、中央管理装置3からの指示に従って接続センサ2の機能チェック及び端末器各部の機能チェックを行ない、電源電池11の出力電圧が設定値未満に低下したときや、受信信号の信号強度が設定値未満になったとき、あるいはまた、接続センサ2及び端末器各部の機能チェックで異常が検出されたときには、異常信号を中央管理装置3に送信するとともに警報灯13を点滅して、それらの事態をシステムの管理者に報知する。
【0036】
センサ2には振動温度用センサ2Aと振動用センサ2Bと温度用センサ2Cとの三種があり、振動温度用センサ2Aはトラップ1の超音波レベルの振動dとトラップ1の温度ts(トラップ内部の温度又はトラップ構成部材の温度)とトラップ1の周囲温度toとの三者を検出し、振動用センサ2Bはトラップ1の超音波レベルの振動dのみを検出し、温度用センサ2Cはトラップ1の温度tsとトラップ1の周囲温度toとの二者のみを検出するものであり、各トラップ1の形式や監視項目に応じて、これら三種のセンサ2A〜2Cのうちのいずれかを各トラップ1に装備する。
【0037】
また、各端末器4のアナログ回路部8へは上記センサ2A〜2Cに限らず、図2に示す如く、各トラップ1を装備した蒸気使用系への蒸気供給路14に介装された弁15の開閉状態osを検出する開閉センサ16や、蒸気使用系での発生復水をトラップ1に導く復水導入路17の圧力pを検出する圧力センサ18もリード線5を介して接続することができる。
【0038】
各端末器4のデジタル回路部7は、センサ検出情報を入力する各回の入力処理において各接続センサ2A,2B,2C,16,18につき、センサ種別に関係なく、トラップ振動dの検出情報、トラップ温度tsの検出情報、トラップ周囲温度toの検出情報、弁開閉状態osの検出情報、圧力pの検出情報の夫々を設定周期ΔTs(例えば40ms)で設定回数nだけサンプリングする構成にしてあり、この構成に対し、各検出情報d,ts,to,os,pのサンプリング回数nを中央管理装置3からの指示により接続センサ2A,2B,2C,16,18ごとに設定することで、接続センサ2A,2B,2C,16,18の種別に対応する。
【0039】
すなわち、振動温度用センサ2Aについては弁開閉状態osの検出情報、圧力pの検出情報の夫々についてのサンプリング回数nを0に設定し、振動用センサ2Bについてはトラップ温度tsの検出情報、トラップ周囲温度toの検出情報、弁開閉状態osの検出情報、圧力pの検出情報の夫々についてのサンプリング回数nを0に設定し、温度用センサ2Cについてはトラップ振動dの検出情報、弁開閉状態osの検出情報、圧力pの検出情報の夫々についてのサンプリング回数nを0に設定し、開閉センサ16についてはトラップ振動dの検出情報、トラップ温度tsの検出情報、トラップ周囲温度toの検出情報、圧力pの検出情報の夫々についてのサンプリング回数nを0に設定し、また、圧力センサ18についてはトラップ振動dの検出情報、トラップ温度tsの検出情報、トラップ周囲温度toの検出情報、弁開閉状態osの検出情報の夫々についてのサンプリング回数nを0に設定することで、各センサ2A,2B,2C,16,18につき不要なサンプリングを行なわないようにして、それらセンサ2A,2B,2C,16,18の種別に対応する。
【0040】
つまり、この方式を採ることで、端末器4の共通仕様化を図ってシステムコストの低減を可能にしながら、中央管理装置3からの通信による設定情報の付与だけで容易に接続センサ2A,2B,2C,16,18の種別に対応できるようにする。なお、センサ非接続の入力ポートについては、全てのセンサ検出情報d,ts,to,os,pについてのサンプリング回数nを0に設定することで対応する。
【0041】
そしてまた、各端末器4のデジタル回路部7は、センサ検出情報を入力する各回の入力処理、及び、それに続く各回の通信処理において、各接続センサ2A,2B,2C,16,18から入力した検出情報d,ts,to,os,pの夫々につき、各々n個のサンプリングデータを平均化して、その平均化データを各々のセンサ検出情報として中央管理装置3に送信し、これにより、センサ検出情報として全てのサンプリングデータを中央管理装置3に送信するに比べ、送信データ量を少なくして一層の省電力化を図るとともに、複数の端末器4と中央管理装置3との間での通信の混雑を防止する。
【0042】
また、各端末器4のデジタル回路部7は、振動温度用センサ2A又は振動用センサ2Bから入力したトラップ振動dの検出情報に基づき、その振動検出情報についてのn回のサンプリングの期間中における対象トラップ1(特にディスク式トラップ)の作動回数mを検出し、この作動回数mの検出情報を他のセンサ検出情報とともに中央管理装置3へ送信する。
【0043】
なお、各端末器4は電源電池11に限らず、一般商用電源や自家用電源あるいは太陽電池などの補助電源も使用できる。
【0044】
各中継器6は、図4に示す如く、マイクロプロセッサを用いたデジタル回路部19、アンテナ20aを用いて情報の送受信を行なう通信部20、一般商用電源ないし自家用電源からの供給電力を受ける受電部21、設定情報などを記憶する記憶部22、LEDを用いた警報灯23、停電時用のバックアップ電池24を備えており、各中継器6のデジタル回路部19は、通信部20が信号を受信すると、その受信信号に付されている識別符号と記憶部22に記憶している各中継器6ごとの通信経路情報とに基づき、その受信信号を中継すべきか否かを判定し、そして、その受信信号が中継すべき信号であったときには、その受信信号を送信信号に変換して通信部20から送信する中継処理を行なう。
【0045】
各中継器6が自身の記憶部22に記憶している通信経路情報は(図6参照)、自身と同一の通信経路を担う連係中継器6、自身を含む連係中継器6の上位下位の関係、及び、自身を含む連係中継器6夫々の管轄端末器4を示すもの(略言すれば通信上の道標)であり、各中継器6のデジタル回路部19は、上記の判定に基づく中継処理として、中央管理装置3を宛先とする上り信号については、直轄の下位連係中継器6及び直轄の管轄端末器4からの受信信号のみを中継処理し、また、中央管理装置3からの下り信号については、直属の上位連係中継器6又は直属の中央管理装置3からの受信信号であって直轄の管轄端末器4又は下位連係中継器6の管轄端末器4又は下位連係中継器6を宛先とする受信信号のみを中継処理し、これにより、複数の端末器4と中央管理装置3との間での無線通信を端末器4の夫々について単一の通信経路で行なう。
【0046】
つまり、この中継方式を採用して端末器4と中央管理装置3との間での無線通信を端末器4の夫々について単一の通信経路で行なうことにより、複数の端末器4及び複数の中継器6を配備する形態を採りながらも通信混乱を効果的に防止した状態で、その無線通信を円滑かつ効率的に行なえるようする。
【0047】
なお、中央管理装置3との位置関係によっては中継器6による中継を介さずに中央管理装置3と直接に無線通信を行なう非中継の端末器4もある。
【0048】
また、各中継器6のデジタル回路部19は、端末器4と同様、通信部20で受信する信号の信号強度を監視するとともに、中央管理装置3からの指示に従って中継器各部の機能チェックを行ない、受信信号の信号強度が設定値未満になったときや中継器各部の機能チェックで異常が検出されたときには、異常信号を中央管理装置3に送信するととも警報灯23を点滅して、それらの事態をシステムの管理者に報知する。
【0049】
中央管理装置3は、図5に示す如く、マイクロプロセッサを用いた演算制御部25及びハードディスク等を用いた記憶部26を備えるパーソナル型のコンピュータ本体27に、ディスプレイ装置28、キーボード29などの周辺装置とともに無線モデム30を接続して構成してあり、この無線モデム30を用いて中継器6や端末器4との無線通信を行なう。
【0050】
中央管理装置3の演算制御部25(コンピュータ本体27の演算制御部)は、監視対象トラップ1の作動状態を判定する判定手段を構成するものであり、具体的には、各端末器4から送られる前述のセンサ検出情報d,ts,to,os,pや作動回数検出情報mに基づき、各蒸気トラップ1が正常、蒸気漏れ異常、トラップ閉塞異常、温度異常のいずれの状態にあるかを判定(診断)し、そして、その判定の結果、異常状態のトラップ1があったときには、異常トラップ1の識別符号、発生異常種、異常トラップの設置場所などの情報をディスプレイ装置28に表示するとともに、異常トラップ1を担当する端末器4に対し警報灯13の点滅を通信により指示する。
【0051】
また、中央管理装置3の演算制御部25は、各トラップ1について、端末器4から送られるセンサ検出情報や作動回数検出情報とともに、それら検出情報に基づく上記判定(診断)の結果を記憶部26内のトラップ監視用データベースに記録する。
【0052】
なお、蒸気漏れ異常とは、蒸気トラップの本来機能として蒸気の流出を阻止しながら復水のみを排出することが要求されるのに対し蒸気が許容限度を超えて流出する異常であり、また、トラップ閉塞異常とは復水の排出が円滑に行なわれない異常(すなわちトラップ詰まり)であり、温度異常とはトラップ温度tsないしはトラップ周囲温度toが適正範囲を低下側ないし上昇側に逸脱する異常である。
【0053】
また、トラップ作動状態の判定のうちトラップ閉塞の検出については、一般にトラップ内部における滞留復水の温度低下に伴う検出トラップ温度tsの低下に基づいてトラップ閉塞を検出する方式を採るが、本システムでは、トラップ閉塞の検出精度が特に高く要求される蒸気トラップ1については、図7の(イ),(ロ)に示す如く、温度センサTSとしての振動温度用センサ2A又は温度用センサ2Cによるトラップ温度tsの検出情報と、蒸気使用系Mに対する蒸気供給状態を検出する蒸気供給検出手段Kとしての前記開閉センサ16又は圧力センサ18の検出情報(弁開閉状態osの検出情報又は圧力pの検出情報)との二者に基づいて、中央管理装置3の演算制御部25にトラップ閉塞を検出させるようにしてあり、具体的には、前記判定手段Hとしての演算制御部25は、開閉センサ16が蒸気供給路14における介装弁15の開弁状態を検出している状況、又は、圧力センサ18による検出される復水導入路17の圧力pが設定値以上の状況において、振動温度用センサ2A又は温度用センサ2Cによる検出トラップ温度tsが設定値以下に低下したときに、対象トラップ1がトラップ閉塞異常であると判定する構成にしてある。
【0054】
さらに、中央管理装置3の演算制御部25は、中継器6や端末器4から前述の機能チェックや信号強度低下などについて異常信号を受信したとき、それら異常中継器6や異常端末器4の識別符号、発生異常種、異常中継器6や異常端末器4の設置場所などの情報をディスプレイ装置28に表示し、また、それら中継器6や端末器4での異常発生を記憶部26内のシステム管理用データベースに記録する。
【0055】
また、複数の端末器4と中央管理装置3との間での通信を端末器4の夫々について単一の通信経路で行なうのに、その通信経路の決定は中央管理装置3が経路決定プログラムに従って次の如く自動的に行なう。
【0056】
すなわち、中央管理装置3の演算制御部25は、経路決定処理の実行を指示されると、記憶部26内のシステム管理用データベースに予め入力されている各中継器6の登録情報に基づき、全ての中継器6に対して順次に非中継の呼掛通信を行ない、この呼掛通信に対し中央管理装置3への応答通信のあった中継器6を中継段位の最も高い中継器6(すなわち、他の中継器6を介さずに中央管理装置3と直接に無線通信する最上位の中継器)として決定する初期工程を実行する。
【0057】
また、この初期工程に続き、中央管理装置3の演算制御部25は、前工程で段位決定した中継器6を順次に呼掛側中継器6にして、その呼掛側中継器6による中継の下で、呼掛側中継器6から段位未決定の中継器6(すなわち、未だ応答通信の無い中継器)の夫々に対し順次に非中継の呼掛通信を行ない、この呼掛通信に対し呼掛側中継器6への応答通信のあった中継器6を、そのときの呼掛側中継器6の直轄の下位中継器6として決定する後続工程を繰り返し、これにより、各中継器6について直属の上位中継器6を1つに限った状態の樹枝状の中継経路網を自動的に決定する。
【0058】
そして、中央管理装置3の演算制御部25は、この中継経路網の決定の後、記憶部26内のシステム管理用データベースに予め入力されている各端末器4の登録情報に基づき、各中継器6を順次に呼掛側中継器6にして、その呼掛側中継器6による中継の下で、呼掛側中継器6から管轄未決定の端末器4(すなわち、未だ応答通信の無い端末器)の夫々に対し順次に非中継の呼掛通信を行ない、この呼掛通信に対し呼掛側中継器6への応答通信のあった端末器4を、そのときの呼掛側中継器6の管轄端末器4として決定する最終工程を実行する。
【0059】
つまり、中央管理装置3の演算制御部25は、上記の初期工程及び後続工程による中継経路網の自動決定と、上記の最終工程による管轄端末器の自動決定とにより、中央管理装置3との間での無線通信を端末器4の夫々について単一の通信経路で行なうための図6に示す如き通信経路網を中央管理装置3と各端末器4との間の全行程について自動的に決定し、そして、この決定した通信経路網をシステム管理及び通信処理のための情報として記憶部26内のシステム管理用データベースに登録する。
【0060】
なお、中央管理装置3の演算制御部25は、前記初期工程に先立ち各端末器4に非中継の呼掛通信を行ない、この呼掛通信に対し中央管理装置3への応答通信のあった端末器4を非中継端末器として決定する形態で、中継器6を介さず中央管理装置3と直接に無線通信を行なう非中継端末器4の決定も自動的に行なう。
【0061】
通信経路の決定において、中央管理装置3の演算制御部25は、上記の初期工程及び後続工程で最終的に応答通信の無かった中継器6があった場合、また、上記の最終工程で最終的に応答通信の無かった端末器4があった場合、それら最終的に応答通信の無かった中継器6や端末器4をディスプレイ装置28での識別符号の表示及び設置場所の表示により報知する構成にしてあり、システムの構築者ないし管理者は、後続工程の終了段階で最終的に応答通信の無かった中継器6の報知があった際には、その中継器6の設置場所を調整する等の処置を行なった上で、中央管理装置3の演算制御部25に初期工程及びそれに続く後続工程を再実行させ、また、最終工程の終了段階で最終的に応答通信の無かった端末器4の報知があった際には、その端末器4や近傍中継器6の設置場所を調整する等の処置を行なった上で、中央管理装置3の演算制御部25に最終工程を再実行させる。
【0062】
また、中央管理装置3の演算制御部25は、上記の初期工程、後続工程、最終工程の夫々において、中継器6や端末器4からの応答通信の信号強度が設定値以上のときのみ、その応答通信があったと判定して各段位の中継器6の決定や管轄端末器4の決定を行なう構成にしてあり、これにより、上述の如き通信経路の自動決定を極力良好な無線通信機能を確保する上で一層的確かつ効果的なものにする。
【0063】
さらにまた、各中継器6はデジタル回路部19による処理により、前記後続工程の繰り返しごとに自身と同一の通信経路を担うものとなる中継器6を連係中継器6として上位下位の関係とともに自身の記憶部22に追加登録することで、また、前記最終工程において自身を含む連係中継器6夫々の管轄端末器4を自身の記憶部22に登録することで、中央管理装置3による通信経路の自動決定に並行して前述の如き各中継器6ごとの通信経路情報(通信上の道標)を自身の記憶部22内に構築する。
【0064】
そして、上記の如き通信経路網の自動決定後、中央管理装置3の演算制御部25は、システムの構築者ないし管理者の指示にしたがって、各端末器4や各中継器6に対する種々の必要な設定処理を決定通信経路網を用いた無線通信により実行する。
【0065】
〔別実施形態〕
次に別実施形態を列記する。
【0066】
前述の実施形態では本発明によるトラップ閉塞検出の一例を示したが、トラップ閉塞を検出するのに次の(a)〜(c)の如き構成を採用してもよい。
【0067】
(a) 図8に示す如く、蒸気トラップ1の温度ts、又は、その蒸気トラップ1に蒸気使用系Mでの発生復水を導く復水導入路17の下流側部分の温度ts′、又は、その蒸気トラップ1からの復水導出路31の温度ts″を検出する温度センサTSを設ける。
【0068】
また、前記の蒸気供給検出手段Kとして、蒸気使用系Mに対する蒸気供給路14に介装された弁15の開閉状態osを検出する開閉センサ16、又は、蒸気使用系Mへの蒸気供給を制御する制御手段32の生成信号ssに基づいて蒸気使用系Mに対する蒸気供給状態を検出する信号判読手段33を設ける。
【0069】
そして、トラップ作動状態の判定を行なう判定手段H(例えば、前記した中央管理装置3の演算制御部25)を、開閉センサ16又は信号判読手段33の検出情報と温度センサTSの検出情報との二者に基づき、介装弁15が開弁状態にある状況、又は、制御手段32の生成信号ssが蒸気使用系Mに対する蒸気供給の実施を示すものである状況において、温度センサTSの検出温度(トラップ温度ts又は復水導入路17の下流側部分の温度ts′又は復水導出路31の温度ts″)が設定値以下に低下したときに、対象トラップ1がトラップ閉塞であると判定する構成にする。
【0070】
なお、図8示す構成は請求項1又は2に係る発明の実施形態を示すものであり、前述の図7の(イ)で示した構成を含むものである。
【0071】
(b) 図9に示す如く、蒸気トラップ1の温度ts、又は、その蒸気トラップ1に蒸気使用系Mでの発生復水を導く復水導入路17の下流側部分の温度ts′、又は、その蒸気トラップ1からの復水導出路31の温度ts″を検出する温度センサTSを設ける。
【0072】
また、前記の蒸気供給検出手段Kとして、蒸気使用系Mに対する蒸気供給路14の圧力p′、又は、蒸気使用系Mにおける蒸気流通路34の圧力p″、又は、復水導入路17の圧力pを検出する圧力センサPSを設ける。
【0073】
そして、トラップ作動状態の判定を行なう判定手段H(例えば、前記した中央管理装置3の演算制御部25)を、圧力センサPSの検出情報と温度センサTSの検出情報との二者に基づき、圧力センサPSの検出圧力(蒸気供給路14の圧力p′又は蒸気使用系Mにおける蒸気流通路34の圧力p″又は復水導入路17の圧力p)が設定値以上の状況において、温度センサTSの検出温度(トラップ温度ts又は復水導入路17の下流側部分の温度ts′又は復水導出路31の温度ts″)が設定値以下に低下したときに、対象トラップ1がトラップ閉塞であると判定する構成にする。
【0074】
(c) 図10に示す如く、蒸気トラップ1の温度ts、又は、その蒸気トラップ1に蒸気使用系Mでの発生復水を導く復水導入路17の下流側部分の温度ts′、又は、その蒸気トラップ1からの復水導出路31の温度ts″を検出する温度センサTSを設ける。
【0075】
また、前記の蒸気供給検出手段Kとして、蒸気使用系Mに対する蒸気供給路14の温度ti、又は、蒸気使用系Mにおける蒸気流通路34の温度ti′、又は、復水導入路17の上流側部分の温度ti″を検出する上流側温度センサTSSを設ける。
【0076】
そして、トラップ作動状態の判定を行なう判定手段H(例えば、前記した中央管理装置3の演算制御部25)を、上流側温度センサTSSの検出情報と温度センサTSの検出情報との二者に基づき、上流側温度センサTSSの検出温度(蒸気供給路14の温度ti又は蒸気使用系Mにおける蒸気流通路34の温度ti′又は復水導入路17の上流側部分の温度ti″)が設定値以上の状況において、温度センサTSの検出温度(トラップ温度ts又は復水導入路17の下流側部分の温度ts′又は復水導出路31の温度ts″)が設定値以下に低下したときに、対象トラップ1がトラップ閉塞であると判定する構成にする。
【0077】
温度センサTSの検出情報、及び、蒸気供給検出手段Kの検出情報を無線通信により中央管理装置3に送る通信用の端末器4を設ける場合、対応する蒸気トラップ1が共通する温度センサTS及び蒸気供給検出手段Kについては、それらを共通の1つの端末器4に接続する形態、あるいは、各別の端末器4に接続する形態のいずれをとってもよい。
【0078】
複数の監視対象トラップ1に対して蒸気供給検出手段Kが共通の1つのもので済む場合には、それら複数の監視対象トラップ1につき複数の温度センサTSと共通の1つ蒸気供給検出手段Kを設ける装置構成にしてもよく、また逆に、1つの監視対象トラップ1に対して複数の蒸気供給検出手段Kが必要な場合には、その1つの監視対象トラップ1につき1つの温度センサTSと複数の蒸気供給検出手段Kを設ける装置構成にしてもよい。
【0079】
端末器4はシングル用端末器4Sあるいはマルチ用端末器4Mのいずれか一方のみにしてもよく、また、センサ接続数の異なる複数種のマルチ用端末器4Mを用いるようにしてもよい。
【0080】
また、前述の実施形態では、監視対象トラップ1の近傍に配置した端末器4に対しリード線5を介してセンサ2を接続する例を示したが、これに代え、センサ2を組み付けた端末器4を監視対象トラップ1に対し取り付けて、その組み付けセンサ2により監視対象トラップ1の状態を検出するようにしてもよく、端末器4の具体的構造、及び、端末器4に対するセンサ2の具体的接続構造は夫々、種々の構成変更が可能である。
【0081】
端末器4と中央管理装置3との間での中継器6を用いた無線通信には、スペクトル拡散方式に限らず種々の方式を採用できる。
【0082】
蒸気トラップ1を装備する蒸気使用系Mは、蒸気を熱源とする加熱用機器などの個々の蒸気使用機器であってもよく、また、複数の蒸気使用機器を有する機器群のいずれであってもよい。
【0083】
監視対象の蒸気トラップ1は、フロート式、バケット式、ディスク式を初め、どのような形式のものであってもよい。
【図面の簡単な説明】
【図1】 監視システムの全体を示す概略平面図
【図2】 端末器を示す斜視図
【図3】 端末器の構成を示すブロック図
【図4】 中継器の構成を示すブロック図
【図5】 中央管理装置の構成を示す斜視図
【図6】 通信経路網を示す図
【図7】 トラップ閉塞の検出構成を示す装置構成図
【図8】 別実施形態を示す装置構成図
【図9】 比較例を示す装置構成図
【図10】 他の比較例を示す装置構成図
【符号の説明】
1 蒸気トラップ
3 中央管理装置
4 端末器
14 蒸気供給路
15 弁
16 開閉センサ
17 復水導入路
31 復水導出路
32 制御手段
33 信号判読手段
34 蒸気使用系における蒸気流通路
H(25) 判定手段
K 蒸気供給検出手段
M 蒸気使用系
PS(16) 圧力センサ
TS(2A,2C) 温度センサ
TSS 上流側温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steam trap monitoring device, and more particularly, to a steam trap monitoring device that determines an operating state of a steam trap (in particular, detection of trap blockage) based on detection information of a sensor.
[0002]
[Prior art]
Conventionally, as one of the determination of the operating state of the steam trap, in order to detect that a trap blockage (that is, trap clogging) where condensate is not smoothly discharged in the steam trap occurs, A temperature sensor is provided to detect the temperature of the downstream portion of the condensate introduction path that guides the condensate generated in the steam use system to the steam trap, or the temperature of the condensate lead-out path from the steam trap. A trap blockage was detected based on the information.
[0003]
In other words, when a trap blockage occurs, condensate stays in the trap or in the downstream part of the condensate introduction path to the trap (the vicinity of the trap), and the trapped condensate falls in temperature due to heat dissipation. Since the temperature of the downstream part of the condensate introduction channel decreases and the condensate extraction channel from the trap does not discharge the condensate, which is hot water, the temperature of the condensate extraction channel decreases. The trap blockage is detected by detecting the temperature drop by the above-described temperature sensor (see Japanese Patent Laid-Open Nos. 2000-35194, 6-137490, and 6-129600).
[0004]
[Problems to be solved by the invention]
However, a drop in the trap temperature, a temperature drop in the downstream part of the condensate introduction channel, and a temperature drop in the condensate lead-in channel are caused by the suspension of the steam supply to the steam use system and the suspension of the steam use system and the deployed steam trap. This occurs even when a state is reached, and depending on the conditions, the above temperature drop caused by trap suspension due to the stop of steam supply is very similar in form to the above temperature drop caused by trap closure There is.
[0005]
For this reason, even if the trap pause or the trap blockage is discriminated by the difference in the form of decrease in the temperature detected by the temperature sensor (the trap temperature or the temperature of the downstream portion of the condensate introduction channel or the temperature of the condensate extraction channel). In some cases, it is difficult to accurately discriminate between the two. Therefore, the conventional monitoring device described above detects a trap clogging error when the steam supply is stopped, even though the trap supply is simply stopped due to the stop of the steam supply. There is a problem that the trap monitoring function is low in this respect.
[0006]
In view of this situation, the main problem of the present invention is to effectively solve the above problem by adopting a rational monitoring configuration.
[0007]
[Means for Solving the Problems]
[1] The invention according to claim 1 relates to a steam trap monitoring device, characterized in that
The temperature of the steam trap installed in the steam use system, or the temperature of the downstream portion of the condensate introduction path that guides the condensate generated in the steam use system to the steam trap, or the condensate lead-out path from the steam trap While providing a temperature sensor to detect the temperature of
Providing a steam supply detecting means for detecting a steam supply state for the steam using system;
A determination means for determining an operating state of the steam trap based on detection information of the temperature sensor and detection information of the steam supply detection means;
The steam supply detecting means is an open / close sensor that detects an open / closed state of a valve interposed in a steam supply path for the steam use system.
[0008]
In other words, according to this configuration, based on the detection information of the steam supply detection means for detecting the steam supply state for the steam use system, whether or not the steam use system and the deployed steam trap are in a dormant state with the steam supply stopped. Therefore, when the temperature detected by the temperature sensor (the trap temperature or the temperature of the downstream portion of the condensate introduction passage or the temperature of the condensate lead-out passage) is lowered, the drop mode is the trap stop state or the trap clogging state. Even if it is very similar to the case, the steam supply detection means detects whether the temperature drop was caused by trap suspension due to the stop of steam supply or the occurrence of trap clogging in the target trap Based on information (in short, detection information on whether or not the steam use system and the steam trap installed in it are in a dormant state) That.
[0009]
And this can effectively prevent false detection of trap clogging when the steam use system and the steam trap installed in the steam use system are stopped due to the stop of the steam supply to the steam use system. The trap blockage detection as the state determination can be performed more accurately by the determination means, and in this respect, the trap monitoring function can be effectively enhanced as compared with the conventional monitoring device described above.
[0010]
In the implementation of the invention according to claim 1, when the temperature of the steam trap is detected by the temperature sensor, either the internal temperature of the trap or the temperature of the trap component may be detected. When the temperature sensor detects the temperature of the downstream part of the condensate introduction channel or the temperature of the condensate derivation channel, the internal temperature of the condensate introduction channel or the condensate derivation channel or the condensate introduction channel or the condensate derivation channel Any of the temperatures of the pipe material to be formed may be detected.
[0011]
Further, the determination means may also perform determination of the trap operation state other than detection of the trap blockage using detection information of the temperature sensor or detection information of the steam supply means together with detection of the trap blockage.
[0012]
The invention according to claim 1 is characterized in that the steam supply detecting means is an open / close sensor that detects an open / closed state of a valve interposed in a steam supply path for the steam use system.
[0013]
In other words, when the steam supply system is intermittently connected to the steam use system by a valve interposed in the steam supply path, the steam use system and the deployed steam trap are in a dormant state if the open / close state of the valve is detected. It can be determined whether or not.
[0014]
Therefore, based on the detection information of the open / close sensor that detects the open / closed state of the intervening valve, the detection information of the open / close sensor is determined in a form that determines whether the steam use system and the steam trap deployed thereto are in a dormant state. Based on the detection information of the temperature sensor, the trap blockage is detected with high accuracy by the determination means.
[0015]
That is, when the temperature detected by the temperature sensor (the trap temperature or the temperature of the downstream portion of the condensate introduction passage or the temperature of the condensate lead-out passage) decreases, if the intervening valve is closed, the temperature drop Is determined to have occurred due to the trap suspension due to the stop of the steam supply. On the other hand, if the intervening valve is in the open state with respect to the decrease in the detected temperature, the temperature decrease is due to trap closure in the target trap. A discriminating form for determining that it has occurred, which effectively prevents erroneous detection of trap clogging when the steam supply system and the deployed steam trap are in a dormant state due to the stop of steam supply Thus, the trap blockage is accurately detected by the determination means.
[0016]
[2] The invention according to claim 2 relates to a steam trap monitoring device, characterized in that
The temperature of the steam trap installed in the steam use system, or the temperature of the downstream portion of the condensate introduction path that guides the condensate generated in the steam use system to the steam trap, or the condensate lead-out path from the steam trap While providing a temperature sensor to detect the temperature of
Providing a steam supply detecting means for detecting a steam supply state for the steam using system;
A determination means for determining an operating state of the steam trap based on detection information of the temperature sensor and detection information of the steam supply detection means;
The steam supply detection means is a signal interpretation means for detecting a steam supply state for the steam use system based on a generation signal of a control means for controlling the steam supply to the steam use system.
[0017]
That is, the invention according to claim 2 is different from the invention according to claim 1 only in that the signal reading means is adopted as the steam supply detection means, but when the steam supply to the steam use system is controlled by the control means, If the generation signal of the control means is read, it is possible to detect the steam supply state with respect to the steam use system. Therefore, it is determined whether or not the steam use system and the deployed steam trap are in a dormant state based on the detection information. be able to.
[0018]
Therefore, in the above configuration, based on the generation signal of the control means for performing the steam supply control, the generation signal and the temperature sensor of the temperature sensor are determined in a form in which it is determined whether the steam use system and the steam trap disposed thereon are in a dormant state. Based on the detection information, the trap blockage is detected with high accuracy by the determination means.
[0019]
That is, in the situation where the generation signal of the control means indicates the stop of the steam supply to the steam use system, the detected temperature of the temperature sensor (the trap temperature or the temperature of the downstream portion of the condensate introduction path or the condensate lead-out path When the temperature is lowered, it is determined that the temperature drop is caused by a trap pause due to the stop of steam supply, while the generation signal of the control means indicates the steam supply to the steam use system. When the detected temperature of the temperature sensor is lowered in the situation, a discrimination mode is adopted in which it is determined that the temperature drop is caused by the trap clogging in the target trap. The trap blockage is accurately detected by the judgment means while effectively preventing false detection of the trap blockage when the deployed steam trap enters the dormant state. That.
[0020]
In the implementation of the invention according to claim 2, the generation signal may be either a generation signal used for original steam supply control or a dedicated generation signal for detection of a steam supply state with respect to a steam use system. Good.
[0021]
[3] The invention according to claim 3 specifies a preferred embodiment for carrying out the invention according to claim 1 or 2, and its features are as follows:
There is a communication terminal for sending the detection information of the temperature sensor and the detection information of the steam supply detection means to the central management device by wireless communication.
[0022]
That is, according to this configuration, since the detection information of the temperature sensor and the detection information of the steam supply detection means are sent to the central management device by wireless communication, wired communication for sending the detection information to the central management device through the signal line is performed. Compared to the adoption, the facility of the signal line can be made unnecessary and the facility of the device can be made easier. In this respect, between the location where the temperature sensor and the steam supply detection means are deployed and the location where the central management device is deployed When the distance is large, or when there is an obstacle that obstructs the signal line facility between the deployment locations, the vapor trap monitoring device can be provided.
[0023]
And in particular, when a plurality of distributed steam traps are to be monitored traps, a temperature sensor and a terminal device can be obtained by providing a plurality of the above-mentioned terminal devices and deploying these terminal devices in the vicinity of each assigned trap. And the connection between the steam supply detection means and the terminal can be facilitated, and facilitation of the equipment facility can be achieved more effectively.
[0024]
In the implementation of the invention according to claim 3, the central management device performs processing such as determination of the trap operating state by the determination means, recording of the determination result, or recording of each detection information. The determination of the trap operation state by means does not necessarily have to be performed on the central management device side. For example, the determination of the trap operation state by the determination means is performed on the terminal side, and the determination result is used as each detection information. Similarly, an apparatus configuration such as sending to the central management apparatus by wireless communication may be used.
[0025]
[4] The invention according to claim 4 specifies an embodiment suitable for carrying out the invention according to claim 3, and its features are as follows:
For the temperature sensor and the steam supply detection means corresponding to the common steam trap, the terminal for sending detection information of the temperature sensor to the central management device, and the detection information of the steam supply detection means to the central management device The terminal to be sent is provided separately.
[0026]
In other words, according to this configuration, the terminal on the side that sends the detection information of the temperature sensor is arranged in the vicinity of the temperature sensor that the terminal is responsible for, and the terminal on the side that sends the detection information of the steam supply detection means Since the vessel can be placed near the steam supply detection means that the terminal is in charge of, the corresponding steam trap has a common temperature sensor and the steam supply detection means when their deployment locations are separated from each other In addition, it is possible to further facilitate the connection between the temperature sensor and the terminal device and the connection between the steam supply detection means and the terminal device, compared to the case where such detection information is sent to the central management device through a common terminal device. This can make the facility of the apparatus easier.
[0027]
In order to carry out the invention according to claim 4, the temperature sensor for the other steam traps is replaced with a terminal device for sending detection information of the temperature sensor or a terminal device for sending detection information of the steam supply detection means. If the temperature sensor and the steam supply detection means are located close to each other, the detection information is centrally managed by a single terminal placed near them. It is possible to adopt a form for sending to the apparatus, and in this respect, facilitation of the apparatus facility can be achieved more effectively when a plurality of vapor traps that are distributed and deployed are used as monitoring target traps.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a monitoring system for monitoring the state of a large number of steam traps 1 distributed in a factory or plant using wireless communication, and each of the steam traps 1 to be monitored is equipped with a sensor 2 for detecting the state. In addition, a plurality of communication terminals 4 for exchanging information with the central management device 3 by wireless communication are arranged in the vicinity of the respective traps 1, and the equipment sensors of the respective traps 1 are installed in these terminals 4. 2 are connected via a lead wire 5.
[0029]
Also, a plurality of repeaters 6 are distributed and relayed between these terminals 4 and the central management apparatus 3 (in this example, spread spectrum wireless communication).
[0030]
As shown in FIG. 2, there are two types of terminals 4, a single terminal 4 </ b> S capable of connecting only one sensor 2 and a multi terminal 4 </ b> M capable of connecting a plurality of sensors 2 in parallel. As shown in FIG. 3, each terminal device 4 (4S, 4M) performs communication of information transmission / reception using a digital circuit unit 7 using a microprocessor, an analog circuit unit 8 connecting the sensor 2, and an antenna 9a. Unit 9, analog circuit unit 8 and power source control unit 10 for controlling power supplied to communication unit 9, power source battery 11, storage unit 12 for storing setting information, alarm lamp 13 using LED, The analog circuit unit 8 of the terminal unit 4M is provided with an input switching switch circuit 8a for sequentially inputting detection information of the plurality of connection sensors 2.
[0031]
The digital circuit unit 7 of each terminal device 4 periodically or every set time (for example, a time selected from a range between 1 minute and 24 hours) according to the setting information given by the central management device 3 by wireless communication, or Periodically at the set time, the analog circuit unit 8 is changed from the sleep state to the awake state by power supply control by the power supply control unit 10, and the detection information of the connection sensor 2 is input (in the multi terminal 4M, the digital circuit unit 7 The detection information of the plurality of connection sensors 2 is sequentially input by operating the input switching switch circuit 8a). After this input process, the analog circuit unit 8 is returned to the sleep state again by the power supply control by the power supply control unit 10. The input sensor detection information is processed by the digital circuit unit 7.
[0032]
Then, following the input of the sensor detection information, the digital circuit unit 7 of each terminal device 4 processed the communication unit 9 from the sleep state to the awake state by the supply power control by the power supply control unit 10 and processed by the digital circuit unit 7. The sensor detection information is transmitted to the central management device 3 and the instruction information from the central management device 3 is received. After this communication process, the communication unit 9 is returned to the sleep state again by the power supply control by the power supply control unit 10.
[0033]
That is, the analog circuit unit 8 and the communication unit 9 are thus awakened only when necessary by the supply power control, thereby reducing power consumption, thereby making it unnecessary to replace the power supply battery 11 over a long period of time.
[0034]
In addition, when the communication unit 9 receives a signal from the central management device 3 addressed to itself in the sleep state, the digital circuit unit 7 of each terminal device 4 temporarily wakes up the communication unit 9 in response to the signal. Put it in a state.
[0035]
In addition, the digital circuit unit 7 of each terminal 4 monitors the output voltage of the power battery 11 and the signal strength of the signal received by the communication unit 9, and checks the function of the connection sensor 2 according to the instruction from the central management device 3. A function check of each part of the terminal device is performed, and when the output voltage of the power supply battery 11 drops below the set value, when the signal strength of the received signal becomes less than the set value, or also, each of the connection sensor 2 and each part of the terminal device When an abnormality is detected in the function check, an abnormality signal is transmitted to the central management device 3 and the warning lamp 13 is blinked to notify the system administrator of the situation.
[0036]
There are three types of sensors 2: a vibration temperature sensor 2A, a vibration sensor 2B, and a temperature sensor 2C. The vibration temperature sensor 2A includes an ultrasonic level vibration d of the trap 1 and a temperature ts of the trap 1 (inside the trap). Temperature or the temperature of the trap component) and the ambient temperature to of the trap 1, the vibration sensor 2 B detects only the vibration d of the ultrasonic level of the trap 1, and the temperature sensor 2 C detects the trap 1 Only two of the temperature ts and the ambient temperature to of the trap 1 are detected, and one of these three types of sensors 2A to 2C is assigned to each trap 1 according to the type of the trap 1 and the monitoring item. Equip.
[0037]
Further, the analog circuit section 8 of each terminal 4 is not limited to the sensors 2A to 2C, but as shown in FIG. 2, a valve 15 interposed in a steam supply path 14 to a steam use system equipped with each trap 1 is provided. An open / close sensor 16 for detecting the open / close state os of the gas and a pressure sensor 18 for detecting the pressure p of the condensate introduction path 17 that guides the condensate generated in the steam using system to the trap 1 can also be connected via the lead wire 5. it can.
[0038]
The digital circuit unit 7 of each terminal device 4 detects the trap vibration d detection information, the trap information for each connection sensor 2A, 2B, 2C, 16, 18 in each input process of inputting sensor detection information regardless of the sensor type. The detection information of the temperature ts, the detection information of the trap ambient temperature to, the detection information of the valve open / closed state os, and the detection information of the pressure p are each sampled a set number of times n at a set period ΔTs (for example, 40 ms). By setting the sampling number n of each detection information d, ts, to, os, p to the configuration for each connection sensor 2A, 2B, 2C, 16, 18 according to an instruction from the central management device 3, the connection sensor 2A , 2B, 2C, 16 and 18.
[0039]
That is, for the vibration temperature sensor 2A, the sampling number n for the detection information of the valve open / close state os and the detection information of the pressure p is set to 0, and for the vibration sensor 2B, the detection information of the trap temperature ts, the trap surroundings The sampling number n for each of the detection information of the temperature to, the detection information of the valve open / close state os, and the detection information of the pressure p is set to 0, and the detection information of the trap vibration d and the valve open / close state os of the temperature sensor 2C are set. The sampling number n for each of the detection information and the detection information of the pressure p is set to 0. For the open / close sensor 16, the detection information of the trap vibration d, the detection information of the trap temperature ts, the detection information of the trap ambient temperature to, and the pressure p The sampling number n for each of the detected information is set to 0, and the trap vibration d for the pressure sensor 18 is set. By setting the number of samplings n for the detection information, the detection information of the trap temperature ts, the detection information of the trap ambient temperature to, and the detection information of the valve open / closed state os to 0, each sensor 2A, 2B, 2C, 16, Thus, unnecessary sampling is not performed per 18 so as to correspond to the types of the sensors 2A, 2B, 2C, 16, and 18.
[0040]
In other words, by adopting this method, it is possible to easily connect the sensors 2A, 2B, 2B, 2B, and 4B by simply providing setting information by communication from the central management device 3 while reducing the system cost by making the terminal 4 common specifications. 2C, 16, 18 can be handled. Note that an input port that is not connected to a sensor can be dealt with by setting the sampling count n for all sensor detection information d, ts, to, os, and p to 0.
[0041]
In addition, the digital circuit unit 7 of each terminal device 4 is input from each connection sensor 2A, 2B, 2C, 16, 18 in each input process for inputting sensor detection information and each subsequent communication process. For each of the detection information d, ts, to, os, and p, the n sampling data is averaged, and the averaged data is transmitted to the central management device 3 as each sensor detection information. Compared to transmitting all sampling data as information to the central management device 3, the transmission data amount is reduced to further reduce power consumption, and communication between a plurality of terminals 4 and the central management device 3 can be performed. Prevent congestion.
[0042]
In addition, the digital circuit unit 7 of each terminal 4 is based on the detection information of the trap vibration d input from the vibration temperature sensor 2A or the vibration sensor 2B, and the target during the sampling period n times for the vibration detection information. The number of operations m of the trap 1 (particularly the disk type trap) is detected, and the detection information of the number of operations m is transmitted to the central management device 3 together with other sensor detection information.
[0043]
In addition, each terminal device 4 can use not only the power supply battery 11 but auxiliary power supplies, such as a general commercial power supply, a private power supply, or a solar cell.
[0044]
As shown in FIG. 4, each repeater 6 includes a digital circuit unit 19 using a microprocessor, a communication unit 20 that transmits and receives information using an antenna 20a, and a power receiving unit that receives power supplied from a general commercial power source or a private power source. 21, a storage unit 22 for storing setting information, an alarm lamp 23 using an LED, and a backup battery 24 for power failure, and the digital circuit unit 19 of each repeater 6 receives signals from the communication unit 20. Then, based on the identification code attached to the received signal and the communication path information for each repeater 6 stored in the storage unit 22, it is determined whether the received signal should be relayed, and the When the received signal is a signal to be relayed, a relay process is performed in which the received signal is converted into a transmission signal and transmitted from the communication unit 20.
[0045]
The communication path information stored in the storage unit 22 of each repeater 6 (see FIG. 6) is the relation of the upper and lower levels of the associated repeater 6 that bears the same communication path as itself and the associated repeater 6 that includes itself. , And the associated relay device 6 including itself (in short, a communication signpost), and the digital circuit unit 19 of each relay device 6 performs relay processing based on the above determination. As for the upstream signal destined for the central management device 3, only the received signals from the directly managed subordinate relay relay 6 and the directly managed terminal device 4 are relayed, and the downstream signal from the central management device 3 Is a received signal from the direct upper link relay 6 or the direct central management device 3 and is directed to the terminal 4 or the lower link relay 6 of the direct control terminal 4 or the lower link relay 6 Only the received signal is relayed, The wireless communication between the terminal device 4 and the central control apparatus 3 having for each of the terminal unit 4 carried out in a single communication path.
[0046]
In other words, by adopting this relay method, wireless communication between the terminal device 4 and the central management device 3 is performed for each of the terminal devices 4 through a single communication path, whereby a plurality of terminal devices 4 and a plurality of relay devices are performed. The wireless communication can be performed smoothly and efficiently in a state where communication disruption is effectively prevented while adopting a configuration in which the device 6 is provided.
[0047]
Depending on the positional relationship with the central management device 3, there is also a non-relay terminal device 4 that performs wireless communication directly with the central management device 3 without being relayed by the relay device 6.
[0048]
Similarly to the terminal device 4, the digital circuit unit 19 of each repeater 6 monitors the signal strength of the signal received by the communication unit 20, and checks the function of each part of the repeater according to an instruction from the central management device 3. When the signal strength of the received signal becomes less than the set value or when an abnormality is detected by the function check of each part of the repeater, the abnormality signal is transmitted to the central management device 3 and the alarm lamp 23 blinks. Inform the system administrator of the situation.
[0049]
As shown in FIG. 5, the central management device 3 includes a personal computer main body 27 having a calculation control unit 25 using a microprocessor and a storage unit 26 using a hard disk, and peripheral devices such as a display device 28 and a keyboard 29. In addition, a wireless modem 30 is connected, and wireless communication with the repeater 6 and the terminal device 4 is performed using the wireless modem 30.
[0050]
The arithmetic control unit 25 of the central management device 3 (the arithmetic control unit of the computer main body 27) constitutes a determination unit that determines the operating state of the monitoring target trap 1. Based on the above-mentioned sensor detection information d, ts, to, os, p and the number-of-operations detection information m, it is determined whether each steam trap 1 is in a normal state, a steam leakage abnormality, a trap blockage abnormality, or a temperature abnormality. (Diagnosis) And, when there is an abnormal trap 1 as a result of the determination, information such as the identification code of the abnormal trap 1, the abnormal type of occurrence, the location of the abnormal trap is displayed on the display device 28, The terminal 4 in charge of the abnormal trap 1 is instructed to flash the warning lamp 13 by communication.
[0051]
Further, the arithmetic control unit 25 of the central management device 3 stores, for each trap 1, the sensor detection information and the operation number detection information sent from the terminal device 4 together with the result of the determination (diagnosis) based on the detection information. In the trap monitoring database.
[0052]
Note that the steam leakage abnormality is an abnormality in which steam flows out beyond the allowable limit while it is required to discharge only condensate while preventing the outflow of steam as an original function of the steam trap, The trap blockage abnormality is an abnormality in which condensate is not discharged smoothly (that is, trap clogging), and the temperature abnormality is an abnormality in which the trap temperature ts or the trap ambient temperature to deviates from the appropriate range to the lower side or the higher side. is there.
[0053]
As for the trap clogging detection in the determination of the trap operating state, generally, the trap clogging is detected based on the decrease in the detected trap temperature ts accompanying the temperature decrease in the condensate condensate inside the trap. For the steam trap 1 that requires particularly high detection accuracy of the trap blockage, as shown in FIGS. 7A and 7B, the trap temperature by the vibration temperature sensor 2A or the temperature sensor 2C as the temperature sensor TS is shown. Detection information of ts and detection information of the opening / closing sensor 16 or the pressure sensor 18 as the steam supply detecting means K for detecting the steam supply state to the steam use system M (detection information of the valve opening / closing state os or detection information of the pressure p) Based on these two, the calculation control unit 25 of the central management device 3 is made to detect the trap blockage. Specifically, The calculation control unit 25 as the determination means H is in a state where the open / close sensor 16 detects the open state of the intervening valve 15 in the steam supply path 14 or the condensate introduction path 17 detected by the pressure sensor 18. In a situation where the pressure p is equal to or higher than the set value, when the trap temperature ts detected by the vibration temperature sensor 2A or the temperature sensor 2C falls below the set value, the target trap 1 is determined to have a trap blockage abnormality. It is.
[0054]
Furthermore, when the arithmetic control unit 25 of the central management device 3 receives an abnormal signal from the repeater 6 or the terminal unit 4 regarding the above-described function check or signal strength reduction, the abnormal control unit 6 or the abnormal terminal unit 4 is identified. Information such as the code, the type of abnormality that has occurred, the installation location of the abnormal repeater 6 and the abnormal terminal 4 is displayed on the display device 28, and the occurrence of abnormalities in the repeater 6 and terminal 4 is stored in the system in the storage unit 26 Record in the management database.
[0055]
In addition, communication between a plurality of terminals 4 and the central management device 3 is performed for each of the terminal devices 4 through a single communication path. The communication path is determined by the central management apparatus 3 according to a path determination program. Automatically done as follows.
[0056]
That is, when the operation control unit 25 of the central management device 3 is instructed to execute the route determination process, all the operations are performed based on the registration information of each repeater 6 that is input in advance in the system management database in the storage unit 26. Non-relay interrogation communication is sequentially performed to the repeater 6 of the relay device 6 and the repeater 6 that has responded to the central management device 3 for the interrogation communication is replaced with the repeater 6 having the highest relay level (that is, An initial step of determining as a top-level repeater that directly wirelessly communicates with the central management device 3 without passing through another repeater 6 is executed.
[0057]
Further, following this initial process, the arithmetic control unit 25 of the central management device 3 sequentially turns the repeaters 6 determined in the previous process into the interrogation side repeater 6 and relays by the interrogation side repeater 6. Below, the non-relay interrogation communication is sequentially performed from the interrogator-side repeater 6 to each of the intermediary relays 6 whose stage has not yet been determined (that is, the intermediary having no response communication yet). The subsequent process of determining the repeater 6 that has responded to the caller-side repeater 6 as the subordinate repeater 6 under the direct control of the caller-side repeater 6 is repeated. A dendritic relay route network with only one upper repeater 6 is automatically determined.
[0058]
Then, after the determination of the relay route network, the arithmetic control unit 25 of the central management device 3 determines each relay device based on the registration information of each terminal device 4 that is input in advance in the system management database in the storage unit 26. 6 is sequentially set as the interrogator-side repeater 6, and under the relay by the interrogator-side repeater 6, the interrogator-side repeater 6 determines the terminal 4 whose jurisdiction has not yet been determined (that is, the terminal device that has not yet responded to communication). ) In turn, non-relay interrogation communication is performed, and the terminal device 4 that has responded to the interrogation side repeater 6 in response to the interrogation communication is connected to the interrogation side repeater 6 at that time. The final process determined as the jurisdiction terminal 4 is executed.
[0059]
In other words, the arithmetic control unit 25 of the central management device 3 performs the communication with the central management device 3 through the automatic determination of the relay route network by the initial process and the subsequent process and the automatic determination of the jurisdiction terminal by the final process. A communication path network as shown in FIG. 6 for performing wireless communication in the terminal 4 with a single communication path is automatically determined for the entire process between the central management apparatus 3 and each terminal 4. The determined communication route network is registered in the system management database in the storage unit 26 as information for system management and communication processing.
[0060]
Prior to the initial process, the arithmetic control unit 25 of the central management device 3 performs non-relaying interrogation communication with each terminal device 4 and a terminal that has responded to the central management device 3 in response to the interrogation communication. In the form in which the device 4 is determined as a non-relay terminal, the determination of the non-relay terminal 4 that performs wireless communication directly with the central management device 3 without the relay 6 is also automatically performed.
[0061]
In determining the communication path, the arithmetic control unit 25 of the central management device 3 determines whether there is a repeater 6 that finally did not have a response communication in the initial process and the subsequent process or in the final process. When there is a terminal device 4 that has not received a response communication, the relay device 6 or the terminal device 4 that has not finally received a response communication is notified by displaying an identification code on the display device 28 and a display of an installation location. When the system builder or administrator is notified of the repeater 6 that has finally failed to respond at the end of the subsequent process, the system builder or administrator adjusts the installation location of the repeater 6, etc. After performing the treatment, the arithmetic control unit 25 of the central management apparatus 3 is caused to re-execute the initial process and the subsequent process, and the terminal device 4 that has not finally responded at the end of the final process is notified. When there is After having performed treatment such adjusting the location of the terminal device 4 and the near repeater 6, to re-execute the last step in the calculation control unit 25 of the central control apparatus 3.
[0062]
In addition, the arithmetic control unit 25 of the central management device 3 only has a signal strength of response communication from the repeater 6 or the terminal device 4 in the initial process, the subsequent process, and the final process. It is determined that there has been a response communication, and it is configured to determine the repeater 6 at each stage and the jurisdiction terminal 4 to ensure the best wireless communication function for automatic determination of the communication path as described above. Make it more accurate and effective.
[0063]
Furthermore, each repeater 6 is processed by the digital circuit unit 19, and each repeater of the subsequent process takes the same communication path as itself as the linkage repeater 6, together with its upper and lower relationships. By registering additionally in the storage unit 22, and by registering the jurisdiction terminal 4 of each of the linked repeaters 6 including itself in the storage unit 22 in the final process, the central management device 3 automatically performs communication path control. In parallel with the determination, the communication path information (communication guide) for each repeater 6 as described above is constructed in its own storage unit 22.
[0064]
After the automatic determination of the communication path network as described above, the arithmetic control unit 25 of the central management device 3 makes various necessary requirements for each terminal device 4 and each relay device 6 in accordance with instructions from the system builder or administrator. The setting process is executed by wireless communication using the determined communication path network.
[0065]
[Another embodiment]
Next, another embodiment will be listed.
[0066]
In the above-described embodiment, an example of trap blockage detection according to the present invention has been described. However, the following configurations (a) to (c) may be employed to detect trap blockage.
[0067]
(A) As shown in FIG. 8, the temperature ts ′ of the steam trap 1, the temperature ts ′ of the downstream portion of the condensate introduction path 17 that guides the condensate generated in the steam use system M to the steam trap 1, or A temperature sensor TS for detecting the temperature ts ″ of the condensate outlet path 31 from the steam trap 1 is provided.
[0068]
Further, as the steam supply detection means K, the open / close sensor 16 for detecting the open / closed state os of the valve 15 interposed in the steam supply path 14 for the steam use system M or the steam supply to the steam use system M is controlled. A signal interpretation means 33 for detecting the steam supply state for the steam use system M based on the generation signal ss of the control means 32 is provided.
[0069]
Then, the determination means H (for example, the arithmetic control unit 25 of the central management device 3 described above) for determining the trap operating state is supplied to the detection information of the open / close sensor 16 or the signal interpretation means 33 and the detection information of the temperature sensor TS. In the situation where the intervening valve 15 is in the open state based on the person or the situation where the generation signal ss of the control means 32 indicates the implementation of steam supply to the steam use system M, the detected temperature ( Configuration in which the target trap 1 is determined to be trapped when the trap temperature ts or the temperature ts ′ in the downstream portion of the condensate introduction passage 17 or the temperature ts ″ of the condensate lead-out passage 31 falls below a set value. To.
[0070]
The configuration shown in FIG. 8 shows an embodiment of the invention according to claim 1 or 2, and includes the configuration shown in FIG.
[0071]
(B) As shown in FIG. 9, the temperature ts ′ of the steam trap 1, the temperature ts ′ of the downstream portion of the condensate introduction path 17 that guides the condensate generated in the steam use system M to the steam trap 1, or A temperature sensor TS for detecting the temperature ts ″ of the condensate outlet path 31 from the steam trap 1 is provided.
[0072]
Further, as the steam supply detecting means K, the pressure p ′ of the steam supply path 14 with respect to the steam use system M, the pressure p ″ of the steam flow path 34 in the steam use system M, or the pressure of the condensate introduction path 17. A pressure sensor PS for detecting p is provided.
[0073]
Then, the determination means H (for example, the arithmetic control unit 25 of the central management device 3 described above) that determines the trap operating state is set based on the detection information of the pressure sensor PS and the detection information of the temperature sensor TS. In a situation where the detected pressure of the sensor PS (the pressure p ′ of the steam supply path 14 or the pressure p ″ of the steam flow path 34 in the steam use system M or the pressure p of the condensate introduction path 17) is a set value or more, the temperature sensor TS When the detected temperature (the trap temperature ts or the temperature ts ′ of the downstream portion of the condensate introduction passage 17 or the temperature ts ″ of the condensate lead-out passage 31) falls below a set value, the target trap 1 is trapped. Make the configuration to judge.
[0074]
(C) As shown in FIG. 10, the temperature ts ′ of the steam trap 1, or the temperature ts ′ of the downstream side portion of the condensate introduction path 17 that leads the condensate generated in the steam use system M to the steam trap 1, or A temperature sensor TS for detecting the temperature ts ″ of the condensate outlet path 31 from the steam trap 1 is provided.
[0075]
Further, as the steam supply detection means K, the temperature ti of the steam supply path 14 with respect to the steam use system M, the temperature ti ′ of the steam flow path 34 in the steam use system M, or the upstream side of the condensate introduction path 17. An upstream temperature sensor TSS for detecting the temperature ti ″ of the portion is provided.
[0076]
And the determination means H (for example, the calculation control part 25 of the above-mentioned central management apparatus 3) which determines a trap action | operation state is based on the detection information of upstream temperature sensor TSS, and the detection information of temperature sensor TS. The detected temperature of the upstream temperature sensor TSS (the temperature ti of the steam supply passage 14 or the temperature ti ′ of the steam flow passage 34 in the steam use system M or the temperature ti ″ of the upstream portion of the condensate introduction passage 17) is a set value or more. When the temperature detected by the temperature sensor TS (the trap temperature ts or the temperature ts ′ of the downstream portion of the condensate introduction passage 17 or the temperature ts ″ of the condensate introduction passage 31) falls below the set value, The trap 1 is determined to be trap-blocked.
[0077]
When providing the communication terminal 4 for sending the detection information of the temperature sensor TS and the detection information of the steam supply detection means K to the central management device 3 by wireless communication, the temperature sensor TS and the steam that the corresponding steam trap 1 has in common The supply detection means K may take either a form in which they are connected to one common terminal device 4 or a form in which they are connected to each other terminal device 4.
[0078]
If only one common steam supply detection means K is required for a plurality of monitoring target traps 1, a plurality of temperature sensors TS and one common steam supply detection means K are provided for the plurality of monitoring target traps 1. In contrast, when a plurality of vapor supply detection means K are required for one monitoring target trap 1, one temperature sensor TS and a plurality of temperature sensors TS per one monitoring target trap 1 may be provided. The apparatus may be provided with the steam supply detecting means K.
[0079]
The terminal device 4 may be only one of the single terminal device 4S and the multi terminal device 4M, or a plurality of types of multi terminal devices 4M having different numbers of sensor connections may be used.
[0080]
Moreover, in the above-mentioned embodiment, although the example which connects the sensor 2 via the lead wire 5 with respect to the terminal device 4 arrange | positioned in the vicinity of the monitoring object trap 1 was shown, it replaced with this and the terminal device which assembled | attached the sensor 2 was shown. 4 may be attached to the monitored trap 1, and the state of the monitored trap 1 may be detected by the assembled sensor 2. The specific structure of the terminal device 4 and the specific sensor 2 for the terminal device 4 may be detected. Each of the connection structures can be changed in various ways.
[0081]
The wireless communication using the repeater 6 between the terminal device 4 and the central management device 3 is not limited to the spread spectrum method, and various methods can be adopted.
[0082]
The steam using system M equipped with the steam trap 1 may be an individual steam using device such as a heating device using steam as a heat source, or any of a group of devices having a plurality of steam using devices. Good.
[0083]
The steam trap 1 to be monitored may be of any type including a float type, a bucket type, and a disk type.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing the entire monitoring system.
FIG. 2 is a perspective view showing a terminal device.
FIG. 3 is a block diagram showing the configuration of the terminal device
FIG. 4 is a block diagram showing the configuration of the repeater
FIG. 5 is a perspective view showing a configuration of a central management device.
FIG. 6 is a diagram showing a communication path network
FIG. 7 is a device configuration diagram showing a trap blockage detection configuration.
FIG. 8 is an apparatus configuration diagram showing another embodiment.
FIG. 9 is an apparatus configuration diagram showing a comparative example.
FIG. 10 is a device configuration diagram showing another comparative example.
[Explanation of symbols]
1 Steam trap
3 Central management device
4 Terminal
14 Steam supply path
15 valves
16 Open / close sensor
17 Condensate introduction route
31 Condensate outlet
32 Control means
33 Signal interpretation means
34 Steam Flow Path in Steam Use System
H (25) judging means
K steam supply detection means
M steam system
PS (16) Pressure sensor
TS (2A, 2C) Temperature sensor
TSS upstream temperature sensor

Claims (4)

蒸気使用系に装備した蒸気トラップの温度、又は、その蒸気トラップに前記蒸気使用系での発生復水を導く復水導入路の下流側部分の温度、又は、その蒸気トラップからの復水導出路の温度を検出する温度センサを設けるとともに、
前記蒸気使用系に対する蒸気供給状態を検出する蒸気供給検出手段を設け、
前記温度センサの検出情報と前記蒸気供給検出手段の検出情報とに基づいて前記蒸気トラップの作動状態を判定する判定手段を設け、
前記蒸気供給検出手段が、前記蒸気使用系に対する蒸気供給路に介装された弁の開閉状態を検出する開閉センサである蒸気トラップ監視装置。
The temperature of the steam trap installed in the steam use system, or the temperature of the downstream portion of the condensate introduction path that guides the condensate generated in the steam use system to the steam trap, or the condensate lead-out path from the steam trap While providing a temperature sensor to detect the temperature of
Providing a steam supply detecting means for detecting a steam supply state for the steam using system;
A determination means for determining an operating state of the steam trap based on detection information of the temperature sensor and detection information of the steam supply detection means;
A steam trap monitoring device, wherein the steam supply detection means is an open / close sensor that detects an open / closed state of a valve interposed in a steam supply path for the steam use system.
蒸気使用系に装備した蒸気トラップの温度、又は、その蒸気トラップに前記蒸気使用系での発生復水を導く復水導入路の下流側部分の温度、又は、その蒸気トラップからの復水導出路の温度を検出する温度センサを設けるとともに、
前記蒸気使用系に対する蒸気供給状態を検出する蒸気供給検出手段を設け、
前記温度センサの検出情報と前記蒸気供給検出手段の検出情報とに基づいて前記蒸気トラップの作動状態を判定する判定手段を設け、
前記蒸気供給検出手段が、前記蒸気使用系への蒸気供給を制御する制御手段の生成信号に基づいて前記蒸気使用系に対する蒸気供給状態を検出する信号判読手段である蒸気トラップ監視装置。
The temperature of the steam trap installed in the steam use system, or the temperature of the downstream portion of the condensate introduction path that guides the condensate generated in the steam use system to the steam trap, or the condensate lead-out path from the steam trap While providing a temperature sensor to detect the temperature of
Providing a steam supply detecting means for detecting a steam supply state for the steam using system;
A determination means for determining an operating state of the steam trap based on detection information of the temperature sensor and detection information of the steam supply detection means;
The steam trap monitoring device, wherein the steam supply detection means is a signal interpretation means for detecting a steam supply state for the steam use system based on a generation signal of a control means for controlling the steam supply to the steam use system.
前記温度センサの検出情報、及び、前記蒸気供給検出手段の検出情報を無線通信により中央管理装置に送る通信用の端末器を設けてある請求項1又は2記載の蒸気トラップ監視装置。  The steam trap monitoring device according to claim 1 or 2, further comprising a communication terminal for sending the detection information of the temperature sensor and the detection information of the steam supply detection means to a central management device by wireless communication. 対応する蒸気トラップが共通の前記温度センサ及び前記蒸気供給検出手段について、その温度センサの検出情報を前記中央管理装置に送る前記端末器と、その蒸気供給検出手段の検出情報を前記中央管理装置に送る前記端末器とを各別に設けてある請求項3記載の蒸気トラップ監視装置。  For the temperature sensor and the steam supply detection means that share the corresponding steam trap, the terminal device that sends detection information of the temperature sensor to the central management device, and the detection information of the steam supply detection means to the central management device The steam trap monitoring device according to claim 3, wherein the terminal device to be sent is provided separately.
JP2001330702A 2001-10-29 2001-10-29 Steam trap monitoring device Expired - Fee Related JP3987707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330702A JP3987707B2 (en) 2001-10-29 2001-10-29 Steam trap monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330702A JP3987707B2 (en) 2001-10-29 2001-10-29 Steam trap monitoring device

Publications (2)

Publication Number Publication Date
JP2003130289A JP2003130289A (en) 2003-05-08
JP3987707B2 true JP3987707B2 (en) 2007-10-10

Family

ID=19146392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330702A Expired - Fee Related JP3987707B2 (en) 2001-10-29 2001-10-29 Steam trap monitoring device

Country Status (1)

Country Link
JP (1) JP3987707B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021026559A1 (en) * 2019-08-07 2021-02-11 Everactive, Inc. Steam trap monitoring devices, systems, and related techniques
WO2021076507A1 (en) * 2019-10-16 2021-04-22 Everactive, Inc. Monitoring techniques for pressurized systems

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581336B2 (en) * 2003-05-26 2010-11-17 栗田工業株式会社 Steam loss evaluation method, steam loss evaluation device
JP3672303B2 (en) 2003-10-02 2005-07-20 株式会社テイエルブイ Facility diagnosis method, operation method of facility diagnosis summary system, and facility diagnosis summary system
JP3790527B2 (en) * 2003-10-03 2006-06-28 株式会社テイエルブイ Operation method of facility diagnosis summary system, and facility diagnosis summary system
JP4969134B2 (en) * 2006-03-30 2012-07-04 中国電力株式会社 Instrument tres check method
JP4825757B2 (en) * 2007-08-31 2011-11-30 オリオン機械株式会社 Dehumidifier and drain discharge abnormality detection program
JP5052330B2 (en) * 2007-12-27 2012-10-17 中国電力株式会社 Steam supply device
US10641412B2 (en) 2012-09-28 2020-05-05 Rosemount Inc. Steam trap monitor with diagnostics
TR201901981T4 (en) * 2014-06-06 2019-03-21 Tlv Co Ltd Fluid usage facility management method and fluid usage facility management system.
JP6425455B2 (en) * 2014-08-22 2018-11-21 株式会社テイエルブイ Steam trap installation structure
JP2016056922A (en) * 2014-09-11 2016-04-21 株式会社テイエルブイ Piping route determination device
JP6630488B2 (en) * 2015-04-17 2020-01-15 株式会社テイエルブイ Judgment device and judgment method
JP6483550B2 (en) * 2015-07-01 2019-03-13 株式会社テイエルブイ Water hammer detection system for steam system
CN107228743B (en) * 2017-08-09 2023-05-23 华峰化学股份有限公司 Online leak hunting device of trap based on density
US12000535B2 (en) 2018-04-09 2024-06-04 Velan Inc. Electronic steam trap
JP6531310B1 (en) * 2018-04-17 2019-06-19 株式会社エコファースト Monitoring system
KR102115569B1 (en) * 2018-12-03 2020-05-26 (주)에어릭스 IoT sensor apparatus for steam trap
AU2019427682B2 (en) * 2019-01-31 2021-09-23 Tlv Co., Ltd. Monitoring system, monitoring method, and monitoring program for steam-using equipment
JP7245679B2 (en) * 2019-03-14 2023-03-24 株式会社テイエルブイ heating cylinder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021026559A1 (en) * 2019-08-07 2021-02-11 Everactive, Inc. Steam trap monitoring devices, systems, and related techniques
US11226302B2 (en) 2019-08-07 2022-01-18 Everactive, Inc. Steam trap monitoring devices, systems, and related techniques
US11709144B2 (en) 2019-08-07 2023-07-25 Everactive, Inc. Steam trap monitoring devices, systems, and related techniques
US11859764B2 (en) 2019-08-07 2024-01-02 Everactive, Inc. Steam trap monitoring devices, systems, and related techniques
WO2021076507A1 (en) * 2019-10-16 2021-04-22 Everactive, Inc. Monitoring techniques for pressurized systems

Also Published As

Publication number Publication date
JP2003130289A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP3987707B2 (en) Steam trap monitoring device
US20060118647A1 (en) Remote monitor for steam traps
EP2251602A1 (en) Gas shut-off device and alarm-compatible system meter
CN101994902A (en) Valve-member monitoring system
NO337580B1 (en) Emergency isolation valve with fault indicator
JP4187432B2 (en) Equipment monitoring system
JP4086497B2 (en) Equipment monitoring system
US7490011B2 (en) Diagnostic tool for an energy conversion appliance
US6674363B2 (en) System for physical location of field devices in process plants
EP3597274B1 (en) Sprinkler system including a sprinkler and an identification device
CN110085002A (en) Gas pipeline detection system
MX2013008897A (en) Ice machine safe mode freeze and harvest control and method.
CN103728930A (en) Process control system and managing method therefor
CN106556146A (en) Intelligent fuel gas water heater and its self-diagnosing method
JP4034956B2 (en) Steam trap monitoring system
JP3816780B2 (en) Equipment monitoring system
JP2002030702A (en) Cutoff-valve monitor control system
CN112005043A (en) Monitoring system
US20180119845A1 (en) Sensor connection structure
JP2008135039A (en) Equipment monitoring system and its communication path determining method
US11730991B2 (en) Sprinkler self-diagnosis
CN111720752B (en) Method and device for detecting abnormality of water path
CN113855837A (en) Remote control steam disinfection method, system and device based on 4GCAT1
AU2018100164A4 (en) A tap timer system, method and apparatus capable of detecting solenoid valve malfunction and notifying user immediately
US20230112289A1 (en) Assembly comprising a valve and at least one connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3987707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees