JP3987271B2 - Bathtub water level control device - Google Patents

Bathtub water level control device Download PDF

Info

Publication number
JP3987271B2
JP3987271B2 JP2000187597A JP2000187597A JP3987271B2 JP 3987271 B2 JP3987271 B2 JP 3987271B2 JP 2000187597 A JP2000187597 A JP 2000187597A JP 2000187597 A JP2000187597 A JP 2000187597A JP 3987271 B2 JP3987271 B2 JP 3987271B2
Authority
JP
Japan
Prior art keywords
water
water level
bathtub
water supply
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000187597A
Other languages
Japanese (ja)
Other versions
JP2002005512A (en
Inventor
修司 稲垣
一弥 鈴木
敏也 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP2000187597A priority Critical patent/JP3987271B2/en
Publication of JP2002005512A publication Critical patent/JP2002005512A/en
Application granted granted Critical
Publication of JP3987271B2 publication Critical patent/JP3987271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、浴槽水位を設定水位等に制御する浴槽水位制御装置に関する。
【0002】
【従来の技術】
従来、浴槽の水位は、圧力センサを用いて検出することができる。この圧力センサの検出圧力は、管路に流れる水流によって変動する。例えば、浴槽には2本の追焚管路が接続されているが、その一方の管路に圧力センサを取り付け、その他方の管路を通じて上水を浴槽に供給し、給水時の水流の影響を回避することが行われている。
【0003】
浴槽の水位制御は、追焚循環路に上水を供給した後、循環ポンプに呼び水を行い、圧力センサが取り付けられている管路側に上水を流し、浴槽と圧力センサとを水を介在させて連結することにより、浴槽内の水位を表す圧力を圧力センサに作用させる。このときの検出圧力は初期水位圧力としてメモリに記憶し、他方の管路から給水を再開する。浴槽の循環口に水位が達すると、検出圧力値が上昇し、この圧力上昇から循環口が水没したことを確認することができる。ここで、給水を停止し、圧力センサ側の管路に給水を行い、又は、ポンプ循環を行って管路内の残留空気を排出させる。そして、循環口が完全に水没したことを表す水位圧力をメモリに記憶する。この検出位置を浴槽底面からの特定水位として設定水位までの差を演算し、再び一方の管路から給水を行う。設定水位を表す圧力値を検出したとき、給水を停止する。
【0004】
【発明が解決しようとする課題】
ところで、圧力センサの検出圧力を用いて浴槽の水位制御を行う場合には、浴槽の水位圧力を圧力センサに作用させることが必要であり、圧力センサ側の管路内の空気を水位検出の度に排出することが必要となる。この空気排出には、配管内に水を封止するために複数の三方弁や四方弁の使用が必要となり、流路切換えに合わせて給水用開閉弁を開閉することが必要である。開閉弁の駆動はモータによって行われ、また、開閉弁の開度状態の検出も必要となる。このように空気排出を行うためには、複雑な制御機構が必要となり、そのための部品点数も多く、また、その制御動作時間が沸上げ時間を遅延させる原因になる。
【0005】
そこで、本発明は、水位制御の簡略化及び迅速化を実現した浴槽水位制御装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明の浴槽水位制御装置は、給水量を計測する水量センサ(給水量センサ46)、追焚循環路に作用する圧力を検出する圧力センサ(24)、給水制御をする制御手段(制御部100)を備え、検出圧力に応じて給水を制御し、浴槽(4)の循環口(循環接続具10)が水没する基準水位までの第1の水量(Q1 )と、基準水位(h1 )から設定水位(hset )までの第2の水量(Q2 )、基準水位と設定水位との水位差(h2 )を記憶し、浴槽内の現在の水位に応じて浴槽に第1の水量、第2の水量又は現在水位から設定水位までの不足水量を前記浴槽に給水させて水位制御の簡略化及び迅速化を実現している。
【0007】
請求項1に係る本発明の浴槽水位制御装置は、浴槽(4)の循環口(循環接続具10)を通じて前記浴槽に給水する浴槽水位制御装置であって、前記浴槽の前記循環口から浴槽水を追焚用熱交換器(16)に導き、該追焚用熱交換器を通過した前記浴槽水を前記浴槽の前記循環口から前記浴槽内に戻す管路(戻り管12)にポンプ(18)を接続し、該ポンプによって前記浴槽水を循環させる追焚循環路と、給水管(27)に接続されるとともに前記追焚循環路に連結されて給湯用熱交換器(28)が設置され、前記追焚循環路からの前記浴槽水の逆流を阻止する逆止弁(44)が設置され、前記給水管からの上水を前記給湯用熱交換器を経て前記追焚循環路から前記浴槽に流し込む給水管路(給湯管26)と、前記給水管路に設置され、前記浴槽に給水される給水量を計測する水量センサ(給水量センサ46)と、前記追焚循環路に設けられ、前記追焚循環路を通して前記浴槽の水位圧力を受け、前記浴槽内の水位を表す圧力を検出する圧力センサ(24)と、前記給水管路に設置されて給水量を制御する水量制御弁(36)と、前記給水管路に設置されて給水を制御する給水弁(40)と、前記給水により前記循環口が水没する水位より僅かに高い水位を基準水位、前記浴槽に設定される水位を表す設定水位、前記循環口を水没させるまでの給水量を第1の水量、前記基準水位から前記浴槽に設定される前記設定水位に到達させるまでの給水量を第2の水量とし、前記基準水位と前記設定水位との水位差を求め、前記基準水位、前記設定水位、前記第1の水量、前記第2の水量、前記水位差を記憶手段に記憶させ、給水開始時の検出圧力が前記基準水位を超えているか否かを判断し、前記検出圧力が前記基準水位を超えていない場合には前記給水弁を開いて前記第1の水量を給水し、前記水量制御弁を制御することにより、前記基準水位から前記第2の水量を供給し、そのときの検出水位及び前記水位差から不足水量を求め、その不足水量を前記給水管路から前記浴槽に給水させ、また、給水開始時の前記検出圧力が前記基準水位を超えている場合には、前記給水弁を開くとともに前記水量制御弁を制御することにより、現在水位から前記設定水位までの不足水量を前記給水管路から前記浴槽に給水させる制御手段(制御部100)とを備え、前記制御手段は、前記圧力センサの検出圧力に基づいて給水を制御する場合には、最大流量より低い所定流量に制限して前記浴槽に給水し、前記第1及び第2の水量に基づいて給水を制御する場合には、最大流量で前記浴槽に給水し、前記水量制御弁により前記浴槽への給水流量を規制して前記給水流量と給水中の検出圧力により前記浴槽内の静止圧力値を演算し、この静止圧力値を用いて給水を制御することを特徴とする。
【0008】
このような構成により、圧力センサの検出圧力から浴槽側の静止圧力値を演算し、浴槽の特定位置に設置された循環口が水没する基準水位まで給水し、かつ基準水位を制御基準として設定水位までの水位制御を行う。この水位制御に基づき基準水位までの水量と設定水位までの水量を計測するとともに記憶し、検出圧力による水位制御から水量値による制御に移行させることができる。また、静止圧力値を検出して設定水位までの不足水量を演算し、給水制御することができる。この結果、水位制御を給水圧力の変動誤差が少ない水量センサに依存でき、最大流量にて給水し、浴槽水位を速やかに設定水位に到達させることができる。この結果、循環管路の流路切換弁等を省略しても正確な水位制御が実現でき、設定水位に到達できるとともに、水位制御のための構成を簡略化することができる。
給水による圧力変動誤差の影響を抑制可能な最大流量に制限し、所望の水位に制御することができる。また、水量センサによる制御に移行させて最大流量にて給水し、所望の水位に制御することができ、また、給水に追焚循環路の圧力損失を緩和するため、複数の管路を使用して給湯量を増大させることができる。
給水による圧力変動誤差の影響を抑制可能な最大流量に制限して所望の水位に制御することができる。また、水量センサによる制御に移行させて最大流量にて給水し、所望の水位に制御することができる。
【0011】
【発明の実施の形態】
図1及び図2は本発明の浴槽水位制御装置の一実施形態を示し、図1は給湯・追焚装置の配管構成、図2はその給湯・追焚制御部を示している。
【0012】
給水、給湯及び浴槽水の追焚を行う給湯・追焚装置2には浴槽4の浴槽水5を追焚きする追焚部6と、上水Wを浴槽4に給水、又はその給水を加熱して給湯する給湯部8とを備えている。
【0013】
追焚部6には、浴槽4の循環口である循環接続具10と熱交換器16とを戻り管12及び往き管14の2本の管路を以て接続して追焚循環路が構成されている。この追焚循環路には、ポンプ18による送水速度を高め、浴槽水5の撹拌力を確保するために、比較的細い金属管が用いられている。戻り管12には、浴槽水5を搬送するためのポンプ18、このポンプ18によって発生した循環流水の有無を確認し、ポンプ18の動作確認、浴槽水5の有無を検出する手段としての流水スイッチ20、循環する浴槽水5の温度を検出する温度センサ22、浴槽4内の水位圧力を検出する圧力センサ24が設けられるとともに、給湯部8側の給湯管26が直結されている。
【0014】
また、給湯部8には、給水管27から供給される上水Wを加熱する熱交換器28、給水温度を検出する給水温センサ30、給水量を検出する給水量センサ32、熱交換器28の出湯温度を検出する出湯温センサ34、給水流量を所定流量に規制する水量制御弁36が設けられている。給湯管26には、台所、洗面台、シャワー等、温水HWの外部給湯を行うための管路38が分岐される。給湯管26には浴槽4への給水又は給湯を行う給水弁40、上水Wと浴槽4側とを縁切りするホッパ、バキュームブレーカ等の縁切り装置42、追焚部6側のポンプ18の圧力による湯水の逆流を阻止する逆止弁44、浴槽4側への給水量を検出する給水量センサ46が設けられている。
【0015】
熱交換器16、28には、燃料ガスGを燃焼させて加熱する加熱手段としてバーナ48、50が設置され、バーナ48及び50には燃料管52を通して燃料ガスGが供給される。この燃料管52には元弁54が設けられ、バーナ48側には開閉弁56、バーナ50側には開閉弁58及び比例弁60が設けられている。また、バーナ48、50の火口部分には燃料ガスGに点火する点火プラグ62、64が設けられている。
【0016】
そして、給湯・追焚制御部は、図2に示すように、給湯及び追焚の各制御を司る制御部100を備えており、この制御部100は、検出データ及びプログラムデータを演算し、制御出力を出力する制御演算部102を備えている。この制御演算部102には演算制御を行うCPU104、動作プログラムや動作基準データを格納した読出し専用のメモリであるROM106、演算データやセンサからの検出値、演算データの記憶を行う書換え可能なメモリであるRAM108、電圧等のアナログデータをデジタルデータに変換するアナログ・デジタル(A/D)変換器110、入力インターフェイスとしての入力ポート112、出力インターフェイスとしての出力ポート114が設けられている。
【0017】
A/D変換器110にはセンサの出力電圧を増幅してA/D変換範囲である上限値と下限値とを決定する検出範囲設定回路116が設けられ、この検出範囲設定回路116には圧力センサ24、給水温センサ30、出湯温センサ34、温度センサ22等の各種センサが接続され、検出出力が加えられている。入力ポート112には検出回路118を通して給水量センサ32、46、流水スイッチ20が接続されている。また、出力ポート114には駆動回路120を通して元弁54、開閉弁56、58、比例弁60、点火プラグ62、64、給水弁40、水量制御弁36、ポンプ18が設けられている。また、入力ポート112には受信回路122、出力ポート114には送信回路124が接続されており、受信回路122及び送信回路124は有線、無線により外部リモコン装置130と連係し、燃焼制御データ、浴槽の各種制御データ、各種設定データ、故障情報、時刻等のデータ交換が行われる。
【0018】
外部リモコン装置130には給湯温度、追焚温度、水位、時間、沸上げ時刻等の設定データや、運転待機、自動湯張り運転、足し湯運転、追焚運転等の動作指令を入力するためのスイッチ132が設けられるとともに、各種設定データや制御部100から送信された燃焼制御、水位制御、故障情報等の各種動作状態を文字、図形等により表示する表示手段として液晶、蛍光表示管、LED等からなる表示器134が設けられている。
【0019】
次に、動作を説明すると、図3は、浴槽4への給水(給湯を含む)を示す。給水弁40を開くと上水Wが熱交換器28を経て給湯管26から戻り管12を経て浴槽4に流れ込むとともに、戻り管12から熱交換器16を経て往き管14から浴槽4に流れ込み、即ち、2本の管路を通じて浴槽4に給水される。浴槽4への給水量は給水量センサ46により計測される。給水量センサ46は水流により羽車が回転するときのパルスを制御演算部102にて計数し、給水流量と給水量を演算計測する。また、給水量センサ46の検出出力を監視し、水量制御弁36を動作させて所定の給水流量に制御することができる。
【0020】
浴槽4又は浴槽4外への給水が給水量センサ32の検出出力から確認されると、点火プラグ64を放電させ、元弁54及び開閉弁58を開き、比例弁60を着火開度に動作させることにより、燃料ガスGがバーナ50に供給され、燃焼が開始される。熱交換器28からの出湯温度を検出して設定温度と比較し、設定温度と一致するように比例弁60の開度を調整することにより、バーナ50の燃焼量が調整される。また、制御演算部102にて給水温度と設定温度から設定温度に燃焼制御可能な最大給水流量QMAX が演算される。この最大給水流量QMAX に一致するように給水量センサ32で検出される給水流量を確認しながら水量制御弁36の開度調整が行われる。この場合、所望の給水流量に調整することもできる。また、外部からの給湯要求に応じた給湯が行われるときには給水量センサ32の検出出力により、また、浴槽4に給水するときには給水量センサ46の検出出力により、水量制御弁36を所望の水量に制御するようにしてもよい。
【0021】
戻り管12又は往き管14の何れか一方のみを使用した場合には、圧力損失が高く、しかも、ポンプ18による送水速度を高め、浴槽水5の撹拌力を確保するために細い金属管を用いているため、よりその損失が大きくなり、給水流量が大幅に制限される。そこで、給湯管26から戻り管12及び往き管14の双方を使用して給水を行うことにより、給水能力を高めるとともに、圧力損失を軽減し、給水量を増大させている。
【0022】
給水時、圧力センサ24が取り付けられた戻り管12に給水が通過するため、その検出圧力は浴槽4の水位に相当する静止圧力値に給水増加分が加算された値を呈し、また、流水の影響によりその値は大きく変動し、正確な値が得られない。この検出圧力は、水位制御に用いることができない。そこで、水量制御弁36を動作させて給水による圧力変動を抑制できる最大給水流量QMAX に制限するとともに、検出圧力の値から給水増加分を除くことにより、浴槽4の水位に相当する静止圧力値を求めて、この値を水位制御に使用する。
【0023】
圧力センサ24の検出圧力から給水による変動誤差の除去には例えば、次のような手法を取る。即ち、正確な静止圧力値を演算するには、所定時間毎にA/D変換器110から検出圧力の値をサンプリングし、それをRAM108に記憶させる。RAM108には複数の検出圧力データを記憶するエリア、例えば、そのデータを10個まで格納可能な記憶エリアが確保され、サンプリング毎にそのデータが順次に記憶エリアに格納される。そして、サンプリング毎に記憶エリア内の最先に記憶された検出圧力が最新の検出圧力に書き換えられるようにして順次データ更新が行われる。これらデータ群中、検出圧力の最大値と最小値を除いた残り8個のデータから平均値を求めて変動誤差分を排除し、これを検出圧力としてRAM108に記憶し、この検出圧力値から静止圧力値を演算し、これを水位制御に使用する。
【0024】
浴槽4は、家屋の1階、2階等の任意の高さに設置されるので、これに対応するため、浴槽4の循環口である循環接続具10と圧力センサ24との最大高度差を例えば、約5mとする。この最大高度差に相当する圧力センサ24の出力電圧範囲を検出範囲設定回路116によって所定電圧範囲内に出力されるように増幅して水位計測の上限値と下限値を設定する。この検出範囲設定回路116から出力される所定電圧範囲を8ビットのA/D変換器110により分解してデジタル値に変換する。A/D変換器110の分解能は、約2cmの水位である。この分解能における水位差を大きく設定すれば、サンプリング時の圧力変動量が平滑化される。圧力センサ24の検出圧力はA/D変換によってデジタル値に変換された後、RAM108の記憶エリアに格納されて平均値が求められる。この平均値である検出圧力から給水変動値を表すA/D変換データの値が減算され、静止圧力値を表すA/D変換データDxが記憶され、水位制御に使用される。
【0025】
浴槽4の循環接続具10は浴槽4の底面から所定の位置に取り付けられており、この取付位置が水位計測の基準となる。この基準として取付位置は、圧力センサ24の検出圧力によって検出でき、その検出圧力を用いて設定水位への制御が可能である。そこで、外部リモコン装置130より送られてきた設定水位データと循環接続具10の水位から水位差を演算し、その水位差分に相当するA/D変換値を演算し、基準水位から給水を行えば設定水位に制御することができる。例えば、基準水位に相当するA/D変換値をD50とすると、設定水位までの水位差が40cmであれば、A/D変換値が20だけ増加するD70を検出するまで給水すればよい。また、検出水位のA/D変換値がD60であれば、循環接続具10からの水位差が20cmであることが算出できる。このように、循環接続具10の位置の検出圧力は、設定水位への制御や水位制御の演算に必要な水位差の算出に利用することができる。
【0026】
なお、戻り管12内への空気混入による検出誤差を排除するため、循環接続具10を完全に水没させた位置を基準水位としている。水位上昇に伴い、循環接続具10が水没し始めると、検出圧力値が上昇を始める。水位を所定量上昇させて循環接続具10を水没させ、これを基準水位とする。即ち、循環口の位置より△h上昇させた水位を基準水位h1 として設定している。したがって、設定水位hset から基準水位h1 (循環接続具10の循環口を表す水位+△h)までの水位差h2 を求めて水位制御が行われる。
【0027】
また、水位制御において基準水位h1 までの第1の水量Q1 (基準水量)と、基準水位h1 から設定水位hset までの第2の水量Q2 を記憶し、これを次回の湯張り制御に使用する。このとき、追焚循環路の2本の管路から最大給水流量QMAX にて給水し、湯張り時間を短縮することができる。
【0028】
次に、図4は、浴槽水5の追焚制御を示している。浴槽水5の温度が設定温度未満のとき、設定温度Tset に回復させるため追焚運転が行われる。ポンプ18の駆動によって循環流水が発生し、これは流水スイッチ20により確認される。流水検出の後、元弁54及び開閉弁56を開いて燃料ガスGをバーナ48に供給し、点火プラグ62を放電させて追焚燃焼を開始する。ポンプ18によって圧送される湯水が熱交換器16により加熱されて浴槽4内に還流し、浴槽水5が撹拌されて均一に沸き上げられる。浴槽4内の浴槽水5の温度は温度センサ22によって検出される。この検出温度が外部リモコン装置130で設定されている設定温度Tset に到達すると、開閉弁56及び元弁54を閉じるとともに、ポンプ18を停止させる。
【0029】
ポンプ18によって浴槽水5を充分に撹拌できる流水速度を得るため、戻り管12及び往き管14は給湯管26より比較的細い管路を使用しているため、ポンプ18によって循環流水を発生させると追焚循環路から給湯管26側に逆流する力が作用する。給湯管26には逆止弁44及び縁切り装置42が設けられ、ポンプ18による湯水の逆流が阻止される。
【0030】
次に、図5は、給湯・追焚装置2の水位制御における圧力値、水位及び水量の推移を示している。初期の湯張り運転命令により給水弁40が開かれ、水位に対応する水量を計測する初期運転モードが開始される。水位が基準水位に到達する前に、静止圧力値を求めるために用いられる圧力の検出が行われ、時間t1 の間、水量制御弁36を動作させて給水流量q1 に制限し、このときの給水圧力p1 を検出する。続いて時間t2 の間、水量制御弁36を動作させて給水流量q2 に変更し、このときの給水圧力p2 を検出する。給水流量q2 は圧力検出の際、給水変動による誤差を抑制できる最大給水流量である。この後、式(1)より静止圧力値Pが演算され、a点より静止圧力値Pによる水位制御に移行する。
【0031】
P=p2 −(p2 −p1 )/(q2 2 −q1 2 )・・・・(1)
【0032】
給水によって浴槽4の水位が循環接続具10に到達すると、給水圧力及び静止圧力値が上昇を開始する。ここから△hだけ水位を上昇させる。時間t3 が経過し、b点の循環接続具10の水没位置に相当する圧力値P3 ’に到達したとき、給水を停止する。この給水停止により圧力変動が鎮静化し、圧力センサ24にはc点に示す圧力値P3 が検出される。時間t4 の間、演算静止圧力値P3 ’と静止圧力値P3 との誤差△Cを演算し、この演算結果を補正値としてRAM108に記憶する。以後、式(1)で求めた静止圧力値に補正値△Cを加えて静止圧力値Pを求め、これを水位制御に用いる。
【0033】
また、基準水位h1 と圧力値P3 はRAM108に記憶するとともに、ここまでの総給水量、即ち、第1の水量Q1 をRAM108に記憶する。以後、この第1の水量Q1 が基準水量となる。
【0034】
そして、時間t4 が経過したら給水を再開し、引き続き、給水流量q2 に制限して給水変動を抑制できる最大給水流量QMAX で給水を行う。時間t5 が経過して設定水位hset より所定水位h4 低い水位に相当するd点に到達したとき、給水を停止し、基準水位h1 からd点までの水位差h3 と水量Q3 をRAM108に記憶する。
【0035】
時間t6 の間、d点の水位から設定水位hset までの不足水量Q4 を演算し、最大給水流量QMAX にて時間t7 の間で給水し、浴槽4の水位を設定水位に制御する。設定水位までの不足水量を既に得られているデータから演算し、給水後に実際の静止圧力値と比較して設定水位に到達したか否かを確認する。設定水位hset までの不足水量Q4 は式(2)を用いて演算する。
【0036】
4 =(hset −h4 )×Q3 /h3 ・・・・(2)
【0037】
水量Q4 を給水した後、設定水位hset に到達したかどうかを確認する。設定水位に到達していなければ水位差に相当する水量を演算して給水を行う。これを設定水位hset に到達するまで繰り返し、やがて水位はe点に到達する。そこで、基準水位h1 から設定水位hset までに計測された水量Q3 と水量Q4 とを加算して第2の水量Q2 を求め、水位差h2 とともにRAM108に記憶する。以後、水位差h2 と水量Q2 が水位制御の演算パラメータとして使用される。このように、圧力センサ24の検出圧力、即ち、検出水位に基づく水位制御から設定水位までの不足水量を求めて給水する水量制御に切り換え、変動誤差を排除して正確に設定水位hset までの給水量を計測することができる。
【0038】
次に、制御動作を説明すると、図6は、水位制御のフローチャートを示している。ステップS1に示すルーチンでは初期設定運転を行うか否かを判定する。初期設定は新設時の試運転時、停電時、又は制御基板の交換時等のRAM108に記憶された水位、水量等の各種計測データが消失されたときに実行される。この初期設定運転を行わない場合、即ち、外部リモコン装置130の運転待機スイッチ(スイッチ132)の入力検出に基づき、制御部100が制御動作状態になったとき、RAM108の各種計測データを正常に読み込むことができる場合には、ステップS7の通常水位制御モードに移行する。
【0039】
ステップS2のルーチンでは初期設定モードに移行する。この初期設定モードでは、圧力センサ24の検出圧力に基づいて基準水位h1 、設定水位hset に給水を制御する。運転待機状態においてROM106に格納された初期設定水位hset =0が読み出されて外部リモコン装置130に転送され、これが表示器134に表示される。この状態で設定スイッチ(スイッチ132)を操作することにより、任意の設定水位hset に変更し、それを設定することができる。そして、自動湯張りスイッチ(スイッチ132)の入力と共に設定水位hset への水位制御が開始される。
【0040】
ステップS3では圧力センサ24の検出圧力により基準水位h1 に給水制御するとともに、水量Q1 を計測する。この場合、給水流量q1 からq2 に段階的に変化させ、このとき、検出圧力値p1 、p2 をサンプリングしてRAM108に記憶するとともに、静止圧力値Pを演算する。以後、時分割されて検出される検出圧力の値から静止圧力値Pを演算するとともに、基準水位h1 に給水制御し、圧力値P3 及び水量Q1 を記憶する。なお、外部への給湯が行われた結果、浴槽4への給水量が所定の流量q1 又はq2 に満たない場合がある。この場合には、初期設定モードをキャンセルした上、ROM106に記憶されている水量Q1 及び水量Q2 に基づいて浴槽4に給湯して湯張りを終了する。
【0041】
ステップS4では設定水位hset より水位h4 だけ低い水位(h3 +h1 )を目標水位として給水を行う。この目標水位は設定水位に応じて決定された水位である。このとき、給水流量q2 にて給水する。また、水位制御と同時に給水量を計測し、給水停止とともに、水量Q3 及び基準水位からの水位差h3 をRAM108に一時的に記憶する。また、設定水位まで給水した後、RAM108に水位差及び給水量を記憶してもよい。
【0042】
ステップS5では、設定水位hset までの不足水量Q4 を演算し、給水制御を行う。不足水量Q4 は式(2)から算出する。このとき、最大給水流量QMAX に水量制御弁36を制御して給水する。給水終了後、再び圧力センサ24より静止圧力値Pを検出し、設定水位hset に到達しているか否かを確認する。設定水位に達していなければ不足水量を給水し、設定水位に到達するまで繰り返す。
【0043】
ステップS6では基準水位h1 から設定水位hset までの各給水量を加算して水量Q2 を求め、RAM108に記憶する。また、基準水位h1 から設定水位hset までの水位差h2 も同様にRAM108に記憶する。これら水量Q2 及び水位差h2 は、次回の給水から設定水位までの不足水量の演算に使用される。
【0044】
ステップS7は通常水位制御モードを示し、このモードでは水量Q1 、Q2 及び水位差h2 を制御パラメータとして最大給水流量QMAX にて給水制御する。
【0045】
ステップS8では基準水量としての水量Q1 の給水制御であるか否かを判定する。水量Q1 の給水制御の場合、即ち、圧力センサ24による検出水位が基準水位h1 より低いとき、又は、ポンプ18を駆動して流水スイッチ20により循環流水が検出されなかったときには、浴槽4内に浴槽水5が無いものと仮定してステップS9に移行して水量Q1 の給水制御を行う。また、水量Q1 の給水制御でない場合、即ち、浴槽4内の水位が設定水位未満で基準水位を越えていたとき、又は、ポンプ18による循環流水が確認できたときにはステップS12に移行する。
【0046】
ステップS9では水量Q1 を給水する。給水流量は水量制御弁36により最大給水流量QMAX に調整されている。このため、速やかに基準水位まで給水を制御することができる。
【0047】
ステップS10では、制御水量としての水量Q2 の給水制御を行うか否かを判定する。水量Q2 の給水制御の場合、即ち、水量Q1 の給水により基準水位±αを越えていなければ浴槽4内には残水が無かったと判断し、ステップS11に移行する。さらに、設定水位hset が変更され、制御水量により設定水位を再現できないときもステップS11に移行する。また、水量Q2 の給水制御でない場合、即ち、基準水位±αを越えていたときには水量Q1 に浴槽4内の残水が加算されたものと判断し、ステップS12に移行する。
【0048】
ステップS11では、水量Q2 を最大給水流量QMAX にて給水し、迅速に設定水位hset に到達させる。
【0049】
また、ステップS12では圧力センサ24より検出された静止圧力値より設定水位までの水位差hxを演算し、水量Q2 及び水位差h2 から不足水量Qxを演算する。
【0050】
Qx=(hset −hx)×Q2 /h2 ・・・・(3)
この不足水量Qxに応じて最大給水流量QMAX にて給水することにより、浴槽4の水位が設定水位hset に制御される。
【0051】
なお、初期設定モードを複数回繰り返し、各検出圧力、水位差、水量等の平均値を求めて給水変動誤差分を排除して、通常水位制御モードでの水位制御パラメータとして使用してもよい。また、各種計測値が複数回一致するまで初期設定モードを繰り返してもよい。また、設定水位の変更毎に初期設定モードを動作させて各設定水位毎に計測した水量をデータ群としてRAM108に記憶、保持させてもよい。
【0052】
【発明の効果】
以上説明したように、この発明によれば、次のような効果を奏する。
a 圧力センサによる正確な検出を維持するため追焚循環路と給水経路との流路を切り換える切換弁が不要化でき、構成の簡略化に寄与することができる。また、切換え動作による給水時間を節約でき、その分だけ湯張りの迅速化を図ることができる。
b 給水による検出圧力の変動を除いた静止圧力値を演算により求めて水位制御を行うことができ、追焚循環路における圧力損失の影響を回避して湯張り制御を行うことができる。
c 圧力センサによる水位制御の後、計測誤差の少ない水量による水位制御に移行することにより、確実に設定水位を再現することができ、最大給水流量により給水できるため、速やかに湯張りを行うことができる。
【図面の簡単な説明】
【図1】本発明の浴槽水位制御装置の一実施形態である給湯・追焚装置を示す配管構成図である。
【図2】給湯・追焚装置の給湯・追焚制御部を示すブロック図である。
【図3】浴槽への給湯動作を示す図である。
【図4】浴槽水の追焚動作を示す図である。
【図5】水位制御における圧力、水位及び水量の推移を示すグラフである。
【図6】水位制御動作を示すフローチャートである。
【符号の説明】
2 給湯・追焚装置
4 浴槽
5 浴槽水
10 循環接続具(循環口)
12 戻り管
14 往き管
24 圧力センサ
36 水量制御弁
46 給水量センサ
100 制御部(制御手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bathtub water level control device that controls a bathtub water level to a set water level or the like.
[0002]
[Prior art]
Conventionally, the water level of a bathtub can be detected using a pressure sensor. The pressure detected by this pressure sensor varies depending on the water flow flowing in the pipe. For example, two memorial pipes are connected to the bathtub, but a pressure sensor is attached to one of the pipes, and the water is supplied to the bathtub through the other pipe. It has been done to avoid.
[0003]
To control the water level of the bathtub, after supplying clean water to the memorial circuit, priming water to the circulation pump, flowing clean water to the pipe side where the pressure sensor is attached, and interposing the water between the bathtub and the pressure sensor. By connecting them, a pressure representing the water level in the bathtub is applied to the pressure sensor. The detected pressure at this time is stored in the memory as the initial water level pressure, and water supply is resumed from the other pipe. When the water level reaches the circulation port of the bathtub, the detected pressure value increases, and from this pressure increase, it can be confirmed that the circulation port is submerged. Here, water supply is stopped, water is supplied to the pressure sensor side pipe line, or pump circulation is performed to discharge residual air in the pipe line. Then, the water level pressure indicating that the circulation port is completely submerged is stored in the memory. Using this detection position as the specific water level from the bottom of the bathtub, the difference to the set water level is calculated, and water is supplied from one of the pipes again. When a pressure value indicating the set water level is detected, water supply is stopped.
[0004]
[Problems to be solved by the invention]
By the way, when the water level control of the bathtub is performed using the detection pressure of the pressure sensor, it is necessary to apply the water level pressure of the bathtub to the pressure sensor, and the air in the pipe line on the pressure sensor side is detected every time the water level is detected. It is necessary to discharge it. For this air discharge, it is necessary to use a plurality of three-way valves and four-way valves to seal water in the pipe, and it is necessary to open and close the water supply opening / closing valve in accordance with the flow path switching. The on-off valve is driven by a motor, and it is also necessary to detect the opening state of the on-off valve. In order to discharge air in this way, a complicated control mechanism is required, the number of parts for that purpose is large, and the control operation time causes the boiling time to be delayed.
[0005]
Then, this invention makes it a subject to provide the bathtub water level control apparatus which implement | achieved the simplification and speeding-up of water level control.
[0006]
[Means for Solving the Problems]
The bathtub water level control device of the present invention includes a water amount sensor (water supply amount sensor 46) that measures the amount of water supply, a pressure sensor (24) that detects pressure acting on the recirculation circuit, and a control means (control unit 100) that controls the water supply. ), Controlling the water supply according to the detected pressure, and a first water amount (Q) up to a reference water level at which the circulation port (circulation connector 10) of the bathtub (4) is submerged.1) And the reference water level (h1) To the set water level (hset)2), Water level difference between the reference water level and the set water level (h2) Is stored and the first water amount, the second water amount, or the insufficient water amount from the current water level to the set water level is supplied to the bathtub according to the current water level in the bathtub, thereby simplifying and speeding up the water level control. Is realized.
[0007]
  The bathtub water level control device of the present invention according to claim 1 is a bathtub water level control device for supplying water to the bathtub through the circulation port (circulation connector 10) of the bathtub (4).A pipe that guides bathtub water from the circulation port of the bathtub to the heat exchanger for remedy (16) and returns the bathtub water that has passed through the heat exchanger for remedy from the circulation port of the bathtub to the inside of the bathtub. A pump (18) is connected to the (return pipe 12), and a recirculation circuit for circulating the bathtub water by the pump and a water supply pipe (27) and connected to the recirculation circuit for hot water supply. A heat exchanger (28) is installed, a check valve (44) for preventing a reverse flow of the bath water from the memorial circuit is installed, and water from the water supply pipe is supplied to the heat exchanger for hot water supply. Pour into the bathtub from the memorial circuitWater supply pipe (hot water supply pipe 26) and the water supply pipeInstalled inA water amount sensor (water supply amount sensor 46) for measuring the amount of water supplied to the bathtub;Provided in the memorial circuit, receiving the water level pressure of the bathtub through the memorial circuit,A pressure sensor (24) for detecting the pressure representing the water level;A water amount control valve (36) installed in the water supply pipe to control the amount of water supply, a water supply valve (40) installed in the water supply pipe to control the water supply, and the water supplyA water level slightly higher than the water level at which the circulation port is submerged is a reference water level, a set water level representing the water level set in the bathtub, a water supply amount until the circulation port is submerged is a first water amount, and the bathtub from the reference water level The amount of water supply until reaching the set water level set to the second water amount, the difference in water level between the reference water level and the set water level is obtained, the reference water level, the set water level, the first water amount, Whether or not the second water amount and the water level difference are stored in the storage means, and the detected pressure at the start of water supply exceeds the reference water levelJudgingWhen the detected pressure does not exceed the reference water levelOpen the water supply valveSupplying the first amount of water;By controlling the water amount control valve,The second water amount is supplied from the reference water level, the insufficient water amount is obtained from the detected water level and the difference in water level at that time, the insufficient water amount is supplied to the bathtub from the water supply pipe, and When the detected pressure exceeds the reference water level,By opening the water supply valve and controlling the water amount control valve,Control means (control unit 100) for supplying water from the current water level to the set water level to the bathtub from the water supply lineWhen the water supply is controlled based on the pressure detected by the pressure sensor, the control means supplies water to the bathtub with a predetermined flow rate lower than the maximum flow rate, and based on the first and second water amounts. When controlling the water supply, water is supplied to the bathtub at the maximum flow rate, the water supply flow rate to the bathtub is regulated by the water amount control valve, and the static pressure value in the bathtub is determined by the water supply flow rate and the detected pressure in the water supply. Calculate and control the water supply using this static pressure valueIt is characterized by that.
[0008]
  With such a configuration, the static pressure value on the bathtub side is calculated from the detected pressure of the pressure sensor, water is supplied to the reference water level where the circulation port installed at the specific position of the bathtub is submerged, and the set water level is set with the reference water level as the control reference. To control the water level. Based on this water level control, the water amount up to the reference water level and the water amount up to the set water level can be measured and stored, and the control can be shifted from the water level control based on the detected pressure to the control based on the water amount value. In addition, it is possible to control the water supply by detecting the static pressure value and calculating the amount of insufficient water up to the set water level. As a result, the water level control can depend on a water amount sensor with a small fluctuation error in the supply water pressure, and water can be supplied at the maximum flow rate so that the bathtub water level can quickly reach the set water level. As a result, accurate water level control can be realized even if the flow path switching valve or the like of the circulation pipe is omitted, the set water level can be reached, and the configuration for water level control can be simplified.
  The influence of the pressure fluctuation error due to the water supply can be limited to the maximum flow rate that can be suppressed, and the water level can be controlled to a desired level. In addition, it is possible to control to the desired water level by shifting to the control by the water amount sensor, and to control the water level to a desired level. The amount of hot water can be increased.
  It is possible to control to a desired water level by limiting the maximum flow rate that can suppress the influence of pressure fluctuation error due to water supply. In addition, the control can be performed by the water amount sensor so that the water is supplied at the maximum flow rate and controlled to a desired water level.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show an embodiment of a bathtub water level control device of the present invention, FIG. 1 shows a piping configuration of a hot water supply / remedy device, and FIG. 2 shows a hot water supply / remedy control unit thereof.
[0012]
In the hot water supply / remedy device 2 for replenishing water supply, hot water supply, and bathtub water, a remedy section 6 for pursuing the bathtub water 5 of the bathtub 4 and the water W are supplied to the bathtub 4 or heated. And a hot water supply section 8 for supplying hot water.
[0013]
The memorial circuit 6 is constructed by connecting the circulation connector 10 that is the circulation port of the bathtub 4 and the heat exchanger 16 to the memorial unit 6 through two pipes of the return pipe 12 and the forward pipe 14. Yes. In this memorial circuit, a relatively thin metal pipe is used in order to increase the water supply speed by the pump 18 and ensure the stirring power of the bath water 5. In the return pipe 12, a pump 18 for conveying the bathtub water 5, the presence / absence of circulating water generated by the pump 18, the operation of the pump 18, and the running water switch as means for detecting the presence / absence of the bathtub water 5 are detected. 20. A temperature sensor 22 for detecting the temperature of the circulating bath water 5 and a pressure sensor 24 for detecting the water level pressure in the bathtub 4 are provided, and a hot water supply pipe 26 on the hot water supply section 8 side is directly connected.
[0014]
Further, the hot water supply unit 8 includes a heat exchanger 28 for heating the clean water W supplied from the water supply pipe 27, a water supply temperature sensor 30 for detecting the water supply temperature, a water supply amount sensor 32 for detecting the water supply amount, and a heat exchanger 28. A hot water temperature sensor 34 for detecting the hot water temperature of the hot water and a water amount control valve 36 for regulating the feed water flow rate to a predetermined flow rate are provided. The hot water supply pipe 26 is branched from a pipe 38 for external hot water supply of the hot water HW, such as a kitchen, a washstand, and a shower. The hot water supply pipe 26 depends on the pressure of the water supply valve 40 for supplying water to the bathtub 4 or hot water, the hopper for cutting off the clean water W and the bathtub 4 side, the edge cutting device 42 such as a vacuum breaker, and the pressure of the pump 18 on the side of the remedy section 6 A check valve 44 for preventing the back flow of hot water and a water supply sensor 46 for detecting the amount of water supplied to the bathtub 4 side are provided.
[0015]
Burners 48 and 50 are installed in the heat exchangers 16 and 28 as heating means for burning and heating the fuel gas G, and the fuel gas G is supplied to the burners 48 and 50 through the fuel pipe 52. The fuel pipe 52 is provided with a main valve 54, an on-off valve 56 on the burner 48 side, and an on-off valve 58 and a proportional valve 60 on the burner 50 side. Spark plugs 62 and 64 for igniting the fuel gas G are provided at the crater portions of the burners 48 and 50.
[0016]
As shown in FIG. 2, the hot water supply / remembrance control unit includes a control unit 100 that controls each of hot water supply and renewal, and the control unit 100 calculates detection data and program data, and performs control. A control calculation unit 102 that outputs an output is provided. The control operation unit 102 includes a CPU 104 that performs operation control, a ROM 106 that is a read-only memory that stores operation programs and operation reference data, and a rewritable memory that stores operation data, detection values from sensors, and operation data. A RAM 108, an analog / digital (A / D) converter 110 that converts analog data such as voltage into digital data, an input port 112 as an input interface, and an output port 114 as an output interface are provided.
[0017]
The A / D converter 110 is provided with a detection range setting circuit 116 that amplifies the output voltage of the sensor and determines an upper limit value and a lower limit value that are A / D conversion ranges. Various sensors such as the sensor 24, the feed water temperature sensor 30, the hot water temperature sensor 34, the temperature sensor 22 and the like are connected and a detection output is applied. The water supply amount sensors 32 and 46 and the running water switch 20 are connected to the input port 112 through a detection circuit 118. The output port 114 is provided with a main valve 54, on-off valves 56 and 58, a proportional valve 60, spark plugs 62 and 64, a water supply valve 40, a water amount control valve 36, and a pump 18 through a drive circuit 120. In addition, a receiving circuit 122 is connected to the input port 112, and a transmitting circuit 124 is connected to the output port 114. The receiving circuit 122 and the transmitting circuit 124 are linked to the external remote control device 130 by wire and wirelessly, and combustion control data, a bathtub Various data such as various control data, various setting data, failure information, and time are exchanged.
[0018]
The external remote controller 130 is used to input setting data such as hot water supply temperature, remedy temperature, water level, time, and boiling time, and operation commands such as operation standby, automatic hot water operation, additional hot water operation, and remedy operation. A switch 132 is provided, and liquid crystal, a fluorescent display tube, an LED, etc. are used as display means for displaying various setting data and various operation states such as combustion control, water level control, and failure information transmitted from the control unit 100 with characters, figures, etc. The indicator 134 which consists of is provided.
[0019]
Next, the operation will be described. FIG. 3 shows water supply (including hot water supply) to the bathtub 4. When the water supply valve 40 is opened, the clean water W flows from the hot water supply pipe 26 through the return pipe 12 to the bathtub 4 through the heat exchanger 28, and from the return pipe 12 through the heat exchanger 16 to the bathtub 4 from the forward pipe 14, That is, water is supplied to the bathtub 4 through two pipe lines. A water supply amount to the bathtub 4 is measured by a water supply amount sensor 46. The water supply amount sensor 46 counts pulses when the impeller rotates due to the water flow, and calculates and measures the water supply flow rate and the water supply amount. Further, the detection output of the water supply amount sensor 46 can be monitored, and the water amount control valve 36 can be operated to control it to a predetermined water supply flow rate.
[0020]
When water supply to the bathtub 4 or the outside of the bathtub 4 is confirmed from the detection output of the water supply amount sensor 32, the spark plug 64 is discharged, the main valve 54 and the on-off valve 58 are opened, and the proportional valve 60 is operated to the ignition opening degree. Thus, the fuel gas G is supplied to the burner 50, and combustion is started. The amount of combustion in the burner 50 is adjusted by detecting the temperature of the hot water from the heat exchanger 28 and comparing it with the set temperature and adjusting the opening of the proportional valve 60 so as to match the set temperature. Further, the maximum water supply flow rate Q that can be controlled by the control calculation unit 102 from the water supply temperature and the set temperature to the set temperature.MAXIs calculated. This maximum water supply flow rate QMAXThe opening adjustment of the water amount control valve 36 is performed while confirming the water supply flow rate detected by the water supply amount sensor 32 so as to match the above. In this case, it can also be adjusted to a desired water supply flow rate. When the hot water supply according to the hot water supply request from the outside is performed, the water amount control valve 36 is set to a desired water amount by the detection output of the water supply amount sensor 32, and when supplying water to the bathtub 4, the detection output of the water supply amount sensor 46. You may make it control.
[0021]
When only one of the return pipe 12 and the forward pipe 14 is used, the pressure loss is high, and a thin metal pipe is used to increase the water supply speed by the pump 18 and ensure the stirring power of the bath water 5. Therefore, the loss becomes larger and the water supply flow rate is greatly limited. Therefore, by supplying water from the hot water supply pipe 26 using both the return pipe 12 and the forward pipe 14, the water supply capacity is increased, the pressure loss is reduced, and the water supply amount is increased.
[0022]
At the time of water supply, since the water supply passes through the return pipe 12 to which the pressure sensor 24 is attached, the detected pressure exhibits a value obtained by adding the increase in water supply to the static pressure value corresponding to the water level of the bathtub 4. The value fluctuates greatly due to the influence, and an accurate value cannot be obtained. This detected pressure cannot be used for water level control. Therefore, the maximum water supply flow rate Q that can control the pressure fluctuation due to the water supply by operating the water amount control valve 36.MAXThe static pressure value corresponding to the water level of the bathtub 4 is obtained by removing the increase in water supply from the detected pressure value, and this value is used for water level control.
[0023]
For example, the following method is used to remove the fluctuation error due to water supply from the pressure detected by the pressure sensor 24. That is, in order to calculate an accurate static pressure value, the detected pressure value is sampled from the A / D converter 110 every predetermined time and stored in the RAM 108. The RAM 108 has an area for storing a plurality of detected pressure data, for example, a storage area capable of storing up to 10 pieces of the data, and the data is sequentially stored in the storage area every sampling. Then, every time sampling is performed, data is sequentially updated so that the detected pressure stored first in the storage area is rewritten to the latest detected pressure. From these data groups, the average value is obtained from the remaining 8 data excluding the maximum and minimum values of the detected pressure, the fluctuation error is eliminated, this is stored in the RAM 108 as the detected pressure, and the static pressure is detected from this detected pressure value. The pressure value is calculated and used for water level control.
[0024]
Since the bathtub 4 is installed at an arbitrary height such as the first floor or the second floor of the house, in order to cope with this, the maximum height difference between the circulation connector 10 which is the circulation port of the bathtub 4 and the pressure sensor 24 is set. For example, it is about 5 m. The output voltage range of the pressure sensor 24 corresponding to this maximum altitude difference is amplified so as to be output within a predetermined voltage range by the detection range setting circuit 116, and an upper limit value and a lower limit value for water level measurement are set. The predetermined voltage range output from the detection range setting circuit 116 is decomposed by the 8-bit A / D converter 110 and converted into a digital value. The resolution of the A / D converter 110 is a water level of about 2 cm. If the water level difference in this resolution is set large, the pressure fluctuation amount at the time of sampling is smoothed. The pressure detected by the pressure sensor 24 is converted into a digital value by A / D conversion, and then stored in the storage area of the RAM 108 to obtain an average value. The value of A / D conversion data representing the feed water fluctuation value is subtracted from the detected pressure which is the average value, and A / D conversion data Dx representing the static pressure value is stored and used for water level control.
[0025]
The circulation connector 10 of the bathtub 4 is attached to a predetermined position from the bottom surface of the bathtub 4, and this attachment position is a reference for water level measurement. As this reference, the mounting position can be detected by the detected pressure of the pressure sensor 24, and control to the set water level is possible using the detected pressure. Therefore, if the water level difference is calculated from the set water level data sent from the external remote control device 130 and the water level of the circulation connector 10, the A / D conversion value corresponding to the water level difference is calculated, and water is supplied from the reference water level. It can be controlled to the set water level. For example, assuming that the A / D conversion value corresponding to the reference water level is D50, if the water level difference up to the set water level is 40 cm, water may be supplied until D70 where the A / D conversion value increases by 20 is detected. If the A / D conversion value of the detected water level is D60, it can be calculated that the water level difference from the circulation connector 10 is 20 cm. As described above, the detected pressure at the position of the circulating connector 10 can be used to calculate the water level difference necessary for the control to the set water level and the calculation of the water level control.
[0026]
In addition, in order to eliminate the detection error due to air mixing into the return pipe 12, the position where the circulation connector 10 is completely submerged is set as the reference water level. When the circulating connector 10 begins to submerge as the water level rises, the detected pressure value starts to rise. The water level is raised by a predetermined amount, and the circulation connector 10 is submerged, and this is set as a reference water level. That is, the water level that is raised by Δh from the position of the circulation port is the reference water level h.1It is set as. Therefore, from the set water level hset to the reference water level h1Water level difference h up to (water level representing the circulation port of the circulation connector 10 + Δh)2The water level is controlled for
[0027]
In addition, in the water level control, the reference water level h11st water quantity Q until1(Reference water volume) and reference water level h1To the set water level hset2Is used for the next hot water filling control. At this time, the maximum water supply flow rate Q from the two pipelines of the memorial circuitMAXWater can be supplied at, and the filling time can be shortened.
[0028]
Next, FIG. 4 shows the tracking control of the bathtub water 5. When the temperature of the bath water 5 is lower than the set temperature, a chasing operation is performed to recover the set temperature Tset. Circulating water is generated by driving the pump 18, and this is confirmed by the water switch 20. After detecting the flowing water, the main valve 54 and the on-off valve 56 are opened, the fuel gas G is supplied to the burner 48, the ignition plug 62 is discharged, and additional combustion is started. The hot water pumped by the pump 18 is heated by the heat exchanger 16 and refluxed into the bathtub 4, and the bathtub water 5 is stirred and boiled up uniformly. The temperature of the bathtub water 5 in the bathtub 4 is detected by the temperature sensor 22. When this detected temperature reaches the set temperature Tset set by the external remote controller 130, the on-off valve 56 and the main valve 54 are closed and the pump 18 is stopped.
[0029]
Since the return pipe 12 and the forward pipe 14 use relatively narrow pipelines than the hot water supply pipe 26 in order to obtain a flowing water speed at which the bathtub water 5 can be sufficiently stirred by the pump 18, when circulating water is generated by the pump 18. A force that flows backward from the memorial circuit to the hot water supply pipe 26 side acts. The hot water supply pipe 26 is provided with a check valve 44 and an edge cutting device 42 to prevent the back flow of hot water from the pump 18.
[0030]
  Next, FIG. 5 shows changes in the pressure value, the water level, and the amount of water in the water level control of the hot water supply / remedy device 2. The water supply valve 40 is opened by an initial hot water filling operation command, and an initial operation mode for measuring the amount of water corresponding to the water level is started. Obtain the static pressure value before the water level reaches the reference water levelOf pressure used forDetection occurs and time t1During this period, the water flow control valve 36 is operated to supply water flow q1At this time, water supply pressure p1Is detected. Then time t2During this period, the water flow control valve 36 is operated to supply water flow q2At this time, water supply pressure p2Is detected. Supply water flow q2Is the maximum water supply flow rate that can suppress errors due to fluctuations in the water supply during pressure detection. Thereafter, the static pressure value P is calculated from the equation (1), and the control proceeds to the water level control by the static pressure value P from the point a.
[0031]
P = p2-(P2-P1) / (Q2 2 -Q1 2 (1)
[0032]
When the water level of the bathtub 4 reaches the circulation connector 10 due to the water supply, the water supply pressure and the static pressure value start to rise. From here, the water level is raised by Δh. Time tThreeElapses, and the pressure value P corresponding to the submerged position of the circulation connector 10 at point bThreeWhen 'is reached, water supply is stopped. The pressure fluctuation is calmed by this water supply stop, and the pressure sensor 24 has a pressure value P shown at point c.ThreeIs detected. Time tFourThe calculated static pressure value P duringThree'And static pressure value PThreeAnd ΔC is stored in the RAM 108 as a correction value. Thereafter, the static pressure value P is obtained by adding the correction value ΔC to the static pressure value obtained by the equation (1), and this is used for water level control.
[0033]
Also, the reference water level h1And pressure value PThreeIs stored in the RAM 108, and the total water supply amount so far, that is, the first water amount Q1Is stored in the RAM 108. Thereafter, the first water quantity Q1Is the reference water volume.
[0034]
And time tFourAfter the elapse of time, water supply is resumed and the water supply flow q2Water supply flow rate Q that can limit water supply and suppress fluctuations in water supplyMAXSupply water at. Time tFiveElapses from the set water level hset to the specified water level hFourWhen the point d corresponding to the low water level is reached, the water supply is stopped and the reference water level h1Water level difference from point to point dThreeAnd water quantity QThreeIs stored in the RAM 108.
[0035]
Time t6Deficient water quantity Q from point d water level to set water level hsetFourTo calculate the maximum water supply flow rate QMAXAt time t7The water level of the bathtub 4 is controlled to the set water level. The amount of water shortage up to the set water level is calculated from the already obtained data, and it is confirmed whether or not the set water level has been reached by comparing with the actual static pressure value after water supply. Insufficient water volume Q to set water level hsetFourIs calculated using equation (2).
[0036]
QFour= (Hset -hFour) × QThree/ HThree    (2)
[0037]
Quantity of water QFourAfter supplying water, check whether the set water level hset has been reached. If the set water level has not been reached, water is supplied by calculating the amount of water corresponding to the water level difference. This is repeated until the set water level hset is reached, and the water level eventually reaches point e. Therefore, the reference water level h1Water quantity Q measured from to the set water level hsetThreeAnd water quantity QFourAnd add 2nd water quantity Q2Water level difference h2At the same time, it is stored in the RAM 108. After that, water level difference h2And water quantity Q2Is used as a calculation parameter for water level control. In this manner, the detected pressure of the pressure sensor 24, that is, the water level control based on the detected water level is switched to the water amount control for supplying water by obtaining the insufficient water amount from the set water level, and the water supply to the set water level hset is accurately performed by eliminating the fluctuation error. The amount can be measured.
[0038]
Next, the control operation will be described. FIG. 6 shows a flowchart of water level control. In the routine shown in step S1, it is determined whether or not to perform the initial setting operation. The initial setting is executed when various measurement data such as the water level and the amount of water stored in the RAM 108 are lost at the time of new operation, at the time of power failure, or at the time of replacement of the control board. When this initial setting operation is not performed, that is, when the control unit 100 enters the control operation state based on the input detection of the operation standby switch (switch 132) of the external remote control device 130, various measurement data in the RAM 108 are normally read. If it is possible, the process proceeds to the normal water level control mode in step S7.
[0039]
In the routine of step S2, the process shifts to the initial setting mode. In this initial setting mode, the reference water level h is based on the pressure detected by the pressure sensor 24.1The water supply is controlled to the set water level hset. In the operation standby state, the initial set water level hset = 0 stored in the ROM 106 is read out and transferred to the external remote controller 130, and displayed on the display 134. By operating the setting switch (switch 132) in this state, it can be changed to an arbitrary set water level hset and set. Then, the water level control to the set water level hset is started together with the input of the automatic hot water filling switch (switch 132).
[0040]
In step S3, the reference water level h is detected by the pressure detected by the pressure sensor 24.1Water supply control and water volume Q1Measure. In this case, water supply flow rate q1To q2At this time, the detected pressure value p1, P2Is sampled and stored in the RAM 108, and the static pressure value P is calculated. Thereafter, the static pressure value P is calculated from the detected pressure value detected by time division, and the reference water level h1Control the water supply to the pressure value PThreeAnd water volume Q1Remember. As a result of the hot water supply to the outside, the amount of water supplied to the bathtub 4 is a predetermined flow rate q.1Or q2May be less than In this case, after canceling the initial setting mode, the water amount Q stored in the ROM 1061And water volume Q2The hot water filling is finished by supplying hot water to the bathtub 4 based on the above.
[0041]
In step S4, the water level h is set from the set water level hset.FourOnly low water level (hThree+ H1) Is used as the target water level. This target water level is a water level determined according to the set water level. At this time, water supply flow rate q2Supply water at. Also, the water supply amount is measured simultaneously with the water level control.ThreeAnd water level difference from the reference water level hThreeIs temporarily stored in the RAM 108. Further, the water level difference and the water supply amount may be stored in the RAM 108 after the water supply to the set water level.
[0042]
In step S5, the water shortage Q up to the set water level hsetFourIs calculated and water supply control is performed. Water shortage QFourIs calculated from equation (2). At this time, the maximum water supply flow rate QMAXThe water amount control valve 36 is controlled to supply water. After the end of water supply, the static pressure value P is detected again from the pressure sensor 24, and it is confirmed whether or not the set water level hset has been reached. If the set water level has not been reached, supply the deficient water amount and repeat until the set water level is reached.
[0043]
In step S6, the reference water level h1Water amount Q from each water supply amount to the set water level hset2Is stored in the RAM 108. Also, the reference water level h1Water level difference h from the set water level hset2Is also stored in the RAM 108 in the same manner. These water quantities Q2And water level difference h2Is used to calculate the amount of water shortage from the next water supply to the set water level.
[0044]
Step S7 shows a normal water level control mode, in which water quantity Q1, Q2And water level difference h2As the control parameterMAXWater supply is controlled at
[0045]
In step S8, the water amount Q as the reference water amount1It is determined whether or not the water supply control is performed. Quantity of water Q1In other words, the detected water level by the pressure sensor 24 is the reference water level h.1When it is lower, or when the circulating water is not detected by the water flow switch 20 by driving the pump 18, it is assumed that there is no bathtub water 5 in the bathtub 4, and the flow proceeds to step S9 and the amount of water Q1Water supply control. The amount of water Q1If the water supply control is not, i.e., if the water level in the bathtub 4 is less than the set water level and exceeds the reference water level, or if circulating water by the pump 18 is confirmed, the process proceeds to step S12.
[0046]
In step S9, water quantity Q1Supply water. The water supply flow rate is controlled by the water amount control valve 36.MAXHas been adjusted. For this reason, water supply can be quickly controlled to the reference water level.
[0047]
In step S10, the water amount Q as the control water amount2It is determined whether or not to perform water supply control. Quantity of water Q2Water supply control, that is, water volume Q1If the water level does not exceed the reference water level ± α, it is determined that there is no residual water in the bathtub 4, and the process proceeds to step S11. Further, when the set water level hset is changed and the set water level cannot be reproduced by the control water amount, the process proceeds to step S11. The amount of water Q2When water supply control is not performed, that is, when the reference water level exceeds ± α, the water amount Q1It is determined that the residual water in the bathtub 4 has been added to step S12.
[0048]
In step S11, the amount of water Q2The maximum water supply flow rate QMAXSupply water at, and quickly reach the set water level hset.
[0049]
In step S12, the water level difference hx from the static pressure value detected by the pressure sensor 24 to the set water level is calculated, and the water amount Q2And water level difference h2To calculate the amount of water shortage Qx.
[0050]
Qx = (hset−hx) × Q2/ H2    .... (3)
Maximum water supply flow rate Q according to this shortage water quantity QxMAXBy supplying water at, the water level of the bathtub 4 is controlled to the set water level hset.
[0051]
It should be noted that the initial setting mode may be repeated a plurality of times, an average value of each detected pressure, water level difference, water amount, etc. may be obtained to eliminate the water supply fluctuation error and used as a water level control parameter in the normal water level control mode. Further, the initial setting mode may be repeated until various measurement values are matched a plurality of times. In addition, the initial setting mode may be operated every time the set water level is changed, and the water amount measured for each set water level may be stored and held in the RAM 108 as a data group.
[0052]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
a To maintain accurate detection by the pressure sensor, a switching valve for switching the flow path between the memory circulation path and the water supply path can be eliminated, which contributes to simplification of the configuration. Further, the water supply time by the switching operation can be saved, and the hot water filling can be accelerated accordingly.
b The static pressure value excluding fluctuations in the detected pressure due to the water supply can be obtained by calculation to perform water level control, and the hot water filling control can be performed while avoiding the effect of pressure loss in the additional circulation circuit.
c After the water level control by the pressure sensor, the set water level can be reliably reproduced by shifting to the water level control by the amount of water with a small measurement error, and the water can be supplied at the maximum water supply flow rate. it can.
[Brief description of the drawings]
FIG. 1 is a piping configuration diagram showing a hot water supply / remedy device that is an embodiment of a bathtub water level control device of the present invention.
FIG. 2 is a block diagram illustrating a hot water supply / remembrance control unit of the hot water supply / remembrance device.
FIG. 3 is a diagram showing a hot water supply operation to a bathtub.
FIG. 4 is a diagram illustrating a bath water pursuit operation.
FIG. 5 is a graph showing changes in pressure, water level, and water volume in water level control.
FIG. 6 is a flowchart showing a water level control operation.
[Explanation of symbols]
2 Hot water supply / memorial equipment
4 Bathtub
5 Bath water
10 Circulation connector (circulation port)
12 Return pipe
14 Outward pipe
24 Pressure sensor
36 Water control valve
46 Water supply sensor
100 Control unit (control means)

Claims (1)

浴槽の循環口を通じて前記浴槽に給水する浴槽水位制御装置であって、
前記浴槽の前記循環口から浴槽水を追焚用熱交換器に導き、該追焚用熱交換器を通過した前記浴槽水を前記浴槽の前記循環口から前記浴槽内に戻す管路にポンプを接続し、該ポンプによって前記浴槽水を循環させる追焚循環路と、
給水管に接続されるとともに前記追焚循環路に連結されて給湯用熱交換器が設置され、前記追焚循環路からの前記浴槽水の逆流を阻止する逆止弁が設置され、前記給水管からの上水を前記給湯用熱交換器を経て前記追焚循環路から前記浴槽に流し込む給水管路と、
前記給水管路に設置され、前記浴槽に給水される給水量を計測する水量センサと、
前記追焚循環路に設けられ、前記追焚循環路を通して前記浴槽の水位圧力を受け、前記浴槽内の水位を表す圧力を検出する圧力センサと、
前記給水管路に設置されて給水量を制御する水量制御弁と、
前記給水管路に設置されて給水を制御する給水弁と、
前記給水により前記循環口が水没する水位より僅かに高い水位を基準水位、前記浴槽に設定される水位を表す設定水位、前記循環口を水没させるまでの給水量を第1の水量、前記基準水位から前記浴槽に設定される前記設定水位に到達させるまでの給水量を第2の水量とし、前記基準水位と前記設定水位との水位差を求め、前記基準水位、前記設定水位、前記第1の水量、前記第2の水量、前記水位差を記憶手段に記憶させ、給水開始時の検出圧力が前記基準水位を超えているか否かを判断し、前記検出圧力が前記基準水位を超えていない場合には前記給水弁を開いて前記第1の水量を給水し、前記水量制御弁を制御することにより、前記基準水位から前記第2の水量を供給し、そのときの検出水位及び前記水位差から不足水量を求め、その不足水量を前記給水管路から前記浴槽に給水させ、また、給水開始時の前記検出圧力が前記基準水位を超えている場合には、前記給水弁を開くとともに前記水量制御弁を制御することにより、現在水位から前記設定水位までの不足水量を前記給水管路から前記浴槽に給水させる制御手段と、
を備え、前記制御手段は、
前記圧力センサの検出圧力に基づいて給水を制御する場合には、最大流量より低い所定流量に制限して前記浴槽に給水し、前記第1及び第2の水量に基づいて給水を制御する場合には、最大流量で前記浴槽に給水し、
前記水量制御弁により前記浴槽への給水流量を規制して前記給水流量と給水中の検出圧力により前記浴槽内の静止圧力値を演算し、この静止圧力値を用いて給水を制御することを特徴とする浴槽水位制御装置。
A bathtub water level control device for supplying water to the bathtub through a circulation port of the bathtub,
A pump is connected to a pipe line that guides bathtub water from the circulation port of the bathtub to the heat exchanger for remedy, and returns the bathtub water that has passed through the heat exchanger for remedy from the circulation port of the bathtub to the inside of the bathtub. A memorial circuit for connecting and circulating the bathtub water by the pump;
Connected to the water supply pipe and connected to the additional circulation circuit, a hot water supply heat exchanger is installed, a check valve for preventing a reverse flow of the bathtub water from the additional circulation circuit is installed, and the water supply pipe A water supply pipe for pouring the clean water from the hot water supply heat exchanger into the bathtub from the memorial circuit;
A water amount sensor that is installed in the water supply pipe and measures the amount of water supplied to the bathtub;
A pressure sensor provided in the remedy circuit, receiving a water level pressure of the bathtub through the remedy circuit, and detecting a pressure representing the water level in the bathtub ;
A water amount control valve that is installed in the water supply line and controls the amount of water supply;
A water supply valve installed in the water supply pipe for controlling the water supply;
The water level slightly higher than the water level at which the circulation port is submerged by the water supply, the reference water level, the set water level representing the water level set in the bathtub, the water supply amount until the circulation port is submerged, the first water amount, the reference water level The water supply amount until the set water level set in the bathtub is reached is a second water amount, and a water level difference between the reference water level and the set water level is obtained, and the reference water level, the set water level, the first water level are determined. water, said second amount of water, the stores the water level difference in the storage means, detecting the pressure at the start of the water supply is determined whether it exceeds the reference level, when the detected pressure does not exceed the reference level The water supply valve is opened to supply the first water amount, and the second water amount is supplied from the reference water level by controlling the water amount control valve. From the detected water level and the water level difference at that time Find the amount of water shortage Foot water is water in the tub from the water supply conduit, and when the detected pressure during the water supply start exceeds the reference water level, by controlling the water amount control valve is opened the water supply valve A control means for supplying water from the water supply line to the bathtub from the current water level to the set water level,
The control means comprises
When controlling the water supply based on the pressure detected by the pressure sensor, the water supply is limited to a predetermined flow rate lower than the maximum flow rate, and the water is supplied to the bathtub, and the water supply is controlled based on the first and second water amounts. Supply water to the bathtub at the maximum flow rate,
A water supply flow rate to the bathtub is regulated by the water amount control valve, a static pressure value in the bathtub is calculated from the water supply flow rate and a detected pressure in the water supply, and the water supply is controlled using the static pressure value. Bath water level control device.
JP2000187597A 2000-06-22 2000-06-22 Bathtub water level control device Expired - Lifetime JP3987271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000187597A JP3987271B2 (en) 2000-06-22 2000-06-22 Bathtub water level control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000187597A JP3987271B2 (en) 2000-06-22 2000-06-22 Bathtub water level control device

Publications (2)

Publication Number Publication Date
JP2002005512A JP2002005512A (en) 2002-01-09
JP3987271B2 true JP3987271B2 (en) 2007-10-03

Family

ID=18687549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000187597A Expired - Lifetime JP3987271B2 (en) 2000-06-22 2000-06-22 Bathtub water level control device

Country Status (1)

Country Link
JP (1) JP3987271B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934646B2 (en) * 2008-07-08 2012-05-16 リンナイ株式会社 Hot water filling device
JP6760016B2 (en) * 2016-11-25 2020-09-23 三菱電機株式会社 Hot water heater

Also Published As

Publication number Publication date
JP2002005512A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
JPH0478900B2 (en)
JPH0337111B2 (en)
JP3987271B2 (en) Bathtub water level control device
JPS63259347A (en) Method of controlling hot water filling for automatic bath boiler having water heater
JP3001961B2 (en) Flow rate detection method, flow rate control method, and flow rate detection device for reheating circuit
JP3754502B2 (en) Bath kettle with water heater
JP3784469B2 (en) Bath equipment
JP3738061B2 (en) Method for detecting water level in automatic bath and automatic bath for carrying out the same
JP3808691B2 (en) Bathtub hot water method
JP3859773B2 (en) Bath kettle with water heater
JP3767937B2 (en) Bath kettle with water heater
JP3798046B2 (en) Bath kettle with water heater
KR100294417B1 (en) A dc fan controlling method and an apparatus thereof
JPH06147634A (en) Control method for hot-water filling and hot-water pouring for automatic bath boiler
JP2559309B2 (en) Hot water filling method
JP3748593B2 (en) Bath kettle with water heater
JP3736876B2 (en) Calculation method of remaining water amount and bath pot for implementing the method
JP3810112B2 (en) Automatic hot water filling device and automatic pouring control device thereof
JPH06281242A (en) Method for adjusting temperature of hot water to be fed to bathtub
JPH05141783A (en) Hot-water supplying and bathing device
JP3748598B2 (en) Bathtub with water heater for calculating the remaining water volume
JP3628871B2 (en) Water heater
JP3798048B2 (en) Bathtub with hot water heater that calculates the amount of remaining water
JP2004361073A (en) Hot water storage tank, and hot water supply device
JP3691534B2 (en) Hot water filling pouring control method for bath equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3987271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140720

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term