JP3986900B2 - Manufacturing method of ferrule connection sleeve - Google Patents

Manufacturing method of ferrule connection sleeve Download PDF

Info

Publication number
JP3986900B2
JP3986900B2 JP2002189594A JP2002189594A JP3986900B2 JP 3986900 B2 JP3986900 B2 JP 3986900B2 JP 2002189594 A JP2002189594 A JP 2002189594A JP 2002189594 A JP2002189594 A JP 2002189594A JP 3986900 B2 JP3986900 B2 JP 3986900B2
Authority
JP
Japan
Prior art keywords
copper
sleeve
nickel
core material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002189594A
Other languages
Japanese (ja)
Other versions
JP2004027341A (en
Inventor
瑛二 渡辺
Original Assignee
株式会社 旺電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 旺電舎 filed Critical 株式会社 旺電舎
Priority to JP2002189594A priority Critical patent/JP3986900B2/en
Publication of JP2004027341A publication Critical patent/JP2004027341A/en
Application granted granted Critical
Publication of JP3986900B2 publication Critical patent/JP3986900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はフェルール接続用スリーブの製造方法に関する。
【0002】
【従来の技術】
従来、フェルールおよびフェルール接続用スリーブの材料はジルコニアが主流となっているが、スリーブについてはコスト,生産性,精度など種々の問題改善のため、金属を素材とする多くの加工方法が試みられている。すなわち、金属材料としては、ステンレス,燐青銅,ニッケル等,加工方法としては、塑性加工,旋削加工,電鋳等が行われ、実用分野に進出し始めている。
また、市場に供給されているフェルール外径には、φ1.25mmとφ2.5mmの2種類があり、これらを所定の偏芯限度で接続する要求に対しては、偏芯量の極めて少ない高精度の異径スリーブが必要であり、電鋳法以外の製造方法で目的を達することはできない。
【0003】
スリーブについては上述のように金属材料による種々の製造方法によるものが実用に供され始めているが、フェルールはジルコニア製独占の市場の現状であり、そのフェルールとの組み合わせの適合性が金属製スリーブ普及のネックとなっている。
適合性とは、フェルールとスリーブの圧入篏合におけるジルコニアと金属の摩擦に際して発生する物性的問題である。すなわち、ジルコニアに対して、締付圧力を有するスリーブとの篏合の繰り返しを行うことは、軸と軸受の関係と同様であり、従来から重要視されてきた潤滑性と耐摩粍性が軸受に相当するスリーブ側に存在しなければ、著しく耐久性の低いものとなり実用に適しないことになる。現状、この対策が行われていないため、ステンレス,ニッケル等の金属製スリーブの内壁とジルコニアフェルール表面との間にカジリの現象が発生し、スリーブが削りとられ、微細な粉末状の金属がジルコニアに付着し、その後の円滑な圧入篏合ができなくなる。
【0004】
【発明が解決しようとする課題】
フェルール接続用スリーブに金属材料を使用し、要求される諸機能に関して、耐食性,機械的強度,弾性等については前記の製造方法によって充分対応し得るものの、ジルコニアフェルールとの圧入篏合時に相互の間に発生する軸受条件に類する不適合性が解決されなければ、著しく実用性が損なわれる。
本発明は電鋳法による通常のジルコニアフェルール接続用スリーブ,および異径スリーブの製造に際し、内面にフェルールの材質に対して潤滑性,耐摩粍性に優れた銅メッキ層または銅系合金メッキ層を設けることにより、従来の欠点を解決することを目的とする。
【0005】
【課題を解決するための手段】
前記目的を達成するために本発明によるスリーブの製造には、以下の方法を採用する。
すなわち、ステンレス芯材を用い電鋳法によって良好な内面仕上精度をもつスリーブを製造するには、芯材の表面がそのまま転写されてスリーブの内側となるために寸法精度と仕上面状態の良好な芯材を用意する必要がある。
【0006】
芯材を真直かつ鉛直に保持し、電解銅メッキ浴あるいは銅系合金メッキ浴に浸漬するのに適した治具に取り付け、上下両端の芯材取付部付近をテープで遮敝する。芯材は治具と共に浴中で回転しながら表面に銅メッキ層あるいは銅系合金メッキ層を生成させるが、メッキ厚の一様化と能率向上のため、浴中に複数の正電極を増設することもある。メッキ厚は数十μm以下でフェルール・スリーブ間に発生するカジリ現象を回避できるので、メッキ浴は一般の硫酸銅浴,ピロリン酸塩浴などで目的を達し得るが、ピロリン酸塩浴を用いて7%程度の錫を含む銅−錫の合金(青銅)メッキを行い、青銅のメッキ層を生成すれば、更に良好な結果が得られる。銅メッキ層または青銅メッキ層が所定の厚みに達すれば、治具と共に浴液から引き上げ、純水で洗浄し、スルファミン酸溶液に浸漬した後、スルファミン酸ニッケルメッキ浴に浸漬し、前記メッキ層の上にニッケル電着を行い、フェルール接続用スリーブとしての機械的性質を有する厚み(150〜300μm程度)のニッケル電鋳層を生成する。
【0007】
ニッケル電解槽においても、銅電解槽あるいは銅系合金電解槽同様,電鋳層の厚みの一様化と能率向上のため、治具を浴中で回転し、複数の陽電極を設けることもある。
電鋳層が所定の厚みに達すれば、電解槽より引き上げ、芯材と積層メッキが一体となったものを治具より取り外し、芯材の遮蔽テープを取り除く。外側の積層メッキ部分をバイスで固定し、テープが除かれた芯材の露出部分を工具等で加え、芯材を引き抜けば、内側が良好な寸法精度と仕上面をもつ銅あるいは銅合金,外側はニッケル電鋳層のスリーブを製造することができ、ジルコニアフェルールとニッケルスリーブによる不適合性は銅あるいは銅系合金層がジルコニアに対して潤滑性・耐摩粍性を保ち、所要の機械的性質はニッケル電鋳層により充たすことができる。
【0008】
【作用】
この製造方法によれば、ジルコニアフェルールに接触するスリーブ内側の部分は銅あるいは銅系合金である。フェルールとスリーブの相対関係は、軸と軸受の間に発生する特有の物性的現象と同様で従来理論よりも実験的に対処されてきたことは広く知られている。
一般に硬度の高い軸に軟らかい材質の軸受の組み合わせが定説となっており、ジルコニアにニッケルの組み合わせは、前記のようにフェルール・スリーブの圧入篏合の繰り返し操作に適しない。
軸受性能に優れる材料としては、銅系合金が古くから用いられ、良好な潤滑性・耐摩粍性を示しているが、本発明によるスリーブ内面の銅あるいは銅系合金メッキ層は、ジルコニアフェルールとの摩擦に際し、軸受専用合金同様の潤滑性・耐摩粍性を有し、篏合・着脱の繰り返し操作に対し摩擦部に変化を生ずることなく滑らかに作動し、ニッケルスリーブ内面が直接ジルコニアに接触するものに比べ、耐久性に格段の向上がみられる。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳しく説明する。
図1(a),(b)は、本発明によるスリーブの製造方法により製造したスリーブの一例で、母線方向に間隙を有する一般的形状のスリーブを示す。(a)は母線下部を断面で示した正面図,(b)は側面図である。
完成したスリーブ1の両端部は、面取形状部1a,1bが形成され、間隙部Sの内側エッジ部分にも面取形状部1cが形成されている。これらの面取形状は、電鋳による製造行程中で自然的に生成される特有の現象であるが、フェルールの圧入にあたっては極めて効果的な形状である。
ステンレス芯材としてはベアリング用ニードル級の寸法精度と仕上面の芯材を使用し、スリーブ内周の銅または銅系合金面には芯材表面が転写されるので、図1(a)に示された仕上面が得られる。
【0010】
図2〜図6は本発明によるスリーブの製造方法の実施の形態を示す。
図2は不電導処理を施した芯材の一例を示す。ベアリング用ニードル級に仕上げられたステンレス芯材2の表面に不電導部3a,3bが印刷またはレジスト処理によって形成されている。母線方向には線巾Sの一条の不電導部3aが設けられ、スリーブ1の軸長の間隔毎に円周方向に多数の線状の不電導部3bが形成されて一つの芯材から同時に多数のスリーブを得るよう構成されている。
【0011】
図3は不電導処理を施した前記芯材2を治具に取り付けた後の銅または銅系合金電解浴に浸漬する直前の状態を示す。
樹脂製治具本体4の上下に芯材取付け用の部材5と8を設ける。8は上端にモータ軸とのジョイント部8aを有する金属製回転軸で、7は芯材2をそれぞれ5と8に固定するセットネジであり、6は芯材の電着不要部分と浴中に露出している5,7,8の部分を遮蔽しているテープである。
【0012】
図4(a)は芯材を取り付けた治具を銅メッキ用電解浴に浸漬し銅メッキ層を生成している状態を示す。
9aは電源,10はメッキ浴中の芯材を治具と共に回転させるためのモータであり、着脱容易な機構のモータ軸ジョイント8’と8aを経て回転が伝えられる。11は銅陽電極で図では複数個設けられている。13は銅メッキ用浴液,14は電解槽,12は芯材表面に生成された銅メッキ層である。
【0013】
図4(b)は芯材に銅系合金メッキ層を生成する際の一例を示している。
銅系合金としては、銅−亜鉛合金メッキ(黄銅),銅−錫合金メッキ(青銅)などがあり、それらの方法についても種々行われているが、図は、ピロリン酸塩浴を用い、銅陽極と錫陽極にそれぞれ別個の電源と回路で電流制御を行う方法による銅−錫合金メッキ生成の状態を示したものである。
9aは銅陽極用電源,9bは錫陽極用電源であり,11は銅陽電極,17は錫陽電極である。15はピロリン酸塩浴液,16は電解槽を示す。
【0014】
図5は図4(a),図4(b)によって芯材2の表面に銅メッキ層12または銅系合金メッキ層18が所定の厚さに達した後、その上にニッケル電鋳層を生成している状態を示す。
図4(a)または図4(b)のメッキ完了後、芯材と治具を一体のまま電解槽14または16より引き上げ、純水で洗浄し、一例としてスルファミン酸ニッケル浴によってニッケル電鋳を行う場合は、さらにスルファミン酸溶液に充分に浸漬して、銅または銅系合金メッキとニッケル電鋳との密着を良好にする事前処理が望ましい。9cはニッケル陽電極電源,19はニッケル電鋳用電解槽,20はニッケル電鋳用浴液,21はニッケル陽電極で図4(a),図4(b)同様複数個設けてある。
【0015】
芯材が治具と一体にモータ10によって浴中で回転することは図4(a),図4(b)と全く同様である。22は銅メッキ層12または銅−錫合金メッキ層18の上に積層的に生成されたニッケル電鋳層を示す。
ニッケル電鋳層22が所定の厚さに達すれば、芯材と治具を一体のままニッケル電解槽19より引き上げ、テープ6を剥がし、セットネジ7を緩めて治具より芯材を取り外す。12,22または18,22の積層電着部分をバイスで軸方向に固定し、芯材2を引き抜くことにより、図1に示したスリーブが同時に多数得られる。
【0016】
図6は芯材表面に生成された積層電着の断面形状を示す。
印刷インキまたはレジスト処理によって不電導部3は図6に示すような断面形状,すなわち境界部分は勾配形状となるよう形成される。不導体部3が存在しない部分に電着層12(18),22が形成されるが、不電導部3の端部付近はインキの勾配に沿って一部重なるように電着の生成が進行するため、芯材の表面に対して漸次離れる方向に傾斜をもって形成され、スリーブの両端部と母線方向の間隙の内側の縁部は何れも面取状に形成されフェルールの圧入には極めて適した形状となる。
【0017】
以上の説明では、銅または銅合金の電着層は数十μmの厚さ、ニッケルの電着層は150〜300μm程度の厚さにすることを示しているが、これらの厚さに限定されるものではなく、銅または銅合金の電着層は数十μm以下または以上であっても良い。また、ニッケルの電着層は150〜300μm以下または以上であっても良い。なお、銅または銅合金とニッケルの電着層との厚さの比は10倍程度またはそれ以上にすることが好ましい。
【0018】
【発明の効果】
以上、説明したように本発明は上記の方法・工程によって構成されるので、以下の効果を有する。
(1)フェルール接続用スリーブとして、ステンレス芯材を用いたニッケル電鋳製スリーブは精度,剛性,耐食性等に関しては実用機能を充たしているものの、フェルールとの圧入篏合に際してジルコニアとニッケル相互間の摩擦の相性に問題があり、ジルコニアによってニッケルが削りとられ微細な粉末となってジルコニアフェルール表面に密着し、円滑な相互の圧入篏合ができなくなることが実験的に確かめられている。
本発明によれば、銅または銅系合金メッキ層がジルコニアと接触するが、これらはジルコニアとの摩擦における相性が良好で、優れた潤滑性・耐摩耗性を示し、前記のようなカジリ現象を発生することなく、円滑な圧入篏合と引き抜き力を維持することができ、ニッケル電鋳製スリーブの他の特徴を全く損なうことなく容易な工程によって課題を解決することができる。
【0019】
(2)スリーブの材質が、フェルールとの圧入篏合にあたって生ずる相互の摩擦に適しない場合、完成したスリーブの内側に異種金属層などを設け、または潤滑処理を施すことは、工作上からもフェルールに求められる接続の精度上からも不可能である。
本発明によれば、スリーブ本体となるニッケル電鋳の工程の前に、芯材に潤滑・耐摩耗性などの軸受性能良好な銅または銅系合金メッキが施されるので、芯材の寸法精度・表面仕上がそのままこれらに転写され、要求される諸機能を充たすスリーブを容易に完成することができる。
【0020】
(3)ステンレス芯材を用い、電鋳法によって製造できるフェルール接続用スリーブとしては、芯材と不電導処理法を変更することにより種々の形式のものを製造することができるが、それらの何れについても前記の工程で容易に優れた潤滑油・耐摩耗性を付加することができる。
図7(a),(b)は前記以外の形式の例を示したもので、図7(a)は母線方向の間隙によって、圧入されたフェルールに締付力を与える代わりに、多数の幾何学的パターンの開口部を設け剛性を低下させることによって、スリーブ全体に弾性領域を与えようとするものである。図7(b)は異なる外径を有する2種のフェルールを接続できる異径スリーブを示したものであり、(a),(b)何れも本発明により、内側に銅または銅系合金メッキ層を設けることにより、同様の効果を与えることができる。
【図面の簡単な説明】
【図1】本発明によるスリーブの製造方法により製造したスリーブの一例で、母線方向に間隙を有する一般的形状のスリーブを示し、(a)は母線下部を断面で示した正面図,(b)は側面図である。
【図2】不電導処理を施した芯材の一例を示す斜視図である。
【図3】不電導処理を施した芯材を治具に取り付けた後の銅または銅系合金電解浴に浸漬する直前の状態を示す図である。
【図4】芯材に取り付けた治具を電解浴に浸漬しメッキ層を生成する状態を示す正面断面図で、図4(a)は銅メッキ用電解浴に浸漬し銅メッキ層を生成している状態を示し、図4(b)は銅−錫合金メッキ用ピロリン酸塩浴液に浸漬し銅系合金メッキ層を生成している状態を示している。
【図5】図4によって芯材の裏面に銅または銅系合金メッキ層が所定の厚さに達した後、その上にニッケル電鋳層を生成している状態を示す正面断面図である。
【図6】芯材表面に生成された積層電着の断面形状を示す図である。
【図7】スリーブの形状の実施の形態を示す図で、図7(a)は多数の幾何学的パターンの開口部を設け剛性を低下させることによって、スリーブ全体に弾性領域を与えたものを、図7(b)は異なる外径を有する2種のフェルールを接続できる異径スリーブを示している。
【符号の説明】
1 スリーブ
2 芯材
3a,3b 不電導部
4 芯材電解メッキ用樹脂製治具本体
5 芯材下端取付部
6 遮蔽用テープ
7 芯材セット用ネジ
8 金属製回転軸
8’モータ軸ジョイント
9a 銅陽極陽電源
9b 錫陽極用電源
9c ニッケル陽極用電源
10 モータ
11 銅陽電極
12 銅メッキ層
13 銅メッキ用浴液
14 銅メッキ用電解槽
15 銅−錫合金メッキ用ピロリン酸塩浴液
16 電解槽
17 錫陽電極
18 銅−錫合金メッキ層(銅系合金メッキ層)
19 ニッケル電解槽
20 ニッケル電鋳用浴液
21 ニッケル陽電極
22 ニッケル電鋳層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a ferrule connection sleeve.
[0002]
[Prior art]
Conventionally, zirconia has been the mainstream material for ferrules and ferrule connection sleeves, but many processing methods using metal as a raw material have been tried to improve various problems such as cost, productivity, and accuracy. Yes. That is, stainless steel, phosphor bronze, nickel, etc. are used as metal materials, and plastic working, turning, electroforming, etc. are performed as processing methods, and they are starting to enter the practical field.
In addition, there are two types of ferrule outer diameters that are supplied to the market: φ1.25 mm and φ2.5 mm, and there is an extremely small amount of eccentricity to meet the requirement to connect these with a predetermined eccentricity limit. A precision different diameter sleeve is required, and the purpose cannot be achieved by a manufacturing method other than electroforming.
[0003]
As for the sleeve, as described above, various manufacturing methods using metal materials have begun to be put into practical use. However, ferrules are currently in the zirconia monopoly market, and the suitability of the combination with ferrules is widespread of metal sleeves. Has become a bottleneck.
Conformity is a physical problem that occurs during friction between zirconia and metal in the press-fitting of a ferrule and a sleeve. In other words, repeating the engagement of zirconia with a sleeve having a clamping pressure is the same as the relationship between the shaft and the bearing, and the lubricity and abrasion resistance that have been regarded as important in the past have been added to the bearing. If it does not exist on the corresponding sleeve side, the durability is remarkably low and it is not suitable for practical use. At present, this measure is not taken, so a galling phenomenon occurs between the inner wall of the metal sleeve such as stainless steel or nickel and the surface of the zirconia ferrule, the sleeve is scraped off, and the fine powder metal is zirconia. After that, it becomes impossible to smoothly press fit.
[0004]
[Problems to be solved by the invention]
A metal material is used for the ferrule connection sleeve, and with respect to the required functions, the corrosion resistance, mechanical strength, elasticity, etc. can be adequately accommodated by the above manufacturing method, but between the press fitting with the zirconia ferrule, If the incompatibility similar to the bearing condition generated in the above is not solved, the practicality is remarkably impaired.
In the present invention, when manufacturing a normal zirconia ferrule connecting sleeve and a different diameter sleeve by electroforming, a copper plating layer or a copper alloy plating layer excellent in lubricity and abrasion resistance with respect to the ferrule material is provided on the inner surface. By providing, it aims at solving the conventional fault.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the following method is adopted for manufacturing the sleeve according to the present invention.
That is, in order to manufacture a sleeve having a good inner surface finishing accuracy by electroforming using a stainless steel core material, the surface of the core material is transferred as it is to the inside of the sleeve, so the dimensional accuracy and the finished surface state are good. It is necessary to prepare a core material.
[0006]
Hold the core material straight and vertical, attach it to a jig suitable for dipping in an electrolytic copper plating bath or copper alloy plating bath, and shield the vicinity of the core material mounting portions at the upper and lower ends with tape. While the core material rotates in the bath together with the jig, a copper plating layer or a copper alloy plating layer is formed on the surface. In order to make the plating thickness uniform and improve the efficiency, a plurality of positive electrodes are added in the bath. Sometimes. The plating thickness can be several tens of μm or less, and the galling phenomenon that occurs between ferrules and sleeves can be avoided, so the plating bath can achieve its purpose with a general copper sulfate bath, pyrophosphate bath, etc. If a copper-tin alloy (bronze) plating containing about 7% tin is performed to produce a bronze plating layer, better results can be obtained. When the copper plating layer or the bronze plating layer reaches a predetermined thickness, it is lifted from the bath solution together with the jig, washed with pure water, immersed in a sulfamic acid solution, and then immersed in a nickel sulfamate plating bath. Nickel electrodeposition is performed thereon to produce a nickel electroformed layer having a thickness (about 150 to 300 μm) having mechanical properties as a ferrule connection sleeve.
[0007]
In the nickel electrolytic cell as well as the copper electrolytic cell or copper alloy electrolytic cell, the jig may be rotated in the bath and a plurality of positive electrodes may be provided in order to make the thickness of the electroformed layer uniform and improve the efficiency. .
When the electroformed layer reaches a predetermined thickness, it is lifted from the electrolytic cell, the core material and the laminated plating are integrally removed from the jig, and the core material shielding tape is removed. Copper or copper alloy with good dimensional accuracy and finish on the inside, if the outer laminated plating part is fixed with a vise, the exposed part of the core material with the tape removed is added with a tool etc., and the core material is pulled out On the outside, a nickel electroformed layer sleeve can be manufactured. The incompatibility between the zirconia ferrule and the nickel sleeve is that the copper or copper alloy layer maintains lubricity and abrasion resistance against zirconia, and the required mechanical properties are It can be filled with a nickel electroformed layer.
[0008]
[Action]
According to this manufacturing method, the portion inside the sleeve that contacts the zirconia ferrule is copper or a copper-based alloy. It is widely known that the relative relationship between the ferrule and the sleeve has been dealt with experimentally rather than the conventional theory as well as a specific physical phenomenon occurring between the shaft and the bearing.
In general, a combination of a soft bearing and a shaft made of a soft material has been established, and a combination of zirconia and nickel is not suitable for repeated operations of press-fitting of a ferrule and a sleeve as described above.
As a material having excellent bearing performance, a copper-based alloy has been used for a long time, and has shown good lubricity and abrasion resistance. However, the copper or copper-based alloy plating layer on the inner surface of the sleeve according to the present invention can be used together with a zirconia ferrule. It has the same lubricity and abrasion resistance as the bearing alloy when it is rubbed. It operates smoothly without causing any change in the frictional part due to repeated operations of mating and detaching, and the inner surface of the nickel sleeve is in direct contact with zirconia. Compared with, there is a marked improvement in durability.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIGS. 1A and 1B show an example of a sleeve manufactured by the method for manufacturing a sleeve according to the present invention, and shows a generally-shaped sleeve having a gap in the generatrix direction. (A) is the front view which showed the bus-bar lower part in the cross section, (b) is a side view.
Chamfered shape portions 1a and 1b are formed at both ends of the completed sleeve 1, and a chamfered shape portion 1c is also formed at the inner edge portion of the gap S. These chamfered shapes are peculiar phenomena that are naturally generated during the manufacturing process by electroforming, but are extremely effective shapes for press-fitting ferrules.
As the stainless steel core material, the dimensional accuracy of the bearing needle class and the core material of the finished surface are used, and the core material surface is transferred to the copper or copper alloy surface of the inner periphery of the sleeve. The finished surface is obtained.
[0010]
2 to 6 show an embodiment of a method for manufacturing a sleeve according to the present invention.
FIG. 2 shows an example of a core material that has been subjected to non-conductive treatment. Nonconductive portions 3a and 3b are formed on the surface of the stainless steel core 2 finished to the bearing needle class by printing or resist processing. A single non-conductive portion 3a of the line width S is provided in the busbar direction, and a large number of linear non-conductive portions 3b are formed in the circumferential direction at intervals of the axial length of the sleeve 1 so as to be simultaneously formed from one core material. It is configured to obtain a large number of sleeves.
[0011]
FIG. 3 shows a state immediately before the core material 2 subjected to the nonconductive treatment is immersed in a copper or copper alloy electrolytic bath after being attached to a jig.
Members 5 and 8 for attaching the core material are provided above and below the resin jig body 4. 8 is a metal rotary shaft having a joint portion 8a with the motor shaft at the upper end, 7 is a set screw for fixing the core material 2 to 5 and 8, respectively, and 6 is a portion of the core material that is not required for electrodeposition and in the bath It is a tape that shields the exposed portions of 5, 7, and 8.
[0012]
FIG. 4A shows a state in which a jig with a core member is immersed in an electrolytic bath for copper plating to form a copper plating layer.
Reference numeral 9a denotes a power source, and reference numeral 10 denotes a motor for rotating the core material in the plating bath together with the jig, and the rotation is transmitted through the motor shaft joints 8 'and 8a of an easily detachable mechanism. Reference numeral 11 denotes a copper positive electrode. 13 is a bath solution for copper plating, 14 is an electrolytic cell, and 12 is a copper plating layer formed on the surface of the core material.
[0013]
FIG.4 (b) has shown an example at the time of producing | generating a copper type alloy plating layer in a core material.
Copper-based alloys include copper-zinc alloy plating (brass), copper-tin alloy plating (bronze), etc., and various methods have been carried out, but the figure uses a pyrophosphate bath and copper The state of copper-tin alloy plating production | generation by the method of performing electric current control with a separate power supply and circuit to an anode and a tin anode, respectively is shown.
9a is a copper anode power source, 9b is a tin anode power source, 11 is a copper positive electrode, and 17 is a tin positive electrode. 15 indicates a pyrophosphate bath solution, and 16 indicates an electrolytic cell.
[0014]
5 (a) and 4 (b), after the copper plating layer 12 or the copper alloy plating layer 18 reaches a predetermined thickness on the surface of the core material 2, a nickel electroformed layer is formed thereon. Indicates the state of generation.
4 (a) or 4 (b), after the completion of the plating of FIG. 4 (a) or FIG. 4 (b), the core material and the jig are pulled up from the electrolytic cell 14 or 16 while being integrated, washed with pure water, and as an example, nickel electroforming is performed using a nickel sulfamate bath. In the case of performing, it is desirable to perform pretreatment that sufficiently immerses in a sulfamic acid solution to improve the adhesion between the copper or copper alloy plating and the nickel electroforming. 9c is a nickel positive electrode power source, 19 is a nickel electroforming electrolytic bath, 20 is a nickel electroforming bath solution, and 21 is a nickel positive electrode, a plurality of which are provided as in FIGS. 4 (a) and 4 (b).
[0015]
The core material is rotated integrally with the jig in the bath by the motor 10 as in FIGS. 4A and 4B. Reference numeral 22 denotes a nickel electroformed layer formed on the copper plating layer 12 or the copper-tin alloy plating layer 18 in a laminated manner.
When the nickel electroformed layer 22 reaches a predetermined thickness, the core material and the jig are pulled up from the nickel electrolytic cell 19 while being integrated, the tape 6 is peeled off, the set screw 7 is loosened, and the core material is removed from the jig. A plurality of sleeves shown in FIG. 1 can be obtained at the same time by fixing the laminated electrodeposition portions 12, 22 or 18, 22 in the axial direction with a vise and pulling out the core material 2.
[0016]
FIG. 6 shows a cross-sectional shape of the laminated electrodeposition generated on the surface of the core material.
The non-conductive portion 3 is formed by printing ink or resist processing so as to have a cross-sectional shape as shown in FIG. Electrodeposition layers 12 (18) and 22 are formed in the portion where the non-conductive portion 3 does not exist, but the generation of electrodeposition proceeds so that the vicinity of the end portion of the non-conductive portion 3 partially overlaps along the ink gradient. Therefore, it is formed with an inclination in a direction that gradually separates from the surface of the core material, and both ends of the sleeve and the inner edge of the gap in the generatrix direction are both chamfered, which is extremely suitable for press-fitting of a ferrule. It becomes a shape.
[0017]
The above description shows that the electrodeposited layer of copper or copper alloy has a thickness of several tens of μm, and the electrodeposited layer of nickel has a thickness of about 150 to 300 μm. However, the thickness is limited to these thicknesses. However, the electrodeposition layer of copper or copper alloy may be several tens of μm or less. Further, the nickel electrodeposition layer may be 150 to 300 μm or less. The thickness ratio between the copper or copper alloy and the nickel electrodeposition layer is preferably about 10 times or more.
[0018]
【The invention's effect】
As described above, the present invention is constituted by the above-described methods and processes, and thus has the following effects.
(1) As a ferrule connection sleeve, a nickel electroformed sleeve using a stainless steel core has practical functions in terms of accuracy, rigidity, corrosion resistance, etc. It has been experimentally confirmed that there is a problem in the compatibility of friction, and nickel is scraped off by zirconia to form a fine powder and closely adhere to the surface of the zirconia ferrule, making it impossible to achieve smooth press-fitting.
According to the present invention, the copper or copper alloy plating layer is in contact with zirconia, but these have good compatibility with friction with zirconia, exhibit excellent lubricity and wear resistance, and cause the galling phenomenon as described above. It is possible to maintain a smooth press-fitting and pull-out force without occurrence, and to solve the problem by an easy process without impairing other features of the nickel electroformed sleeve.
[0019]
(2) If the material of the sleeve is not suitable for the mutual friction that occurs during press-fitting with the ferrule, it is also possible to provide a dissimilar metal layer or the like on the inside of the completed sleeve or to apply a lubrication treatment from the work as well. This is also impossible from the viewpoint of the accuracy of connection required.
According to the present invention, before the nickel electroforming process for forming the sleeve body, the core material is subjected to copper or copper alloy plating with good bearing performance such as lubrication and wear resistance. -The surface finish is transferred to these as they are, and a sleeve that fulfills the required functions can be easily completed.
[0020]
(3) As a ferrule connection sleeve that can be manufactured by an electroforming method using a stainless steel core material, various types of sleeves can be manufactured by changing the core material and the non-conductive treatment method. Also, excellent lubricating oil and wear resistance can be easily added in the above process.
FIGS. 7 (a) and 7 (b) show examples of types other than those described above. FIG. 7 (a) shows a number of geometric shapes instead of applying a clamping force to the press-fitted ferrule by a gap in the busbar direction. By providing an opening of a geometric pattern and reducing the rigidity, an elastic region is given to the entire sleeve. FIG. 7 (b) shows a sleeve of different diameters that can connect two types of ferrules having different outer diameters. Both (a) and (b) are provided with a copper or copper alloy plating layer on the inside according to the present invention. The same effect can be given by providing.
[Brief description of the drawings]
FIG. 1 is an example of a sleeve manufactured by a method for manufacturing a sleeve according to the present invention, and shows a sleeve having a general shape having a gap in the direction of the busbar, (a) is a front view showing a cross section of the lower portion of the busbar; Is a side view.
FIG. 2 is a perspective view showing an example of a core material that has been subjected to non-conducting treatment.
FIG. 3 is a view showing a state immediately before dipping in a copper or copper-based alloy electrolytic bath after a core material subjected to a non-conductive treatment is attached to a jig.
FIG. 4 is a front cross-sectional view showing a state in which a jig attached to a core material is immersed in an electrolytic bath to form a plating layer, and FIG. 4 (a) is immersed in an electrolytic bath for copper plating to generate a copper plating layer. FIG. 4B shows a state in which a copper-based alloy plating layer is formed by dipping in a pyrophosphate bath solution for copper-tin alloy plating.
5 is a front sectional view showing a state in which a nickel electroformed layer is formed on a copper or copper alloy plating layer on the back surface of the core material after reaching a predetermined thickness in FIG.
FIG. 6 is a diagram showing a cross-sectional shape of laminated electrodeposition generated on the surface of a core material.
FIG. 7 is a diagram showing an embodiment of the shape of a sleeve, and FIG. 7 (a) shows an example in which an elastic region is given to the entire sleeve by providing openings of a large number of geometric patterns to reduce rigidity. FIG. 7B shows a different diameter sleeve that can connect two types of ferrules having different outer diameters.
[Explanation of symbols]
1 Sleeve 2 Core material
3a, 3b Non-conducting part 4 Resin jig main body for core material electroplating 5 Core material lower end mounting part 6 Shielding tape 7 Core material set screw 8 Metal rotating shaft 8 'Motor shaft joint 9a Copper anode positive power source 9b Tin Anode power supply 9c Nickel anode power supply 10 Motor 11 Copper positive electrode 12 Copper plating layer 13 Copper plating bath 14 Copper plating electrolytic bath 15 Copper-tin alloy plating pyrophosphate bath 16 Electrolytic bath 17 Tin positive electrode 18 Copper-tin alloy plating layer (copper alloy plating layer)
19 Nickel electrolyzer 20 Nickel electroforming bath liquid 21 Nickel anode 22 Nickel electroformed layer

Claims (2)

ステンレス線、またはステンレス棒を芯材とし、その表面に金属被膜を電着生成し、形成された電鋳層から芯材を引き抜き、電鋳層を肉厚とする薄肉パイプをフェルール接続用スリーブとして使用するスリーブの製造方法において、
前記ステンレス線、またはステンレス棒に第1層として銅または銅合金を電着し、第2層としてニッケルを電着して積層メッキを構成し、
スリーブに要求される潤滑性,耐磨耗性に対し銅または銅合金およびニッケルの特性が分担的に対応し得ることを特徴とするフェルール接続用スリーブの製造方法。
A stainless steel wire or stainless steel rod is used as the core, a metal coating is electrodeposited on the surface, the core is drawn from the formed electroformed layer, and a thin pipe with a thick electroformed layer is used as a ferrule connection sleeve. In the manufacturing method of the sleeve to be used,
The stainless steel wire, or electrodeposited copper or a copper alloy as a first layer on the stainless steel rod, and electrodeposited nickel constitutes the product layer plating as the second layer,
A method for manufacturing a ferrule connecting sleeve, characterized in that the characteristics of copper or copper alloy and nickel can be shared with respect to the lubricity and wear resistance required of the sleeve.
前記ニッケルの電着層は150〜300μmの厚さであることを特徴とする請求項1記載のフェルール接続用スリーブの製造方法。 2. The method for manufacturing a ferrule connecting sleeve according to claim 1, wherein the nickel electrodeposition layer has a thickness of 150 to 300 [ mu] m.
JP2002189594A 2002-06-28 2002-06-28 Manufacturing method of ferrule connection sleeve Expired - Lifetime JP3986900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189594A JP3986900B2 (en) 2002-06-28 2002-06-28 Manufacturing method of ferrule connection sleeve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189594A JP3986900B2 (en) 2002-06-28 2002-06-28 Manufacturing method of ferrule connection sleeve

Publications (2)

Publication Number Publication Date
JP2004027341A JP2004027341A (en) 2004-01-29
JP3986900B2 true JP3986900B2 (en) 2007-10-03

Family

ID=31183964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189594A Expired - Lifetime JP3986900B2 (en) 2002-06-28 2002-06-28 Manufacturing method of ferrule connection sleeve

Country Status (1)

Country Link
JP (1) JP3986900B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662442B2 (en) * 2005-02-04 2011-03-30 株式会社リコー Cantilever shaft holding device, gear support device, drive transmission device, and image forming apparatus
JP4832799B2 (en) * 2005-05-19 2011-12-07 Ntn株式会社 Motion transmission device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004027341A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
US2592614A (en) Method of making tubular metallic wave guides
JP3986900B2 (en) Manufacturing method of ferrule connection sleeve
JPS5824507B2 (en) Improved drum equipment for producing electrodeposited copper foil
CN104862766A (en) Electroplating barrel
JP3779145B2 (en) Manufacturing method of high-precision sleeve having gap in bus-line direction
JP4332319B2 (en) Method of coating a workpiece with bearing metal and workpiece processed by this method
US4061430A (en) Socket structure for the ball of a ball point pen refill
US4139424A (en) Socket structure for the ball of a ball point pen refill
GB2085620A (en) Timepiece hand and method of manufacture
JP3861011B2 (en) Electrode machining electrode, electrolytic machining method using the same, and electrolytic machining electrode manufacturing method
KR200228349Y1 (en) Embossing Roller by Electroforming of Nickel
KR100966532B1 (en) Conductor roller and manufacturing process thereof
KR100325781B1 (en) Conductor roll without collector ring
JP2003340648A (en) Electrochemical machining electrode and dynamic pressure bearing manufactured using the electrode
JP2006342912A (en) Bearing device
KR20020065994A (en) Method for Manufacturing Embossing Roller by Electroforming of Nickel and Embossing Roller
JP5294101B1 (en) Laval nozzle electroforming method and electroformed laval nozzle
CN214088723U (en) Suspension device for improving coating uniformity of metal pipe
JP2001091790A (en) Method for manufacturing multiple ferrule and multiple ferrule
JP2003201591A (en) Electro-deposition drum, and manufacturing method thereof
TW201018753A (en) Processing electrode for electrochemical process, manufacturing method and manufacturing equipment thereof
JP2002080991A (en) Method of manufacturing thin hole tube
EP0063925A1 (en) Electro-plating process and products therefrom
JP2003098382A (en) Method for manufacturing sleeve for ferrule connection having flexible area
CN104846420A (en) Electroplating roller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Ref document number: 3986900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term