JP3986740B2 - Intake passage structure - Google Patents

Intake passage structure Download PDF

Info

Publication number
JP3986740B2
JP3986740B2 JP2000280146A JP2000280146A JP3986740B2 JP 3986740 B2 JP3986740 B2 JP 3986740B2 JP 2000280146 A JP2000280146 A JP 2000280146A JP 2000280146 A JP2000280146 A JP 2000280146A JP 3986740 B2 JP3986740 B2 JP 3986740B2
Authority
JP
Japan
Prior art keywords
welding
passage
along
joining
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000280146A
Other languages
Japanese (ja)
Other versions
JP2002089387A (en
Inventor
修二 尾形
禧好 穐谷
聡彦 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2000280146A priority Critical patent/JP3986740B2/en
Publication of JP2002089387A publication Critical patent/JP2002089387A/en
Application granted granted Critical
Publication of JP3986740B2 publication Critical patent/JP3986740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、熱可塑性合成樹脂によりそれぞれ形成される複数の通路構成部品を含むとともに、相互に隣接して対をなす通路構成部品の全周には、ループ状の接合ラインに沿うようにして相互に対向する接合鍔が一体に形成され、相互に対向する接合鍔の一方に突設された突条ならびに相互に対向する接合鍔の他方に突設された溶着突部が相互に振動溶着される吸気通路構造体の改良に関する。
【0002】
【従来の技術】
従来、かかる吸気通路構造体は、たとえば特開平11−31157号公報等により既に知られている。
【0003】
【発明が解決しようとする課題】
ところで、相互に隣接する通路構成部品を相互に振動溶着する際には、一対の通路構成部品を金型で個別に保持し、一方の金型を静止状態に保持するとともに他方の金型を、前記一方の金型側に押圧しつつ振動させるのであるが、振動溶着装置を構成する部品の位置ずれ等に起因して、相互に対をなす通路構成部品に溶着ずれが生じる可能性があり、そのような溶着ずれを放置しておくと、通路構成部品の内面に段差が生じ、吸気効率低下の原因ともなる。そこで、内面側の溶着ずれを管理しておく必要があるが、従来のものでは、そのような溶着ずれ管理に対応した構造はとられておらず、振動溶着完了後の吸気通路構造体を切断して内面に段差が生じているかどうか確認するしかなく、吸気通路構造体の全数について溶着ずれを管理することは不可能であった。
【0004】
本発明は、かかる事情に鑑みてなされたものであり、吸気通路構造体を構成する通路構成部品同士の内面の溶着ずれを容易に管理し得るようにした吸気通路構造体を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明は、熱可塑性合成樹脂によりそれぞれ形成される複数の通路構成部品を含むとともに、相互に隣接して対をなす通路構成部品の全周には、ループ状の接合ラインに沿うようにして相互に対向する接合鍔が一体に形成され、相互に対向する接合鍔の一方に突設された突条ならびに相互に対向する接合鍔の他方に突設された溶着突部が相互に振動溶着される吸気通路構造体において、前記振動溶着の完了後において前記対をなす通路構成部品相互の溶着ずれに因り該対をなす通路構成部品の内面相互に段差が生じているか否かを外側から確認可能とするために、相互に対をなす前記接合鍔の外周の前記接合ラインを挟んで相互に対応する位置には、振動溶着時の振幅方向に沿う外方に前記接合鍔から突出し且つ外端面を平坦面とした第1溶着ずれ管理座がそれぞれ設けられるとともに、振動溶着時の前記振幅方向および加圧方向と直交する方向に沿う外方に前記接合鍔から突出し且つ外端面を平坦面とした第2溶着ずれ管理座がそれぞれ設けられることを特徴とする。
【0006】
このような構成の吸気通路構造体によれば、相互に隣接して対をなす通路構成部品において、接合ラインを挟んで相互に対応した位置には、振動溶着時の振幅方向に沿う外方に接合鍔から突出した第1溶着ずれ管理座がそれぞれ設けられるとともに、振幅方向および加圧方向と直交する方向に沿う外方に接合鍔から突出した第2溶着ずれ管理座がそれぞれ設けられている。このため、振動溶着時の振幅方向に沿う溶着ずれが生じたときには接合ラインを挟んで相互に対応する第1溶着ずれ管理座の平坦な外端面が前記振幅方向に沿ってずれることになり、また振幅方向および加圧方向と直交する方向に沿う溶着ずれが生じたときには接合ラインを挟んで相互に対応する第2溶着ずれ管理座の平坦な外端面が前記振幅方向および加圧方向と直交する方向に沿ってずれることになる。したがって振動溶着完了後に、第1溶着ずれ管理座の外端面相互のずれ、ならびに第2溶着ずれ管理座の外端面相互のずれを管理することで、通路構成部品の内面相互に段差が生じているか否かを外側から確認することができ、吸気通路構造体を構成する通路構成部品同士の内面の溶着ずれを容易に管理することができる。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を、添付の図面に示した本発明の一実施例に基づいて説明する。
【0008】
図1〜図6は本発明の一実施例を示すものであり、図1は吸気通路構造体およびスロットルボディの斜視図、図2は吸気通路構造体の側面図、図3は図2の3矢視図、図4は図2の4矢視図、図5は図2の5−5線拡大断面図、図6は図4の6−6線断面図である。
【0009】
先ず図1において、スロットルボディ11が、サージタンク12と、図示しない4気筒のエンジンおよびサージタンク12間を結ぶ吸気マニホールド13とを一体に有する吸気通路構造体14に取付けられており、吸気通路構造体14は、熱可塑性合成樹脂から成る第1、第2および第3通路構成部品15,16,17が相互に振動溶着されることで構成される。
【0010】
スロットルボディ11は、上下に延びる円筒状にして第1通路構成部品15の上面中央部に結合されるものであり、流通空気量を制御するバタフライ形のスロットル弁(図示せず)が、スロットルボディ11に回動可能に支承される弁軸18に固着され、該弁軸18のスロットルボディ11からの突出端部にスロットルドラム19が取付けられる。
【0011】
図2〜図4を併せて参照して、第1通路構成部品15の中央部にはスロットルボディ11を結合するための接続筒部15aが一体に設けられており、サージタンク12は、第1、第2および第3通路構成部品15,16,17により前記接続筒部15aに連なる吸気室(図示せず)が形成されて成るものである。
【0012】
吸気マニホールド13は、前記スロットルボディ11および接続筒部15aの両側にたとえば一対ずつ配置されるようにして水平方向に並列配置されるとともに一端がサージタンク12に共通に接続される複数たとえば4つの分岐管21A,21B,21C,21Dの他端が、エンジンに取付けるためのエンジン取付け用フランジ22に共通にかつ一体に連設されて成るものである。
【0013】
分岐管21Aは、サージタンク12に一端が連設されて上方に立上がる第1直管部23と、鉛直面内でほぼ90度の範囲で彎曲するとともに第1直管部23の他端に一端が連設される彎曲管部24と、彎曲管部24の他端に一端が連設されてほぼ水平に延びる第2直管部25とから成るものであり、他の分岐管21B,21C,21Dも前記分岐管21Aと同一の基本構成を有する。
【0014】
スロットルボディ11から吸気通路構造体14内に導入された空気は、図2の破線矢印で示すように、サージタンク12内を下方に流通した後に上方に反転して各分岐管21A〜21Dに分かれて導かれる。また各分岐管21A〜21Dに導入された空気は、上方に流通した後に、略90度流通方向を変えてエンジン側に向けてほぼ水平に流通することになる。
【0015】
エンジン取付け用フランジ22には、各分岐管21A〜21Dをエンジンの各吸気ポート(図示せず)に連通させる通路孔27A,27B,27C,27Dが各分岐管21A〜21Dに個別に対応して設けられる。また図1で示すように、エンジン取付け用フランジ22にはエンジンの各吸気ポートに燃料を供給するための燃料噴射弁28,28…が取付けられ、各燃料噴射弁28,28…には燃料レール29が共通に接続されるのであるが、エンジン取付け用フランジ22の上部には、各燃料噴射弁28,28…を取付けるための取付け部30…ならびに前記燃料レール29を取付けるための取付け部31…(図2参照)が一体に設けられる。
【0016】
このような吸気マニホールド13は、第1および第2通路構成部品15,16を、ループ状に連なる接合ライン32で相互に振動溶着することにより構成されるものであり、第1通路構成部品15は、エンジン取付け用フランジ22を一体に備えるとともに各分岐管21A〜21Dおよびサージタンク12の上部の一部を構成するように形成され、第2通路構成部品16は、各分岐管21A〜21Dの下部ならびにサージタンク12の主要部を構成するように形成される。
【0017】
図5および図6を併せて参照して、第1通路構成部品15の下端全周には接合ライン32に沿う接合鍔33が一体に形成されており、この接合鍔33の幅方向中央部には、先端面を平坦な接合面34aとした突条34が第2通路構成部品16側に突出するようにして一体に設けられる。
【0018】
一方、第2通路構成部品16の上端全周には、第1通路構成部品15の接合鍔33に対向する接合鍔35が一体に形成されており、この接合鍔35の幅方向中央部には前記突条34の接合面34aに対応した溶着突部36が第1通路構成部品15側に突出するようにして一体に設けられ、この溶着突部35の幅は前記突条34よりも狭く設定される。また第2通路構成部品16の接合鍔35の全周には、前記溶着突部36を内、外から挟むようにして第1通路構成部品15側に突出する規制壁37,38が一体に設けられる。
【0019】
第1および第2通路構成部品15,16を相互に溶着するときには、第1および第2通路構成部品15,16を相互に加圧すべくたとえば第1通路構成部品15を第2通路構成部品16側に向けて加圧方向39に沿って加圧することにより、溶着突部36の先端を突条34の接合面34aに圧接した状態で、第1および第2通路構成部品15,16の一方、この実施例では第1通路構成部品15を高速振動せしめる。これにより、溶着突部36の先端および接合面34a間に生じる摩擦熱により溶着突部36の先端が、図5および図6で示すように、突条34に振動溶着されることになり、第1および第2通路構成部品15,16の全周がループ状に連なる接合ライン32に沿って接合される。
【0020】
而して第2通路構成部品16の両規制壁37,38は、その先端を第1通路構成部品15の接合鍔33に近接、対向する位置まで両通路構成部品15,16の溶着、接合が進んだ状態で振動溶着処理を停止するための目安としての機能を果すとともに、溶着突部36の先端が接合面34aに振動溶着されることで生じるばりが、第1および第2通路構成部品15,16の内、外すなわち吸気マニホールド13の内、外にはみ出すのを阻止する機能を果す。
【0021】
ところで、第1および第2通路構成部品15,16の振動溶着時に、第1通路構成部品15は、図2の紙面に垂直な方向すなわち各分岐管21A〜21Dの配列方向に高速振動するものであり、第1および第2通路構成部品15,16において振動溶着時の振幅方向40に沿う両端部すなわち各分岐管21A〜21Dの配列方向に沿う両端部には、エンジン取付け用フランジ22寄りの位置で接合ライン32を挟んで相互に対応する第1溶着ずれ管理座41,42;41,42がそれぞれ一体に設けられる。これらの第1溶着ずれ管理座41,42は、第1および第2通路構成部品15,16が備える接合鍔33,35の外周から振動溶着時の振幅方向40に沿う外方に突出するとともに外端面を平坦面とするようにして形成される。しかも第1溶着ずれ管理座41,42の接合鍔33,35からの突出量は、それらの溶着ずれ管理座41,42に対応する部分で各分岐管21A〜21Dの内面に段差が生じていないときに、両溶着ずれ管理座41,42の外端面に前記振幅方向40に沿うずれが生じることがないように設定される。
【0022】
また振動溶着時の振幅方向40および加圧方向39と直交する方向43での吸気通路気構成体14の両端部で第1および第2通路構成部品15,16には、分岐管21A,21B間ならびに分岐管21C,21D間で接合ライン32を挟んで相互に対応する第2溶着ずれ管理座44,45;44,45…がそれぞれ一体に設けられる。これらの第2溶着ずれ管理座44,45は、振動溶着時の振幅方向40および加圧方向39と直交する方向43で、両通路構成部品15,16の接合鍔33,35の外周から外方に突出するとともに外端面を平坦面とするようにして形成される。しかも第2溶着ずれ管理座44,45の接合鍔33,35からの突出量は、それらの溶着ずれ管理座44,45に対応する部分で各分岐管21A〜21Dの内面に段差が生じていないときに、両溶着ずれ管理座44,45の外端面に前記方向43に沿うずれが生じることがないように設定される。
【0023】
第2および第3通路構成部品16,17は、ループ状に連なる接合ライン46で相互に振動溶着されるものであり、第2通路構成部品16の下端全周には接合ライン46に沿う接合鍔47が一体に形成され、また第3通路構成部品17の上端全周には、前記接合鍔47に対向する接合鍔48が一体に形成される。
【0024】
而して第2および第3通路構成部品16,17の相互に対応する接合鍔46,47は、第1および第2通路構成部品15,16の振動溶着構造と同様の構造で振動溶着されるものであり、第2および第3通路構成部品16,17において振動溶着時の振幅方向40に沿う両端部すなわち各分岐管21A〜21Dの配列方向に沿う両端部には、接合ライン46を挟んで相互に対応する第1溶着ずれ管理座49,50;49,50がそれぞれ一体に設けられる。これらの第1溶着ずれ管理座49,50は、第2および第3通路構成部品16,17が備える接合鍔47,48の外周から振動溶着時の振幅方向40に沿う外方に突出するとともに外端面を平坦面とするようにして形成される。しかも第1溶着ずれ管理座49,50の接合鍔47,48からの突出量は、それらの溶着ずれ管理座49,50に対応する部分で各分岐管21A〜21Dの内面に段差が生じていないときに、両溶着ずれ管理座49,50の外端面に前記振幅方向40に沿うずれが生じることがないように設定される。
【0025】
また振動溶着時の振幅方向40および加圧方向39と直交する方向43での吸気通路気構成体14の両端部の第2および第3通路構成部品16,17には、分岐管21A,21B間ならびに分岐管21C,21D間で接合ライン46を挟んで相互に対応する第2溶着ずれ管理座51,52;51,52…がそれぞれ一体に設けられる。これらの第2溶着ずれ管理座51,52は、振動溶着時の振幅方向40および加圧方向39と直交する方向43で、両通路構成部品16,17の接合鍔47,48の外周から外方に突出するとともに外端面を平坦面とするようにして形成される。しかも第2溶着ずれ管理座51,52の接合鍔47,48からの突出量は、それらの溶着ずれ管理座51,52に対応する部分で各分岐管21A〜21Dの内面に段差が生じていないときに、両溶着ずれ管理座51,52の外端面に前記方向43に沿うずれが生じることがないように設定される。
【0026】
次にこの実施例の作用について説明すると、相互に隣接する第1および第2通路構成部品15,16は、ループ状に連なる接合ライン32で相互に振動溶着されることで、吸気通路構造体14の一部を構成するのであるが、振動溶着時の振幅方向40に沿って第1および第2通路構成部品15,16の外周から突出して外端面を平坦面とした第1溶着ずれ管理座41,42…が、接合ライン32を挟んで相互に対応する位置で第1および第2通路構成部品15,16にそれぞれ設けられるとともに、振動溶着時の前記振幅方向40および加圧方向39と直交する方向43に沿って第1および第2通路構成部品15,16の外周から突出するとともに外端面を平坦面とした第2溶着ずれ管理座44,45…が、前記接合ライン32を挟んで相互に対応する位置で第1および第2通路構成部品15,16にそれぞれ設けられている。
【0027】
このような第1溶着ずれ管理座41,42…および第2溶着ずれ管理座44,45…が第1および第2通路構成部品15,16にそれぞれ設けられることにより、第1および第2通路構成部品15,16を相互に振動溶着せしめるときに、その振動溶着時の振幅方向40に沿う溶着ずれが第1および第2通路構成部品15,16間に生じたときには、接合ライン32を挟んで相互に対応する第1溶着ずれ管理座41,42…の平坦な外端面が前記振幅方向に沿ってδ1(図5参照)だけずれることになり、また振幅方向40および加圧方向39と直交する方向43に沿って第1および第2通路構成部品15,16の溶着ずれが生じたときには、接合ライン32を挟んで相互に対応する第2溶着ずれ管理座44,45の平坦な外端面が前記方向43に沿ってδ2(図6参照)だけずれることになる。
【0028】
したがって第1および第2通路構成部品15,16の振動溶着完了後に、第1溶着ずれ管理座41,42…の外端面相互のずれ、ならびに第2溶着ずれ管理座44,45…の外端面相互のずれを、目視、ノギスもしくは専用検査治具を用いた計測等で管理することで、第1および第2通路構成部品15,16の内面相互に段差が生じているか否かを確認することができ、吸気通路構造体14の一部を構成する第1および第2通路構成部品15,16同士の内面の溶着ずれを容易に管理することができる。
【0029】
また相互に隣接する第2および第3通路構成部品16,17は、ループ状に連なる接合ライン46で相互に振動溶着されることで、吸気通路構造体14の一部を構成するのであるが、振動溶着時の振幅方向40に沿って第2および第3通路構成部品16,17の外周から突出して外端面を平坦面とした第1溶着ずれ管理座49,50…が、接合ライン46を挟んで相互に対応する位置で第2および第3通路構成部品16,17にそれぞれ設けられるとともに、振動溶着時の前記振幅方向40および加圧方向39と直交する方向43に沿って第2および第3通路構成部品16,17の外周から突出するとともに外端面を平坦面とした第2溶着ずれ管理座51,52…が、前記接合ライン46を挟んで相互に対応する位置で第2および第3通路構成部品16,17にそれぞれ設けられている。
【0030】
したがって第1および第2通路構成部品15,16同士の内面の溶着ずれと同様に、第2および第3通路構成部品16,17の振動溶着完了後に、第1溶着ずれ管理座49,50…の外端面相互のずれ、ならびに第2溶着ずれ管理座51,52…の外端面相互のずれを、目視、ノギスもしくは専用検査治具を用いた計測等で管理することで、第2および第3通路構成部品16,17の内面相互に段差が生じているか否かを確認することができ、吸気通路構造体14の一部を構成する第2および第3通路構成部品16,17同士の内面の溶着ずれを容易に管理することができ、吸気通路構造体14全体としての内面の溶着ずれの管理を容易とすることができる。
【0031】
以上、本発明の実施例を説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行うことが可能である。
【0032】
【発明の効果】
以上のように本発明によれば、振動溶着時の振幅方向に沿う溶着ずれを接合ラインを挟んで相互に対応する第1溶着ずれ管理座のずれで管理し、また振幅方向および加圧方向と直交する方向に沿う溶着ずれを接合ラインを挟んで相互に対応する第2溶着ずれ管理座のずれで管理することができ、吸気通路構造体を構成する通路構成部品同士の内面の溶着ずれを容易に管理することができる。
【図面の簡単な説明】
【図1】吸気通路構造体およびスロットルボディの斜視図である。
【図2】吸気通路構造体の側面図である。
【図3】図2の3矢視図である。
【図4】図2の4矢視図である。
【図5】図2の5−5線拡大断面図である。
【図6】図4の6−6線断面図である。
【符号の説明】
14・・・吸気通路構造体
15,16,17・・・通路構成部品
32,46・・・接合ライン
33,35,47,48・・・接合鍔
34・・・突条
36・・・溶着突部
40・・・振幅方向
41,42,49,50・・・第1溶着ずれ管理座
43・・・振幅方向および加圧方向と直交する方向
44,45,51,52・・・第2溶着ずれ管理座
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a plurality of passage forming component-containing Mutotomoni respectively formed by a thermoplastic synthetic resin, the entire circumference of the passage component paired adjacent to each other, each other so as to be along the loop-shaped bonding lines joining flange facing is integrally formed with each other projecting from the other of the joining flange opposite the ridges and mutually projecting from the one of the joining flange opposite the welding projection is vibration-welded to each other The present invention relates to an improvement of an intake passage structure.
[0002]
[Prior art]
Conventionally, such an intake passage structure is already known, for example, from JP-A-11-31157.
[0003]
[Problems to be solved by the invention]
By the way, when mutually welding the path components adjacent to each other, the pair of path components are individually held by a mold, and one mold is held stationary and the other mold is Although it is vibrated while being pressed against the one mold side, due to the positional deviation of the components constituting the vibration welding device, there is a possibility that welding displacement occurs in the paired passage components. If such a welding deviation is left unattended, a step is formed on the inner surface of the passage component, which causes a reduction in intake efficiency. Therefore, it is necessary to manage the welding deviation on the inner surface side, but the conventional one does not have a structure corresponding to such welding deviation management, and cuts the intake passage structure after completion of vibration welding Thus, it is only possible to check whether or not there is a step on the inner surface, and it has been impossible to manage the welding deviation with respect to the total number of intake passage structures.
[0004]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an intake passage structure that can easily manage the welding displacement of the inner surfaces of the passage components constituting the intake passage structure. And
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention includes a plurality of passage components formed of thermoplastic synthetic resin, and the entire circumference of a pair of passage components adjacent to each other has a loop shape. Joints facing each other along the joining line are integrally formed, and a protrusion projecting on one of the joints facing each other and a welding protrusion projecting on the other of the joints facing each other In the intake passage structure in which the parts are vibration welded to each other, whether or not there is a step difference between the inner surfaces of the paired passage components due to the mutual welding displacement between the paired passage components after the completion of the vibration welding to allow confirm whether from the outside, in a position corresponding to one another across the joint line of the outer periphery of the joining flange forming mutually pairs, the in along Usotokata the amplitude direction at the time of vibration welding and projecting from the joining flange With first weld shift management seat in which the end face and the flat surface are respectively provided, flattened the direction perpendicular to the amplitude direction and the pressing direction protruding from the joint flange in Yan Usotokata and the outer end face at the time of vibration welding A second welding displacement management seat as a surface is provided, respectively.
[0006]
According to the intake passage structure of such a configuration, along Usotokata in passage components paired adjacent to each other, the positions corresponding to each other across the joint line, the amplitude direction at the time of vibration welding in conjunction with the first welding shift management seat projecting from the joint flange is provided each, second weld shift management seat projecting from the joining flange in a direction perpendicular to the amplitude direction and the pressing direction along Usotokata are respectively provided Yes. For this reason, when a welding displacement occurs along the amplitude direction during vibration welding, the flat outer end surfaces of the first welding displacement management seats corresponding to each other across the joining line are displaced along the amplitude direction. The direction in which the flat outer end surfaces of the second welding displacement management seats corresponding to each other across the joining line are perpendicular to the amplitude direction and the pressing direction when a welding displacement along the direction orthogonal to the amplitude direction and the pressing direction occurs. Will shift along. Therefore, after the vibration welding is completed, whether or not there is a step between the inner surfaces of the passage component parts by managing the deviation between the outer end surfaces of the first welding deviation management seat and the deviation between the outer end surfaces of the second welding deviation management seat. It is possible to confirm whether or not from the outside, and it is possible to easily manage the welding misalignment between the inner surfaces of the passage components constituting the intake passage structure.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on one embodiment of the present invention shown in the accompanying drawings.
[0008]
1 to 6 show an embodiment of the present invention. FIG. 1 is a perspective view of an intake passage structure and a throttle body, FIG. 2 is a side view of the intake passage structure, and FIG. 4 is a view taken in the direction of arrow 4 in FIG. 2, FIG. 5 is an enlarged sectional view taken along line 5-5 in FIG. 2, and FIG. 6 is a sectional view taken along line 6-6 in FIG.
[0009]
First, in FIG. 1, a throttle body 11 is attached to an intake passage structure 14 integrally having a surge tank 12 and an intake manifold 13 that connects between a 4-cylinder engine (not shown) and the surge tank 12, and an intake passage structure is provided. The body 14 is configured by vibration welding the first, second and third passage components 15, 16, and 17 made of thermoplastic synthetic resin.
[0010]
The throttle body 11 has a cylindrical shape that extends vertically and is coupled to the center of the upper surface of the first passage component 15. A butterfly throttle valve (not shown) that controls the amount of air flow is provided in the throttle body 11. 11 is fixed to a valve shaft 18 that is rotatably supported by a throttle shaft 11, and a throttle drum 19 is attached to a protruding end portion of the valve shaft 18 from the throttle body 11.
[0011]
2 to 4 together, a connecting cylinder portion 15a for connecting the throttle body 11 is integrally provided at the central portion of the first passage component 15, and the surge tank 12 includes the first The second and third passage components 15, 16, and 17 form an intake chamber (not shown) connected to the connecting cylinder portion 15a.
[0012]
The intake manifold 13 is arranged in parallel in the horizontal direction so that, for example, a pair is arranged on both sides of the throttle body 11 and the connecting cylinder portion 15a, and a plurality of, for example, four branches, one end of which is commonly connected to the surge tank 12. The other ends of the pipes 21A, 21B, 21C, and 21D are connected in common and integrally to an engine mounting flange 22 for mounting on the engine.
[0013]
The branch pipe 21 </ b> A has a first straight pipe portion 23 that is connected to the surge tank 12 at one end and rises upward, and bends within a range of approximately 90 degrees in the vertical plane and is connected to the other end of the first straight pipe portion 23. The bent pipe portion 24 is connected to one end of the bent pipe portion 24 and the second straight pipe portion 25 is connected to the other end of the bent pipe portion 24 and extends substantially horizontally. , 21D also has the same basic configuration as the branch pipe 21A.
[0014]
The air introduced from the throttle body 11 into the intake passage structure 14 flows downward in the surge tank 12 and then reverses upward and is divided into the branch pipes 21A to 21D, as indicated by broken line arrows in FIG. Be guided. The air introduced into the branch pipes 21A to 21D circulates upward, and then circulates substantially horizontally toward the engine side by changing the direction of circulation by approximately 90 degrees.
[0015]
In the engine mounting flange 22, passage holes 27A, 27B, 27C, and 27D for communicating the branch pipes 21A to 21D with the intake ports (not shown) of the engine correspond to the branch pipes 21A to 21D, respectively. Provided. As shown in FIG. 1, the engine mounting flange 22 is provided with fuel injection valves 28, 28... For supplying fuel to the intake ports of the engine, and the fuel rails are attached to the fuel injection valves 28, 28. 29 are connected in common, but at the upper part of the engine mounting flange 22, there are mounting portions 30 for mounting the fuel injection valves 28, 28... And mounting portions 31 for mounting the fuel rails 29. (See FIG. 2) are provided integrally.
[0016]
Such an intake manifold 13 is configured by mutually vibrating and welding the first and second passage component parts 15 and 16 through a joining line 32 that is continuous in a loop shape. The engine mounting flange 22 is integrally provided and is formed so as to constitute a part of the upper part of each of the branch pipes 21A to 21D and the surge tank 12, and the second passage component 16 is formed at the lower part of each of the branch pipes 21A to 21D. The main part of the surge tank 12 is formed.
[0017]
Referring to FIGS. 5 and 6 together, a joint rod 33 is integrally formed along the joint line 32 around the entire lower end of the first passage component 15. Are integrally provided so that the protrusion 34 having a flat joint surface 34a on the tip surface protrudes toward the second passage component 16 side.
[0018]
On the other hand, a joining rod 35 that is opposed to the joining rod 33 of the first passage component 15 is integrally formed on the entire periphery of the upper end of the second passage component 16. A welding protrusion 36 corresponding to the joint surface 34a of the protrusion 34 is integrally provided so as to protrude toward the first passage component 15, and the width of the welding protrusion 35 is set narrower than that of the protrusion 34. Is done. Further, restriction walls 37 and 38 that protrude toward the first passage component 15 are integrally provided on the entire circumference of the joint 35 of the second passage component 16 so as to sandwich the welding protrusion 36 from the inside and the outside.
[0019]
When the first and second passage components 15 and 16 are welded to each other, for example, the first passage component 15 is moved to the second passage component 16 side in order to pressurize the first and second passage components 15 and 16 to each other. In this state, one of the first and second passage component parts 15 and 16 is in a state where the tip of the welding projection 36 is pressed against the joining surface 34a of the protrusion 34 by pressurizing along the pressing direction 39. In the embodiment, the first passage component 15 is vibrated at high speed. Thereby, the frictional heat generated between the tip of the welding projection 36 and the joining surface 34a causes the tip of the welding projection 36 to be vibration welded to the protrusion 34 as shown in FIGS. The entire circumferences of the first and second passage components 15 and 16 are joined along a joining line 32 that is continuous in a loop.
[0020]
Thus, both the regulation walls 37 and 38 of the second passage component 16 are welded and joined to the positions where the tips of the two passage components 15 and 16 are close to and opposed to the joining rod 33 of the first passage component 15. The first and second passage component parts 15 have a function as a guide for stopping the vibration welding process in the advanced state, and a flash generated when the tip of the welding protrusion 36 is vibration welded to the joint surface 34a. , 16, that is, the function of preventing the outside of the intake manifold 13 from protruding outside.
[0021]
By the way, at the time of vibration welding of the first and second passage component parts 15 and 16, the first passage component part 15 vibrates at high speed in the direction perpendicular to the paper surface of FIG. 2, that is, in the arrangement direction of the branch pipes 21A to 21D. Yes, at both ends along the amplitude direction 40 at the time of vibration welding in the first and second passage components 15 and 16, that is, at both ends along the arrangement direction of the branch pipes 21A to 21D, positions close to the engine mounting flange 22 The first welding displacement management seats 41, 42; 41, 42 corresponding to each other across the joining line 32 are integrally provided. These first welding displacement management seats 41 and 42 protrude outwardly along the amplitude direction 40 at the time of vibration welding from the outer periphery of the joint rods 33 and 35 provided in the first and second passage component parts 15 and 16. The end surface is formed to be a flat surface. And the protrusion amount from the joining rods 33 and 35 of the 1st welding deviation management seats 41 and 42 is a step corresponding to those welding deviation management seats 41 and 42, and the level | step difference has not arisen in the inner surface of each branch pipe 21A-21D. In some cases, the outer end surfaces of the two welding displacement management seats 41 and 42 are set so as not to be displaced along the amplitude direction 40.
[0022]
Further, the first and second passage components 15 and 16 at both ends of the intake passage air structure 14 in the direction 43 orthogonal to the amplitude direction 40 and the pressurizing direction 39 during vibration welding are connected between the branch pipes 21A and 21B. Further, second welding displacement management seats 44, 45; 44, 45,... Corresponding to each other across the joining line 32 between the branch pipes 21C, 21D are integrally provided. These second welding displacement management seats 44 and 45 are outward from the outer circumferences of the joint rods 33 and 35 of the two passage component parts 15 and 16 in the direction 43 orthogonal to the amplitude direction 40 and the pressing direction 39 at the time of vibration welding. And the outer end surface is formed to be a flat surface. And the protrusion amount from the joining rods 33 and 35 of the 2nd welding deviation management seats 44 and 45 is a step corresponding to those welding deviation management seats 44 and 45, and the level | step difference has not arisen in the inner surface of each branch pipe 21A-21D. In some cases, the outer end surfaces of the two welding displacement management seats 44 and 45 are set so that the displacement along the direction 43 does not occur.
[0023]
The second and third passage component parts 16, 17 are vibration welded to each other at a joining line 46 that is continuous in a loop shape, and a joining rod along the joining line 46 is provided around the lower end of the second passage component part 16. 47 is integrally formed, and a joining rod 48 that is opposed to the joining rod 47 is integrally formed on the entire periphery of the upper end of the third passage component 17.
[0024]
Thus, the joints 46 and 47 corresponding to each other of the second and third passage component parts 16 and 17 are vibration welded in the same structure as the vibration welding structure of the first and second passage component parts 15 and 16. In both the second and third passage components 16 and 17, both end portions along the amplitude direction 40 at the time of vibration welding, that is, both end portions along the arrangement direction of the branch pipes 21A to 21D are sandwiched by the joining line 46. Corresponding first welding displacement management seats 49, 50; 49, 50 are integrally provided. These first welding deviation management seats 49 and 50 protrude outwardly along the amplitude direction 40 during vibration welding from the outer periphery of the joint rods 47 and 48 included in the second and third passage component parts 16 and 17. The end surface is formed to be a flat surface. In addition, the amount of protrusion of the first welding deviation management seats 49, 50 from the joint rods 47, 48 is such that no step is generated on the inner surfaces of the branch pipes 21A-21D at the portions corresponding to the welding deviation management seats 49, 50. In some cases, the outer end surfaces of the two welding displacement management seats 49 and 50 are set so that the displacement along the amplitude direction 40 does not occur.
[0025]
Further, the second and third passage components 16 and 17 at both ends of the intake passage air structure 14 in the direction 43 orthogonal to the amplitude direction 40 and the pressurizing direction 39 at the time of vibration welding are provided between the branch pipes 21A and 21B. Also, second welding displacement management seats 51, 52; 51, 52... Corresponding to each other across the joining line 46 between the branch pipes 21C, 21D are integrally provided. These second welding displacement management seats 51 and 52 are outward from the outer periphery of the joint rods 47 and 48 of both the passage components 16 and 17 in the direction 43 orthogonal to the amplitude direction 40 and the pressing direction 39 at the time of vibration welding. And the outer end surface is formed to be a flat surface. In addition, the amount of protrusion of the second welding deviation management seats 51, 52 from the joint rods 47, 48 is such that no step is generated on the inner surface of each branch pipe 21A-21D at the portion corresponding to the welding deviation management seats 51, 52. In some cases, the outer end surfaces of the two welding displacement management seats 51 and 52 are set so that the displacement along the direction 43 does not occur.
[0026]
Next, the operation of this embodiment will be described. The first and second passage components 15 and 16 adjacent to each other are vibration welded to each other at a joining line 32 that is continuous in a loop shape, so that the intake passage structure 14 is provided. The first welding deviation management seat 41 protrudes from the outer periphery of the first and second passage component parts 15 and 16 along the amplitude direction 40 during vibration welding and has an outer end surface as a flat surface. , 42... Are provided in the first and second passage components 15 and 16 at positions corresponding to each other across the joining line 32, and are orthogonal to the amplitude direction 40 and the pressing direction 39 during vibration welding. Second welding displacement management seats 44, 45... Projecting from the outer periphery of the first and second passage components 15, 16 along the direction 43 and having a flat outer end surface are sandwiched between the joint lines 32. It is provided to the first and second passage forming component 15, 16 at corresponding positions.
[0027]
The first welding deviation management seats 41, 42... And the second welding deviation management seats 44, 45... Are provided in the first and second passage component parts 15 and 16, respectively. When the parts 15 and 16 are vibration welded to each other, if a welding displacement occurs along the amplitude direction 40 during the vibration welding between the first and second passage component parts 15 and 16, the parts 15 and 16 are sandwiched between each other. The flat outer end surfaces of the first welding displacement management seats 41, 42... Corresponding to 1 are displaced by δ1 (see FIG. 5) along the amplitude direction, and are orthogonal to the amplitude direction 40 and the pressurizing direction 39. 43, the flat outer end surfaces of the second welding displacement management seats 44 and 45 corresponding to each other across the joining line 32 are in the above direction. Becomes .delta.2 (see FIG. 6) only shifts it along three.
[0028]
Therefore, after the vibration welding of the first and second passage components 15 and 16 is completed, the outer end surfaces of the first welding deviation management seats 41, 42... And the outer end surfaces of the second welding deviation management seats 44, 45. It is possible to confirm whether or not there is a step between the inner surfaces of the first and second passage component parts 15 and 16 by managing the deviation by visual measurement, measurement using a caliper or a dedicated inspection jig. In addition, it is possible to easily manage the welding displacement of the inner surfaces of the first and second passage component parts 15 and 16 constituting a part of the intake passage structure 14.
[0029]
Further, the second and third passage component parts 16 and 17 adjacent to each other constitute a part of the intake passage structure 14 by vibration welding to each other at a joining line 46 that is continuous in a loop shape. The first welding displacement management seats 49, 50... Projecting from the outer periphery of the second and third passage components 16, 17 along the amplitude direction 40 during vibration welding sandwich the joining line 46. The second and third passage components 16 and 17 are respectively provided at positions corresponding to each other, and the second and third portions are arranged along a direction 43 orthogonal to the amplitude direction 40 and the pressurizing direction 39 during vibration welding. The second welding displacement management seats 51, 52... Projecting from the outer periphery of the passage components 16, 17 and having a flat outer end surface are located at positions corresponding to each other across the joining line 46. Structure It is provided at the parts 16 and 17.
[0030]
Therefore, in the same manner as the welding displacement of the inner surfaces of the first and second passage component parts 15 and 16, the first welding deviation management seats 49, 50... After the vibration welding of the second and third passage component parts 16 and 17 is completed. The second and third passages are managed by visually observing, measuring using a caliper or a dedicated inspection jig, and the like, by managing the deviation between the outer end faces and the outer end faces of the second welding deviation management seats 51, 52. It is possible to confirm whether or not there is a step between the inner surfaces of the component parts 16 and 17, and welding of the inner surfaces of the second and third passage component parts 16 and 17 constituting a part of the intake passage structure 14. The deviation can be easily managed, and the welding deviation of the inner surface of the intake passage structure 14 as a whole can be easily managed.
[0031]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the present invention described in the claims. It is.
[0032]
【The invention's effect】
As described above, according to the present invention, the welding displacement along the amplitude direction during vibration welding is managed by the displacement of the first welding displacement management seats corresponding to each other across the joining line, and the amplitude direction and the pressing direction are Welding displacement along the orthogonal direction can be managed by the displacement of the second welding displacement management seats corresponding to each other across the joining line, and the welding displacement of the inner surfaces of the passage components constituting the intake passage structure is easy. Can be managed.
[Brief description of the drawings]
FIG. 1 is a perspective view of an intake passage structure and a throttle body.
FIG. 2 is a side view of the intake passage structure.
FIG. 3 is a view taken in the direction of arrow 3 in FIG. 2;
4 is a view taken in the direction of arrow 4 in FIG. 2;
5 is an enlarged cross-sectional view taken along line 5-5 of FIG.
6 is a cross-sectional view taken along line 6-6 of FIG.
[Explanation of symbols]
14 ... Intake passage structures 15, 16, 17 ... Passage components 32, 46 ... Joining line
33, 35, 47, 48 ... joint rod
34 ... ridge
36 ... welding protrusion 40 ... amplitude direction 41, 42, 49, 50 ... first welding deviation management seat 43 ... direction 44, 45, 51, 52 orthogonal to the amplitude direction and the pressing direction ... Second welding misalignment management seat

Claims (1)

熱可塑性合成樹脂によりそれぞれ形成される複数の通路構成部品(15,16,17)を含むとともに、相互に隣接して対をなす通路構成部品(15,16;16,17)の全周には、ループ状の接合ライン(32,46)に沿うようにして相互に対向する接合鍔(33,35;47,48)が一体に形成され、相互に対向する接合鍔(33,35;47,48)の一方に突設された突条(34)ならびに相互に対向する接合鍔(33,35;47,48)の他方に突設された溶着突部(36)が相互に振動溶着される吸気通路構造体において、
前記振動溶着の完了後において前記対をなす通路構成部品(15,16;16,17)相互の溶着ずれに因り該対をなす通路構成部品(15,16;16,17)の内面相互に段差が生じているか否かを外側から確認可能とするために、相互に対をなす前記接合鍔(33,35;47,48)の外周の前記接合ライン(32,46)を挟んで相互に対応する位置には、振動溶着時の振幅方向(40)に沿う外方に前記接合鍔(33,35;47,48)から突出し且つ外端面を平坦面とした第1溶着ずれ管理座(41,42;49,50)がそれぞれ設けられるとともに、振動溶着時の前記振幅方向(40)および加圧方向(39)と直交する方向(43)に沿う外方に前記接合鍔(33,35;47,48)から突出し且つ外端面を平坦面とした第2溶着ずれ管理座(44,45;51,52)がそれぞれ設けられることを特徴とする吸気通路構造体。
A plurality of passage components (15, 16, 17) each formed of a thermoplastic synthetic resin are included, and the entire circumference of the passage components (15, 16; 16, 17) paired adjacent to each other is included. The joining rods (33, 35; 47, 48) facing each other along the loop-shaped joining line (32, 46) are integrally formed, and the joining rods (33, 35; 47, 48) facing each other are formed. 48) and the welding protrusion (36) protruding from the other of the joining rods (33, 35; 47, 48) facing each other are vibrated and welded to each other. In the intake passage structure,
After completion of the vibration welding, the pair of passage components (15, 16; 16, 17) are stepped on the inner surfaces of the pair of passage components (15, 16; 16, 17) due to mutual welding displacement. In order to make it possible to confirm from the outside whether or not there is a problem, it corresponds to each other with the joint line (32, 46) on the outer periphery of the joint rod (33, 35; 47, 48) paired with each other. a position, the amplitude direction (40) to said junction flange on along Usotokata during vibration welding; first weld shift management seat has a flat surface protruding and outer end face of (33, 35 47, 48) ( 41,42; 49,50) together with the respectively provided, vibration welding the amplitude direction (40 at) and pressure direction (39) perpendicular to the direction (43) to along Usotokata said junction flange (33, 35; 47, 48) flat surface protruding and an outer end face from An intake passage structure; (51, 52 44, 45) is characterized in that it is provided respectively a second weld shift management seat.
JP2000280146A 2000-09-11 2000-09-11 Intake passage structure Expired - Fee Related JP3986740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000280146A JP3986740B2 (en) 2000-09-11 2000-09-11 Intake passage structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000280146A JP3986740B2 (en) 2000-09-11 2000-09-11 Intake passage structure

Publications (2)

Publication Number Publication Date
JP2002089387A JP2002089387A (en) 2002-03-27
JP3986740B2 true JP3986740B2 (en) 2007-10-03

Family

ID=18765041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000280146A Expired - Fee Related JP3986740B2 (en) 2000-09-11 2000-09-11 Intake passage structure

Country Status (1)

Country Link
JP (1) JP3986740B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507687B2 (en) * 2003-05-26 2010-07-21 トヨタ紡織株式会社 Intake manifold
JP2012057652A (en) * 2010-09-06 2012-03-22 Polyplastics Co Flow passage forming structure and method of manufacturing this flow passage forming structure
JP5985148B2 (en) * 2010-12-28 2016-09-06 株式会社ミクニ Resin intake manifold

Also Published As

Publication number Publication date
JP2002089387A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP2002070672A (en) Vehicular intake manifold and its manufacturing method
CN102337996B (en) Intake unit
KR100331454B1 (en) Inertia charge intake manifold for multi-cylinder internal combustion engine and connecting method for branch pipes of intake manifold
JP4965513B2 (en) Intake manifold
JPH09296724A (en) Converging pipe and manufacture thereof
JP4328693B2 (en) Resin intake manifold for multi-cylinder engines
JP3986740B2 (en) Intake passage structure
JPH09177624A (en) Intake manifold made of resin and its manufacture
GB2279035A (en) Fabrication of an internal combustion engine inlet manifold
JP2002364469A (en) Producing method of vehicular intake manifold
JP6639215B2 (en) Intake manifold
JP5206287B2 (en) Welding structure and welding method
EP0568560A1 (en) Fabrication of a composite plastics structure, particularly an internal combustion engine inlet manifold.
JP3894715B2 (en) Welding structure of intake passage structure
JP2002364471A (en) Producing method of vehicular intake manifold and resin structure body
JPH1068361A (en) Intake manifold made of resin
JP7024406B2 (en) Intake manifold
JP2002070673A (en) Vehicular intake manifold and its manufacturing method
JP5862352B2 (en) Heat exchanger tank
JP3894713B2 (en) Manufacturing method for vehicle intake manifold
JP2002364470A (en) Intake manifold
JP6175274B2 (en) Manufacturing method of intake manifold
JP2005337108A (en) Connection structure of surge tank, surge tank, and intake manifold
JP2021025470A (en) Intake device of internal combustion engine
JP7299847B2 (en) Intake manifold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees