JP3986623B2 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
JP3986623B2
JP3986623B2 JP16269097A JP16269097A JP3986623B2 JP 3986623 B2 JP3986623 B2 JP 3986623B2 JP 16269097 A JP16269097 A JP 16269097A JP 16269097 A JP16269097 A JP 16269097A JP 3986623 B2 JP3986623 B2 JP 3986623B2
Authority
JP
Japan
Prior art keywords
stator
rotor
iron core
magnet
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16269097A
Other languages
Japanese (ja)
Other versions
JPH1118357A (en
Inventor
克也 世古
賢一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Digital Media Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Digital Media Engineering Corp filed Critical Toshiba Corp
Priority to JP16269097A priority Critical patent/JP3986623B2/en
Publication of JPH1118357A publication Critical patent/JPH1118357A/en
Application granted granted Critical
Publication of JP3986623B2 publication Critical patent/JP3986623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は回転体の支承がすべり軸受によって行われる回転電機に関する。
【0002】
【従来の技術】
この種の回転電機の基本的構成を図8に示す。この図8において、1は固定子を示しており、鉄心2に電機子巻線3を巻装して構成されている。この固定子1の鉄心2には、内周部に軸受ハウジング4が取付けられており、この軸受ハウジング4が支持板でもあるPC板5に取付け固定されている。
軸受ハウジング4には、内部にすべり軸受6が収納保持されており、このすべり軸受6の内部に回転軸7が挿入されて回転可能に支承されている。
【0003】
回転軸7には回転子ホルダ8が取付けられており、この回転子ホルダ8に回転子9のヨーク10が取付けられている。回転子9は、ヨーク10と、これの周囲部の内周面に取付けられた磁石11とから成るもので、その磁石11が内周部を上記固定子の鉄心2の外周部に径方向に対向させている。
この構成で、磁石11と固定子1の鉄心2との間で所定の磁気回路が形成され、この磁気回路により生じる回転駆動力によって、回転子9が回転軸7を伴い回転される。
【0004】
このような回転電機においては、すべり軸受6とこれが支承した回転体(この場合、回転軸7)との間に、微小とはいえ、ある程度の隙間を確保する必要がある。この隙間によって、回転体(回転軸7)の回転が円滑に行われ、すべり軸受6に対する回転体の組付けも容易に行われる。ところが、そのためとはいっても、すべり軸受6と回転体との間に隙間があると、回転体が、その隙間の分、図9に示すように振れて回転してしまう。
【0005】
そこで、従来、図10及び図11に示すように、回転子9の磁石11の一部と軸方向に対向させて、PC板5上に鉄片等の磁性体12を設けることが考えられた。このものによれば、回転子9の磁石11が磁性体12と対向する部分で該磁性体12に磁力を及ぼしてそれに近付くようになることにより、回転子9が回転軸7を伴い定常的に傾きつつ回転することになり、回転軸7すなわち回転体の上述のような振れがなくなる。
【0006】
【発明が解決しようとする課題】
しかしながら、上述のものでは、回転体が傾くことによって、すべり軸受6に回転体が点接触し、面圧が増加する。これによって、回転力に損失が生じ、回転体の寿命も低下するという問題点を有していた。又、磁性体12を特別に必要とする分、部品点数が増加し、組立てが煩雑になると共に、コスト高にもなるという問題点を有していた。
【0007】
本発明は上述の事情に鑑みてなされたものであり、従ってその目的は、すべり軸受で支承する回転体を傾かせず、部品点数を増加させることもなくして、その回転体の振れをなくすことのできる回転電機を提供するにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の回転電機は、第1に、鉄心に電機子巻線が巻装された固定子と、この固定子との間ですべり軸受により支承され、前記固定子の鉄心と径方向に対向する磁石を有する回転子とを具えものにおいて、前記固定子の鉄心のすべり軸受構成部と磁石対向部とを相対的に偏心させることにより、前記固定子の鉄心と回転子の磁石との対向間隔を径方向の一方側で狭く、他方側で広くなるようにしたことを特徴とする(請求項1の発明)。
本発明の回転電機は、第2に、鉄心に電機子巻線が巻装された固定子と、この固定子との間ですべり軸受により支承され、前記固定子の鉄心と径方向に対向する磁石を有する回転子とを具え、その回転子が固定子の外側に位置するアウターロータ形のものにおいて、
前記すべり軸受の外周部を回転子の回転中心に対し偏心させることにより、前記固定子の鉄心と回転子の磁石との対向間隔を径方向の一方側で狭く、他方側で広くなるようにしたことを特徴とする(請求項2の発明)。
【0009】
れらのものによれば、回転子の磁石が固定子の鉄心との径方向の対向間隔を狭くした一方側において、他の部分よりも強い吸引力を固定子の鉄心に及ぼしてそれに近付くようになることにより、回転子が定常的に径方向の他方側に片寄せられて回転する。
【0010】
【発明の実施の形態】
以下、本発明の第1実施例につき、図1及び図2を参照して説明する。
まず図1には支持板を兼ねるPC板21を示しており、これには図中中央部にハウジング嵌合孔22を形成している。これに対して、固定子23は鉄心24と電機子巻線25とから成るもので、そのうちの鉄心24は、詳細には図2に示すように、環状部26から外方へ複数の突極27を放射状に突出させて形成したものであり、その各突極27に電機子巻線25を巻装している。
【0011】
又、鉄心24の環状部26の内部に存する孔28の周縁部は鉄心24の内周部であり、この鉄心24の内周部(孔28)を、環状部26の図中右側部分の厚みT1 と図中左側部分の厚みT2 との違いで明らかなように、鉄心24の外周部である突極27の各先端面に対し図中左側に偏心させて形成している。この鉄心24の内周部には軸受ハウジング29を嵌合して取付けており、この軸受ハウジング29を前記PC板21のハウジング嵌合孔22に嵌合して取付け、これによって、固定子23を軸受ハウジング29を介しPC板21に取付けている。
【0012】
軸受ハウジング29には、内部にすべり軸受30とすべり軸受31とを上下に収納保持しており、そのうちのすべり軸受30はラジアル軸受であって円筒状、すべり軸受31はスラスト軸受であって円板状のものであり、ともに軸受メタルから成っている。
【0013】
しかして、すべり軸受30の内部には回転体である回転軸32を下端がすべり軸受31に当たるまで挿入して回転可能に支承している。又、回転軸32の上端部には回転子33のヨーク34を取付けている。回転子33は、ヨーク34と、これの周囲部の内周面に取付けた磁石35とから成るものであり、その磁石35の内周部を前記固定子23の鉄心24の外周部(突極27の各先端面)に径方向に対向させている。すなわち、本実施例の回転電機は、回転子33が固定子23の外側に位置するアウターロータ形となっている。
【0014】
ここで、鉄心24の内周部(孔28)を鉄心24の外周部(突極27の各先端面)に対し図中左側に偏心させて形成したのは既述のごとくであり、これに対して、上述のごとく支承した回転軸32は鉄心24の内周部(孔28)と同心で、これに取付けた回転子33は回転軸32と同心であると共に鉄心24の内周部(孔28)とも同心である。この結果、回転子33の回転中心に対して固定子23の鉄心24の外周部が図中右側に偏心し、これによって、固定子23の鉄心24と回転子33の磁石35との対向間隔を、図中右側のギャップG1 と図中左側のギャップG2 との違いで示すように、径方向の一方側(図中右側)で狭く、他方側(図中左側)で広くなるようにしている。
【0015】
次に、上記構成のものの作用を述べる。
回転子33の磁石35が固定子23の鉄心24との径方向の対向間隔を狭くした一方側においては、他の部分よりも強い吸引力が固定子23の鉄心24に及ぶ。これによって磁石35が鉄心24に近付き、回転子33は回転軸32を伴い径方向の他方側に片寄せられる。従って、磁石35と鉄心24との間で形成される磁気回路により生じる回転駆動力によって回転子33が回転されるときも、回転子33は回転軸32を伴い定常的に径方向の他方側に片寄せられた状態で回転する。この回転子33の片寄せは上述のごとく径方向であり、軸方向と平行なまま行われるので、回転軸32(回転体)が従来のもののように傾くことはない。
【0016】
よって、回転体がすべり軸受30に点接触するというようなこともなく、面圧が増加することがないので、回転力に損失を生じることが避けられ、回転体の寿命が低下することも避けられる。又、従来のもののように磁性体を特別に必要とすることもないので、部品点数の増加を避けることができ、組立てを容易にできると共に、コスト安にもすることができる。
【0017】
なお、鉄心24の内周部はすべり軸受30を有するすべり軸受構成部であり、外周部は回転子33の磁石35と対向する磁石対向部であって、上記構成では、そのすべり軸受構成部を磁石対向部に対し偏心させて形成したが、これとは逆に、磁石対向部をすべり軸受構成部に対し偏心させて形成しても良いもので、要するにそれらは相対的に偏心させて形成してあれば良いものである。
【0018】
以上に対して、図3は本発明の第1参考例を示すもので、第1実施例と相違する点のみを述べれば、前述の軸受ハウジング29に代えて用いる軸受ハウジング41の固定子鉄心24との嵌合部である外周部41aを、軸受ハウジング41の図中右側部分の厚みT3 と図中左側部分の厚みT4 との違いで明らかなように、回転子33の回転中心に対し図中右側に偏心させて形成した点にある。
【0019】
このようにしても、第1実施例同様に、回転子33の回転中心に対して固定子23の鉄心24の外周部を図中右側に偏心させ得、固定子23の鉄心24と回転子33の磁石35との対向間隔を、ギャップG1 とギャップG2 との違いで示すように、径方向の一方側(図中右側)で狭く、他方側(図中左側)で広くなるようにし得るもので、第1実施例同様の作用効果を得ることができる。
【0020】
図4は本発明の第実施例を示すもので、これも第1実施例と相違する点のみを述べれば、前述のすべり軸受30に代えて用いるすべり軸受51の外周部51aを、すべり軸受51の図中右側部分の厚みT5 と図中左側部分の厚みT5 との違いで明らかなように、回転子33の回転中心に対し図中右側に偏心させて形成した点にある。
【0021】
このようにしても、やはり第1実施例同様に、回転子33の回転中心に対して固定子23の鉄心24の外周部を図中右側に偏心させ得、固定子23の鉄心24と回転子33の磁石35との対向間隔を、ギャップG1 とギャップG2 との違いで示すように、径方向の一方側(図中右側)で狭く、他方側(図中左側)で広くなるようにし得るのであり、第1実施例同様の作用効果を得ることができる。
【0022】
図5は本発明の第参考例を示すもので、これも第1実施例と相違する点のみを述べれば、前述の突極27に代えて固定子23の鉄心24に具える突極のうちの、1群(図中右側)の複数個(図示例は3個)の突極61aの径方向長さL1 を、他の突極61bのそれL2 より長くした点にある。
【0023】
このようにしても、やはり第1実施例同様に、回転子33の回転中心に対して固定子23の鉄心24の外周部を図中右側に偏心させ得、固定子23の鉄心24と回転子33の磁石35との対向間隔を、ギャップG1 とギャップG2 との違いで示すように、径方向の一方側(図中右側)で狭く、他方側(図中左側)で広くなるようにし得るもので、第1実施例同様の作用効果を得ることができる。
なお、この場合、径方向長さを他の突極61bより長くする固定子23の鉄心24の突極61aは1個であっても良い。
【0024】
図6は本発明の第参考例を示すもので、これも第1実施例と相違する点のみを述べれば、これも前述の突極27に代えて固定子23の鉄心24に具える突極のうちの、1群(図中右側)の複数個(図示例は3個)の突極71aの径方向長さL3 を、他の突極71bのそれL4 より短くした点にある。
【0025】
このようにすることにより、回転子33の回転中心に対して固定子23の鉄心24の外周部を図中左側に偏心させ得、固定子23の鉄心24と回転子33の磁石35との対向間隔を、図中左側のギャップG3 と図中右側のギャップG4 との違いで示すように、径方向の一方側(図中左側)で狭く、他方側(図中右側)で広くなるようにし得るもので、このようにしても、第1実施例同様の作用効果を得ることができる。
なお、この場合も、径方向長さを他の突極71bより短くする固定子23の鉄心24の突極71aは1個であっても良い。
【0026】
図7は本発明の第参考例を示すもので、これも第1実施例と相違する点のみを述べれば、固定子23の鉄心24を回転子33の回転中心に対し図中右側に偏心させて取付けた点にある。詳細には、このものの場合、前述の孔28に代わって固定子23の鉄心24の取付孔である孔81を図中左右に長い長孔状に形成し、回転子33の回転中心に対して、孔81の長手方向(図中右側)に固定子23の鉄心24を偏心させて取付けている。
【0027】
このようにしても、やはり第1実施例同様に、回転子33の回転中心に対して固定子23の鉄心24の外周部を図中右側に偏心させ得、固定子23の鉄心24と回転子33の磁石35との対向間隔を、ギャップG1 とギャップG2 との違いで示すように、径方向の一方側(図中右側)で狭く、他方側(図中左側)で広くなるようにし得るもので、第1実施例同様の作用効果を得ることができる。
【0029】
このほか、本発明は上記し且つ図面に示した実施例にのみ限定されるものではなく、例えば、回転軸32は支持板に回転不能状態に取付けられる固定軸に変え、この固定軸の外周にすべり軸受を圧嵌保持し、該すべり軸受の外周に回転子を嵌合して回転可能に支承するようにしても良い。この場合、傾き、振れが防止される回転体は回転子である。
【0030】
【発明の効果】
以上の記述で明らかなように、本発明の回転電機によれば、すべり軸受で支承する回転体を傾かせず、部品点数を増加させることもなくして、その回転体の振れをなくすことができもので、それにより、回転力に損失を生じることを避け得、又、回転体の寿命が低下するようなことも避け得て、更に、組立てを容易にでき、コスト安にもできるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す縦断面図
【図2】図1のA−A線に沿う横断面図
【図3】 本発明の第1参考例を示す図2相当図
【図4】 本発明の第実施例を示す図2相当図
【図5】 本発明の第参考例を示す図2相当図
【図6】 本発明の第参考例を示す図2相当図
【図7】 本発明の第参考例を示す図2相当図
【図8】従来例を示す図1相当図
【図9】回転体の振れを説明するための部分拡大縦断面図
【図10】異なる従来例を示す図1相当図
【図11】磁性体の配置を示す平面図
【符号の説明】
23は固定子、24は鉄心、25は電機子巻線、28は孔(すべり軸受構成部)、30はすべり軸受、32は回転軸、33は回転子、35は磁石、G1 ,G2 はギャップ、41は軸受ハウジング、41aは軸受ハウジングの外周部(固定子鉄心との嵌合部)、51はすべり軸受、51aはすべり軸受の外周部、61a,61b,71a,71bは突極、L1 〜L4 は突極の径方向長さ、G3 ,G4 はギャップ、81は長孔(固定子の鉄心の取付孔)を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotating electrical machine in which a rotating body is supported by a slide bearing.
[0002]
[Prior art]
A basic configuration of this type of rotating electric machine is shown in FIG. In FIG. 8, reference numeral 1 denotes a stator, which is configured by winding an armature winding 3 around an iron core 2. A bearing housing 4 is attached to the inner periphery of the iron core 2 of the stator 1, and the bearing housing 4 is attached and fixed to a PC plate 5 that is also a support plate.
A sliding bearing 6 is housed and held in the bearing housing 4. A rotating shaft 7 is inserted into the sliding bearing 6 and is rotatably supported.
[0003]
A rotor holder 8 is attached to the rotary shaft 7, and a yoke 10 of the rotor 9 is attached to the rotor holder 8. The rotor 9 is composed of a yoke 10 and a magnet 11 attached to the inner peripheral surface of the periphery of the yoke 10, and the magnet 11 is radially connected to the outer peripheral portion of the iron core 2 of the stator. They are facing each other.
With this configuration, a predetermined magnetic circuit is formed between the magnet 11 and the iron core 2 of the stator 1, and the rotor 9 is rotated with the rotating shaft 7 by the rotational driving force generated by the magnetic circuit.
[0004]
In such a rotating electrical machine, it is necessary to secure a certain gap between the sliding bearing 6 and the rotating body (in this case, the rotating shaft 7) supported by the sliding bearing 6, although it is minute. By this gap, the rotating body (rotating shaft 7) is smoothly rotated, and the rotating body is easily assembled to the slide bearing 6. However, for this reason, if there is a gap between the slide bearing 6 and the rotating body, the rotating body swings and rotates as shown in FIG.
[0005]
Therefore, conventionally, as shown in FIGS. 10 and 11, it has been considered to provide a magnetic body 12 such as an iron piece on the PC plate 5 so as to face a part of the magnet 11 of the rotor 9 in the axial direction. According to this, the magnet 11 of the rotor 9 exerts a magnetic force on the magnetic body 12 at a portion facing the magnetic body 12 so as to approach the magnetic body 12, so that the rotor 9 is constantly accompanied by the rotating shaft 7. The rotating shaft 7 is rotated while being inclined, and the above-described vibration of the rotating shaft 7, that is, the rotating body is eliminated.
[0006]
[Problems to be solved by the invention]
However, in the above-mentioned thing, when a rotary body inclines, a rotary body will make point contact with the slide bearing 6, and a surface pressure will increase. As a result, the rotational force is lost, and the life of the rotating body is also reduced. Further, since the magnetic body 12 is specially required, the number of parts is increased, and the assembly becomes complicated and the cost is increased.
[0007]
The present invention has been made in view of the above circumstances, and therefore the object thereof is not to tilt the rotating body supported by the slide bearing, to increase the number of parts, and to eliminate the swinging of the rotating body. Is to provide a rotating electrical machine that can be used.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a rotating electric machine according to the present invention is firstly supported by a stator having an armature winding wound around an iron core and a sliding bearing between the stator, and the stator. in those Ru comprising a rotor having a magnet facing the iron core and radially by relatively eccentrically and sliding bearing member and the magnet opposing portion of the iron core of the stator, and the iron core of the stator The interval between the rotor and the magnet is narrowed on one side in the radial direction and widened on the other side (invention of claim 1).
Second, the rotating electrical machine of the present invention is supported by a plain bearing between a stator having an armature winding wound around an iron core and the stator, and is opposed to the iron core of the stator in the radial direction. In an outer rotor type comprising a rotor having a magnet and the rotor is located outside the stator ,
By decentering the outer periphery of the plain bearing with respect to the rotation center of the rotor, the facing interval between the stator iron core and the rotor magnet is narrowed on one side in the radial direction and widened on the other side. (Invention of claim 2 ).
[0009]
According to one of these, on one side that narrows the facing distance in the radial direction of the iron core of the magnet of the rotor stator, approaches it exerts a strong attraction force than other portions iron core of the stator As a result, the rotor is steadily shifted to the other side in the radial direction and rotated.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
First, FIG. 1 shows a PC plate 21 which also serves as a support plate, and a housing fitting hole 22 is formed in the central portion in the drawing. On the other hand, the stator 23 is composed of an iron core 24 and an armature winding 25, and the iron core 24 includes a plurality of salient poles outward from the annular portion 26 as shown in detail in FIG. 27 is formed by projecting radially, and armature windings 25 are wound around the respective salient poles 27.
[0011]
Further, the peripheral portion of the hole 28 existing inside the annular portion 26 of the iron core 24 is the inner peripheral portion of the iron core 24, and the inner peripheral portion (hole 28) of the iron core 24 is the thickness of the right portion of the annular portion 26 in the figure. As apparent from the difference between T1 and the thickness T2 of the left portion in the figure, each tip face of the salient pole 27, which is the outer peripheral portion of the iron core 24, is formed to be eccentric to the left in the figure. A bearing housing 29 is fitted and attached to the inner peripheral portion of the iron core 24. The bearing housing 29 is fitted and attached to the housing fitting hole 22 of the PC plate 21, whereby the stator 23 is attached. It is attached to the PC plate 21 via a bearing housing 29.
[0012]
In the bearing housing 29, a slide bearing 30 and a slide bearing 31 are accommodated and held up and down. Of these, the slide bearing 30 is a radial bearing and is cylindrical, and the slide bearing 31 is a thrust bearing and is a disc. Both are made of bearing metal.
[0013]
Thus, the rotary shaft 32 as a rotating body is inserted into the slide bearing 30 until the lower end of the rotary shaft 32 comes into contact with the slide bearing 31 and is rotatably supported. A yoke 34 of the rotor 33 is attached to the upper end portion of the rotating shaft 32. The rotor 33 is composed of a yoke 34 and a magnet 35 attached to the inner peripheral surface of the periphery of the yoke 34, and the inner peripheral portion of the magnet 35 is used as the outer peripheral portion (saliency pole) of the iron core 24 of the stator 23. 27 in the radial direction. That is, the rotating electrical machine of the present embodiment has an outer rotor shape in which the rotor 33 is positioned outside the stator 23.
[0014]
Here, as described above, the inner peripheral portion (hole 28) of the iron core 24 is formed to be eccentric to the left side in the drawing with respect to the outer peripheral portion (each tip surface of the salient pole 27) of the iron core 24. On the other hand, the rotating shaft 32 supported as described above is concentric with the inner peripheral portion (hole 28) of the iron core 24, and the rotor 33 attached thereto is concentric with the rotating shaft 32 and the inner peripheral portion (hole) of the iron core 24. 28) is also concentric. As a result, the outer peripheral portion of the iron core 24 of the stator 23 is decentered to the right side in the figure with respect to the rotation center of the rotor 33, thereby increasing the facing distance between the iron core 24 of the stator 23 and the magnet 35 of the rotor 33. As shown by the difference between the gap G1 on the right side in the figure and the gap G2 on the left side in the figure, it is narrow on one side (right side in the figure) and wide on the other side (left side in the figure).
[0015]
Next, the operation of the above configuration will be described.
On one side where the magnet 35 of the rotor 33 narrows the radial facing distance from the iron core 24 of the stator 23, a stronger attractive force than the other parts reaches the iron core 24 of the stator 23. As a result, the magnet 35 approaches the iron core 24, and the rotor 33 is moved to the other side in the radial direction along with the rotation shaft 32. Therefore, even when the rotor 33 is rotated by the rotational driving force generated by the magnetic circuit formed between the magnet 35 and the iron core 24, the rotor 33 is always on the other side in the radial direction with the rotating shaft 32. Rotates in a tidy state. Since the rotation of the rotor 33 is in the radial direction as described above and is performed in parallel with the axial direction, the rotating shaft 32 (rotating body) does not tilt like the conventional one.
[0016]
Therefore, since the rotating body does not make point contact with the slide bearing 30 and the surface pressure does not increase, it is possible to avoid a loss in the rotational force and to avoid a decrease in the life of the rotating body. It is done. In addition, since a magnetic material is not required specially as in the prior art, an increase in the number of parts can be avoided, the assembly can be facilitated, and the cost can be reduced.
[0017]
The inner peripheral part of the iron core 24 is a slide bearing constituent part having a slide bearing 30, and the outer peripheral part is a magnet facing part facing the magnet 35 of the rotor 33. In the above configuration, the slide bearing constituent part is In contrast to this, the magnet facing portion may be formed eccentrically with respect to the slide bearing component, but in short, they may be formed relatively eccentric. If there is, it is good.
[0018]
In contrast to this, FIG. 3 shows a first reference example of the present invention. If only the points different from the first embodiment are described, the stator core 24 of the bearing housing 41 used in place of the above-described bearing housing 29 will be described. As shown in the difference between the thickness T3 of the right side portion of the bearing housing 41 in the drawing and the thickness T4 of the left side portion of the drawing in the drawing, the outer peripheral portion 41a, which is the fitting portion, is shown in the drawing with respect to the rotation center of the rotor 33. It is in the point formed eccentrically on the right side.
[0019]
Even in this case, similarly to the first embodiment, the outer peripheral portion of the iron core 24 of the stator 23 can be eccentric to the right side in the drawing with respect to the rotation center of the rotor 33, and the iron core 24 and the rotor 33 of the stator 23 can be deviated. As shown by the difference between the gap G1 and the gap G2, the gap between the magnet 35 and the magnet 35 can be narrow on one side (right side in the figure) and wide on the other side (left side in the figure). The same effects as the first embodiment can be obtained.
[0020]
FIG. 4 shows a second embodiment of the present invention. If only the points different from the first embodiment are described, the outer peripheral portion 51a of the slide bearing 51 used in place of the above-described slide bearing 30 is replaced with the slide bearing. As apparent from the difference between the thickness T5 of the right portion 51 in the drawing and the thickness T5 of the left portion in the drawing, it is formed to be eccentric to the right side in the drawing with respect to the rotation center of the rotor 33.
[0021]
Even in this case, similarly to the first embodiment, the outer peripheral portion of the iron core 24 of the stator 23 can be eccentric to the right side in the figure with respect to the rotation center of the rotor 33, and the iron core 24 and the rotor of the stator 23 can be eccentric. As shown by the difference between the gap G1 and the gap G2, the distance between the 33 and the magnet 35 can be narrowed on one side (right side in the figure) and wide on the other side (left side in the figure). There can be obtained the same effect as the first embodiment.
[0022]
FIG. 5 shows a second reference example of the present invention. If only the points different from the first embodiment are described, the salient poles provided in the iron core 24 of the stator 23 instead of the salient poles 27 described above are shown. Of these, the radial length L1 of a plurality (three in the illustrated example) of salient poles 61a in one group (right side in the figure) is longer than that L2 of the other salient poles 61b.
[0023]
Even in this case, similarly to the first embodiment, the outer peripheral portion of the iron core 24 of the stator 23 can be eccentric to the right side in the figure with respect to the rotation center of the rotor 33, and the iron core 24 and the rotor of the stator 23 can be eccentric. As shown by the difference between the gap G1 and the gap G2, the distance between the 33 and the magnet 35 can be narrowed on one side (right side in the figure) and wide on the other side (left side in the figure). Thus, the same effect as in the first embodiment can be obtained.
In this case, the number of salient poles 61a of the iron core 24 of the stator 23 whose radial length is longer than that of the other salient poles 61b may be one.
[0024]
FIG. 6 shows a third reference example of the present invention. If only the points different from the first embodiment are described, this is also a protrusion provided on the iron core 24 of the stator 23 instead of the above-described salient pole 27. Of the poles, the radial length L3 of a plurality (three in the illustrated example) of salient poles 71a in one group (right side in the figure) is shorter than that L4 of the other salient poles 71b.
[0025]
By doing so, the outer peripheral portion of the iron core 24 of the stator 23 can be decentered to the left in the figure with respect to the rotation center of the rotor 33, and the iron core 24 of the stator 23 and the magnet 35 of the rotor 33 are opposed to each other. As shown by the difference between the gap G3 on the left side in the drawing and the gap G4 on the right side in the drawing, the interval can be narrowed on one side (left side in the drawing) and wide on the other side (right side in the drawing). Even in this case, the same effects as those of the first embodiment can be obtained.
In this case as well, the number of salient poles 71a of the iron core 24 of the stator 23 whose radial length is shorter than that of the other salient poles 71b may be one.
[0026]
FIG. 7 shows a fourth reference example of the present invention. If only the points different from the first embodiment are described, the iron core 24 of the stator 23 is eccentric to the right side in the figure with respect to the rotation center of the rotor 33. It is in the point of letting it install. Specifically, in this case, instead of the above-described hole 28, a hole 81 that is a mounting hole of the iron core 24 of the stator 23 is formed in a long and long shape in the left and right directions in the drawing, and the rotation center of the rotor 33 is formed. The iron core 24 of the stator 23 is eccentrically attached in the longitudinal direction of the hole 81 (right side in the figure).
[0027]
Even in this case, similarly to the first embodiment, the outer peripheral portion of the iron core 24 of the stator 23 can be eccentric to the right side in the figure with respect to the rotation center of the rotor 33, and the iron core 24 and the rotor of the stator 23 can be eccentric. As shown by the difference between the gap G1 and the gap G2, the distance between the 33 and the magnet 35 can be narrowed on one side (right side in the figure) and wide on the other side (left side in the figure). Thus, the same effect as in the first embodiment can be obtained.
[0029]
In addition, the present invention is not limited to the embodiment described above and shown in the drawings. For example, the rotary shaft 32 is changed to a fixed shaft that is attached to the support plate in a non-rotatable state. The slide bearing may be press-fitted and held, and a rotor may be fitted to the outer periphery of the slide bearing so as to be rotatably supported. In this case, the rotor that is prevented from tilting and shaking is a rotor.
[0030]
【The invention's effect】
As is clear from the above description, according to the rotating electrical machine of the present invention, the rotating body supported by the slide bearing can be prevented from tilting, and the number of parts can be increased, thereby eliminating the swinging of the rotating body. Therefore, it is possible to avoid a loss in rotational force, to avoid a decrease in the life of the rotating body, and to make assembly easier and lower costs. There is an effect.
[Brief description of the drawings]
Longitudinal sectional view showing a first embodiment of the present invention; FIG Figure 2 corresponds diagram showing a first reference example of the transverse cross-sectional view taken along the line A-A of FIG. 1 FIG. 3 present invention 4 is a diagram corresponding to FIG. 2 showing a second embodiment of the present invention. FIG. 5 is a diagram corresponding to FIG. 2 illustrating a second reference example of the present invention. FIG. 6 is a diagram corresponding to FIG. 2 illustrating a third reference example of the present invention. 7 is a view corresponding to FIG. 2 showing a fourth reference example of the present invention. FIG. 8 is a view corresponding to FIG. 1 showing a conventional example. FIG. 9 is a partially enlarged longitudinal sectional view for explaining the shake of a rotating body. FIG. 11 is a diagram corresponding to FIG. 1 showing a different conventional example. FIG. 11 is a plan view showing the arrangement of magnetic bodies.
23 is a stator, 24 is an iron core, 25 is an armature winding, 28 is a hole (slide bearing component), 30 is a slide bearing, 32 is a rotating shaft, 33 is a rotor, 35 is a magnet, G1 and G2 are gaps , 41 is a bearing housing, 41a is an outer peripheral portion of the bearing housing (a fitting portion with the stator core), 51 is a sliding bearing, 51a is an outer peripheral portion of the sliding bearing, 61a, 61b, 71a, 71b are salient poles, L1 to L4 is the length of the salient pole in the radial direction, G3 and G4 are gaps, and 81 is a long hole (an attachment hole for the stator core).

Claims (2)

鉄心に電機子巻線が巻装された固定子と、
この固定子との間ですべり軸受により支承され、前記固定子の鉄心と径方向に対向する磁石を有する回転子とを具えものにおいて、
前記固定子の鉄心のすべり軸受構成部と磁石対向部とを相対的に偏心させることにより、前記固定子の鉄心と回転子の磁石との対向間隔を径方向の一方側で狭く、他方側で広くなるようにしたことを特徴とする回転電機。
A stator having an armature winding wound around an iron core;
This is supported by the sliding bearing between the stator, in which Ru comprising a rotor having a magnet facing the core and the radial direction of the stator,
By relatively decentering the sliding bearing constituting portion of the stator core and the magnet facing portion , the facing distance between the stator core and the rotor magnet is narrowed on one side in the radial direction, and on the other side. A rotating electrical machine characterized by its widening.
鉄心に電機子巻線が巻装された固定子と、
この固定子との間ですべり軸受により支承され、前記固定子の鉄心と径方向に対向する磁石を有する回転子とを具え、その回転子が固定子の外側に位置するアウターロータ形のものにおいて、
前記すべり軸受の外周部を回転子の回転中心に対し偏心させることにより、前記固定子の鉄心と回転子の磁石との対向間隔を径方向の一方側で狭く、他方側で広くなるようにしたことを特徴とする回転電機。
A stator having an armature winding wound around an iron core;
In the outer rotor type, which is supported by a sliding bearing between the stator and a rotor having a magnet opposite to the stator iron core in the radial direction , the rotor being located outside the stator . ,
By decentering the outer periphery of the plain bearing with respect to the rotation center of the rotor, the facing distance between the stator iron core and the rotor magnet is narrowed on one side in the radial direction and widened on the other side. Rotating electric machine characterized by that.
JP16269097A 1997-06-19 1997-06-19 Rotating electric machine Expired - Fee Related JP3986623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16269097A JP3986623B2 (en) 1997-06-19 1997-06-19 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16269097A JP3986623B2 (en) 1997-06-19 1997-06-19 Rotating electric machine

Publications (2)

Publication Number Publication Date
JPH1118357A JPH1118357A (en) 1999-01-22
JP3986623B2 true JP3986623B2 (en) 2007-10-03

Family

ID=15759457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16269097A Expired - Fee Related JP3986623B2 (en) 1997-06-19 1997-06-19 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP3986623B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304033A (en) 1999-04-22 2000-10-31 Sumitomo Electric Ind Ltd Dynamic pressure bearing
WO2001018413A1 (en) 1999-09-03 2001-03-15 Sumitomo Electric Industries, Ltd. Dynamic pressure bearing and spindle motor with the dynamic pressure bearing
EP1132633A4 (en) 1999-09-17 2006-08-16 Sumitomo Electric Industries Dynamic pressure bearing with improved starting characteristics
RU2008151739A (en) * 2006-05-29 2010-07-10 Кье Джунг ПАРК (KR) WITHOUT CORE ENGINE WITH CONCENTRALLY LOCATED ROTORS AND A DRIVE DEVICE WITH SUCH ENGINE

Also Published As

Publication number Publication date
JPH1118357A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
JP2005012987A (en) Vibrating motor
EP0859449B1 (en) Motor provided with power transmitting means
EP1280261A1 (en) Flat type vibrating motor
JP3986623B2 (en) Rotating electric machine
JP4397465B2 (en) Mounting structure of rotating shaft of rotating electrical machine
KR100765111B1 (en) Vibration Motor
US5617241A (en) Optical beam scanner
JPH08182294A (en) Dynamo-electric machine
JP3827135B2 (en) Manufacturing method of small motor
JP3618950B2 (en) Eccentric cored vibration motor
JP2992862B2 (en) Motor device
JP3776656B2 (en) DC vibration motor and armature structure thereof
JP2001211625A (en) Dc motor and armature structure of the same
JP2603077Y2 (en) Small motor with brush
JP4110605B2 (en) motor
JP3796081B2 (en) motor
JP3503794B2 (en) motor
EP0595344B1 (en) Small brush-use DC motor and music device.
JPH1175342A (en) Flat coreless vibrating motor with increased shift of center of gravity
JPH10322971A (en) Diametrical gap type of oscillatory motor equipped with eccentric non-magnetic core
JP3086397B2 (en) Motor thrust bearing structure
KR200144413Y1 (en) Permanent Magnet Synchronous Motor
JP2000179550A (en) Oil retaining metal bearing device for rotary shaft
JP2001211624A (en) Dc motor and armature structure of the same
JPH09182356A (en) Thrust bearing for motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees