JP3986107B2 - Method for producing lubricating base oil - Google Patents

Method for producing lubricating base oil Download PDF

Info

Publication number
JP3986107B2
JP3986107B2 JP32906696A JP32906696A JP3986107B2 JP 3986107 B2 JP3986107 B2 JP 3986107B2 JP 32906696 A JP32906696 A JP 32906696A JP 32906696 A JP32906696 A JP 32906696A JP 3986107 B2 JP3986107 B2 JP 3986107B2
Authority
JP
Japan
Prior art keywords
fischer
dewaxing
range
tropsch wax
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32906696A
Other languages
Japanese (ja)
Other versions
JPH09221685A (en
Inventor
ジヤン−マリー・アレクサンドル・ベルトー
ジルベール・ロベール・ベルナール・ジエルメーヌ
アレント・ヘーク
マルテイヌス・マリア・ペトラス・ヤンセン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JPH09221685A publication Critical patent/JPH09221685A/en
Application granted granted Critical
Publication of JP3986107B2 publication Critical patent/JP3986107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/043Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen

Description

【0001】
【発明の属する技術分野】
本発明はフィッシャー−トロプシュろうから潤滑基油、特に少なくとも150の粘度指数(VI)をもつ潤滑基油を製造する方法に関する。
【0002】
【従来の技術】
フィッシャー−トロプシュろうから150を上回るVIをもつ潤滑基油を製造する方法は当該技術分野で公知である。例えば、EP−A−0,515,256号にはこのような基油の製造方法が開示されており、該方法は、
(a)アルミナベース水素化転化触媒の存在下で合成又はフィッシャー−トロプシュろうを水素と接触させる段階と、
(b)マトリックス、特定ゼオライトY及び水素化成分を含む水素化異性化触媒と段階(a)の流出液を接触させる段階と、
(c)段階(b)の流出液を少なくとも1種の軽質留分と重質留分に分離する段階と、
(d)重質留分を脱ろうして基油とろう留分を得る段階とを含む。このろう留分は一部又は全体を水素化異性化段階(b)に再循環することができる。EP−A−0,515,256号の実施例で原料として使用されているフィッシャー−トロプシュろうは広い沸点範囲(90重量%沸点と10重量%沸点の差が249℃にも及ぶ)をもつので、このろうには多種多様なパラフィン分子が存在すると考えられる。このように多種多様なパラフィン分子が存在するため、製造した基油を潤滑基油として使用すべき場合に揮発性に関する仕様を満たすことは非常に困難である。
【0003】
US−A−4,943,672号には、フィッシャー−トロプシュろうから少なくとも130のVIをもつ潤滑基油の製造方法が開示されており、該方法では、まず最初にろうを過酷な条件下で水素化処理した後、水素化処理したろうをアルミナに担持したフッ化VIII族(貴)金属触媒と接触させて水素化異性化し、次いで水素化異性化段階からの流出液を精留して潤滑油留分を生成し、最終的にこの潤滑油留分を脱ろうして所望の潤滑基油を生成する。最終脱ろう段階で回収された未転化ろうは、水素化異性化段階に再循環することができる。約565℃を上回る沸点をもつろう中に存在する材料を苛酷な水素化処理段階で転化することを意図しているので、使用するフィッシャー−トロプシュろうは高沸点ろうであるべきである。US−4,943,672号の実施例では、フィッシャー−トロプシュ合成物の蒸留から370℃+留分として得られたフィッシャー−トロプシュろうを使用している。従って、原料として使用されるろうは広い沸点範囲と大きく重い尾部をもつ比較的高沸点のろうである。このような広い沸点範囲、特に大きく重い尾部がろうに存在する結果、水素化異性化段階後又は水素化精製段階を適用する場合には該段階後に精留し、水素化処理したろうから最軽質留分(沸点<338℃)と最重質留分(沸点>538℃)の両者を除去し、許容可能な揮発性をもつ最終基油製品を得る必要がある。
【0004】
US−A−5,059,299号には少なくとも130のVIと−21℃以下の流動点をもつ潤滑基油をろう原料から製造する方法が開示されており、該方法ではろう原料を場合により水素化処理段階後にまず異性化ゾーンで所定の転化率で異性化した後、異性化ゾーンの全生成物を精留して潤滑油範囲の沸点(即ち>330℃、好ましくは>370℃)をもつ潤滑油留分を得、この潤滑油留分を最終的に溶剤脱ろうして所望の潤滑基油と未転化ろうを得る。この未転化ろうは異性化ゾーンに再循環することができる。原料として使用するろうはフィッシャー−トロプシュ法からの合成ろうでもよいし、脱ろう法から得られる粗ろうでもよい。開示方法ではフィッシャー−トロプシュろうが原料として有用であるとは特に明記されていない。US−A−5,059,299号の実施例1で使用されているフィッシャー−トロプシュろうは比較的広い沸点範囲をもつ高沸点ろうであるため、上述したように、許容不能な揮発性をもつ基油製品となる。使用される異性化触媒は、水素化耐火性酸化物担体に担持した水素化成分から構成すると適切である。好適触媒はフッ化アルミナに担持した白金であることが開示されている。
【0005】
【発明が解決しようとする課題】
従来技術の方法は多くの点で満足に実施されるが、まだ最適化及び改善の余地がある。本発明の目的はこのような改善方法を提供することである。より詳細には、本発明の目的は単一水素化処理段階と精留段階によりフィッシャー−トロプシュろうから少なくとも150のVIをもつ基油を製造する方法であって、水素化処理流出液から軽質成分だけを除去すればすむような方法を提供することである。更に、本発明の目的は、特にVIと揮発性に関して優れた性質をもつ基油を商業的に有利な収率で提供することである。
【0006】
【課題を解決するための手段】
比較的狭い沸点範囲をもち且つその凝固点に関する所定の要件を満たす特定のフィッシャー−トロプシュろうを原料として使用することにより、これらの目的を有効に達成できることが判明した。
従って、本発明はフィッシャー−トロプシュろう原料から少なくとも150のVIをもつ潤滑基油を製造する方法に関し、該方法は、
(a)フィッシャー−トロプシュろう原料を、275〜450℃の処理温度、10〜250barの水素分圧、0.1〜10kg/l/hの重量毎時空間速度(WHSV)、及び100〜5,000Nl/kgのガス流量からなる水素化転化条件下で水素化転化触媒と接触させる段階と、
(b)段階(a)で得られた水素化転化流出液を、有効カットポイントが325℃未満である少なくとも1種の軽質留分と、有効カットポイントが325〜450℃の範囲である重質留分に分離する段階と、
(c)重質留分を脱ろうして基油を得る段階とを含み、
フィッシャー−トロプシュろう原料は少なくとも50℃の凝固点(ASTM D938−92による)と、90重量%沸点と10重量%沸点の差(T90−T10(ASTM D6352−98を用いて測定)が40〜150℃の範囲となるような沸点をもつ。
【0007】
本発明の方法で原料として使用されるフィッシャー−トロプシュろうは、周知のフィッシャー−トロプシュ炭化水素合成法により得られる。一般に、このようなフィッシャー−トロプシュ炭化水素合成は、適切な触媒の存在下で高温高圧で一酸化炭素と水素の混合物から炭化水素を製造するものである。フィッシャー−トロプシュ触媒は一般にパラフィン分子、主に直鎖パラフィンの製造に選択的であり、従って、フィッシャー−トロプシュ合成反応からの生成物は通常は多様なパラフィン分子の混合物である。室温で気体又は液体である炭化水素は例えば燃料ガス(C5−)、溶剤原料及び洗剤原料(C17まで)として、蒸留により別々に分離、回収される。より重質のパラフィン(C18+)は、フィッシャー−トロプシュろう又は合成ろうと通称される1種以上のろう留分として前記気体又は液体炭化水素から分離、回収(製造)される。本発明の目的には、沸点及び凝固点に関する上記要件を満たすフィッシャー−トロプシュろうのみが原料として有用であり、前記1種以上のろう留分から選択、分離される
上記定義に含まれる好適なフィッシャー−トロプシュろう原料は55〜150℃、好ましくは60〜120℃の範囲の凝固点及び/又はT90−T10が50〜130℃の範囲となるような沸点範囲をもつものである。融点が100℃未満のフィッシャー−トロプシュろうは適切には100℃で少なくとも3mm2/s、好ましくは3〜12mm2 /s、より好ましくは4〜10mm2 /sの動粘度(Vk100)をもつ。融点が100℃を上回るフィッシャー−トロプシュろうは適切にはその融点よりも10〜20℃高い温度Tで8〜15mm2/s、好ましくは9〜14mm2 /sの動粘度をもつ。
【0008】
段階(a)で使用される水素化転化触媒は、原則としてパラフィン分子を異性化するのに適切であるとして当該技術分野で知られている任意の触媒であり得る。一般に、適切な水素化転化触媒は非晶質シリカ−アルミナ、アルミナ、フッ化アルミナ、分子篩(ゼオライト)又はこれらの2種以上の混合物等の耐火性酸化物担体に担持した水素化成分を含むものである。本発明に従って水素化転化段階で適用するのに好適な第1の型の触媒は、白金及び/又はパラジウムを水素化成分として含む水素化転化触媒である。非常に好適な水素化転化触媒は非晶質シリカ−アルミナ(ASA)担体に担持した白金とパラジウムを含む。白金及び/又はパラジウムの量は、担体の総重量を基にして元素として計算した場合に0.1〜5.0重量%が適切であり、より適切には0.2〜2.0重量%である。白金とパラジウムの両者が存在する場合には、白金とパラジウムの重量比(元素として計算)は広い範囲をとることができるが、0.05〜10の範囲が適切であり、より適切には0.1〜5である。ASAに担持した適切な貴金属触媒の例は、例えばWO−A−94/10264号及びEP−A−0,582,347号に開示されている。フッ化アルミナ担体に担持した白金等の他の適切な貴金属ベース触媒は例えばUS−A−5,059,299号及びWO−A−92/20759号に開示されている。
【0009】
第2の型の適切な水素化転化触媒は、水素化成分として少なくとも1種のVIB族金属、好ましくはタングステン及び/又はモリブデンと少なくとも1種のVIII族非貴金属、好ましくはニッケル及び/又はコバルトを含むものである。通常は、2種の金属はいずれも酸化物、硫化物又はその組み合わせとして存在する。VIB族金属の量は、触媒の総重量を基にして元素として計算した場合に1〜35重量%が適切であり、より適切には5〜30重量%である。VIII族非貴金属の量は、担体の総重量を基にして元素とした計算した場合に1〜25重量%が適切であり、より適切には2〜15重量%である。この型の水素化転化触媒で特に適切であることが判明したのは、フッ化アルミナに担持したニッケルとタングステンを含む触媒である。
第3の型の適切な水素化転化触媒は、中間細孔寸法のゼオライト材料をベースとし、適切には少なくとも1種のVIII族金属成分、好ましくはPt及び/又はPdを水素化成分として含む触媒である。従って、適切なゼオライト材料としては、ZSM−5、ZSM−22、ZSM−23、ZSM−35、SSZ−32、フェリエライト、ゼオライトβ、モルデン沸石及びシリカ−アルミノホスフェート(例えばSAPO−11及びSAPO−31)が挙げられる。適切な水素化異性化触媒の例は例えばWO−A−92/01657号に記載されている。
【0010】
段階(a)で適用する水素化転化条件は水素化異性化処理で適切であるとして知られている条件である。従って、適切な条件は275〜450℃、好ましくは300〜425℃の処理温度、10〜250bar、適切には25〜200barの水素分圧、0.1〜10kg/l/h、好ましくは0.2〜5kg/l/hの重量毎時空間速度(WHSV)、及び100〜5,000Nl/kg、好ましくは500〜3,000Nl/kgのガス流量を含む。
本発明の方法の段階(b)では、段階(a)からの水素化転化流出液を少なくとも1種の軽質留分と重質留分に分離する。重質留分の有効カットポイントは325〜450℃が適切であり、より適切には350〜420℃であり、特に、得られる潤滑基油をエンジン油で使用する場合にはこのような範囲が適切である。重質留分の有効カットポイントは、この重質留分中に存在する炭化水素の少なくとも85重量%、好ましくは少なくとも90重量%がこの温度を上回る沸点をもつような温度である。この分離又は精留は大気圧及び減圧蒸留又は減圧フラッシング等の当該技術分野で公知の技術により達せられる。
【0011】
段階(b)で得られた重質フラクションを次いで段階(c)で脱ろう処理にかけ、所望の流動点にする。段階(c)で実施する脱ろうは、原則として任意の公知脱ろう法により実施することができる。適切な脱ろう法の例は、慣用溶剤脱ろう法、特にメチルエチルケトン、トルエン又はその混合物を脱ろう溶剤として使用する溶剤脱ろう法と、接触脱ろう法である。どちらの型の脱ろう法も当該技術分野で周知である。最も一般に適用される溶剤脱ろう法はメチルエチルケトン(MEK)溶剤脱ろう経路であり、MEKを場合によりトルエンと混合して脱ろう溶剤として用いる。接触脱ろう法は一般に、適当な脱ろう条件下で水素と脱ろう触媒の存在下、基油の常温流れ特性を悪化させない直鎖及び低度分枝鎖パラフィン炭化水素分子を分解及び/又は異性化することからなる。主にパラフィン炭化水素の分解を助長する適切な脱ろう触媒はZSM−5、フェリエライト及び/又はシリカライトと場合により水素化成分を含むものである。主に直鎖又は低度分枝鎖炭化水素の異性化を助長する触媒の例としては、例えばSAPO−11、SAPO−31及びSAPO−41等のシリコアルミノホスフェート(SAPO)や、ZSM−23及びSSZ−32が挙げられる。脱ろう段階(c)で使用するのに適した別の類の脱ろう触媒は、0.35〜0.80nmの範囲の直径の細孔をもち且つその骨格中に共有結合アルミナ分子を含む分子篩をベースとする触媒であり、分子篩は適切には表面脱アルミン酸処理によりアルミナのモル百分率を低下させるように改質されている。この型の触媒及び該触媒を用いる脱ろう操作はヨーロッパ特許出願第95401379.3号(整理番号TS5518)に開示されている。従って、特に適切な類の脱ろう触媒は、表面失活分子篩に担持した水素化成分と、場合により低酸性度耐火性酸化物結合剤を含む。水素化成分は少なくとも1種のVIB族金属成分(例えばタングステン、モリブデン及びクロムの1種以上)及び/又は少なくとも1種のVIII金属成分(例えばパラジウム、白金、ニッケル及びコバルトの1種以上)を含み得る。本発明の目的には、適切には(担体の総重量即ち改質分子篩と任意結合剤の合計を基にして元素として計算した場合に)0.2〜3.0重量%の量の白金及び/又はパラジウムを含む水素化触媒を使用すると特に好適であることが判明した。適切な分子篩としては、MFI型ゼオライト(例えばZSM−5及びシリカライト)、オフレタイト、フェリエライト、ZSM−35及びMTT型ゼオライト(例えばZSM−23及びSSZ−32)が挙げられる。当然のことながら、本発明の目的にはMTT型ゼオライト、フェリエライト、ZSM−5及びその混合物が好適である。結合剤を使用する場合には、例えばシリカ、ジルコニア、二酸化チタン、二酸化ゲルマニウム、ボリア及びこれらの2種以上の混合物等の低酸性度耐火性酸化物が適切であり、シリカが最適である。表面失活分子篩と結合剤の重量比は10/90〜100/0の範囲であり得る。
【0012】
段階(c)の脱ろう処理で得られた粗ろうは適切には再循環され、即ち、この粗ろうの全部又は一部は、最も好都合には新しいフィッシャー−トロプシュろう原料とブレンドすることにより、水素化転化段階(a)に戻される。こうして潤滑基油の最終収率を最大にすることができる。
本発明の方法により得られる潤滑基油は種々の油で使用することができる。例えば、約400〜500℃のT90をもつフィッシャー−トロプシュろうから得られた潤滑基油は絶縁油、変圧器油及び電気冷蔵庫油で非常に有用である。>450℃、適切には450〜575℃のT90をもつフィッシャー−トロプシュろうから得られた基油は、例えば自動車エンジン等に必要なより高品質の潤滑油で使用される潤滑基油として非常に有用である。
【0013】
以下、実施例により本発明を更に説明するが、本発明の範囲はこれらの特定の態様に制限されない。
【0014】
【実施例】
実施例1
表Iに示す性質をもつフィッシャー−トロプシュろう(前述のように、フィッシャー−トロプシュ合成反応生成物から蒸留により回収した1種以上のろう留分から選択、分離して製造)を温度383℃、水素分圧140bar、WHSV1kg/l/h及びガス流量1,500Nl/kgでフッ化NiW/アルミナ触媒(全て担体の総重量を基にして5.0重量%Ni、23.1重量%W、4.6重量%F)と接触させた。流出液を精留した後、(総流出液を基にして87.8重量%の収率で得られた)390℃+留分をMEK/トルエンで−20℃で溶剤脱ろうした。得られた基油はVI165、流動点−15℃、100℃の動粘度(Vk100)4.95mm2 /s及びNoack揮発度(CEC−L−40−T87により測定)8.3重量%であった。潤滑基油の総収率はフィッシャー−トロプシュろう原料を基にして41重量%であった。
【0015】
【表1】

Figure 0003986107
【0016】
実施例2
実施例1で使用したと同一のフィッシャー−トロプシュろうを、温度332℃以外は実施例1と同一条件下でPtPd/ASA(0.3重量%Pt、1重量%Pd、ASA:シリカ/アルミナモル比55/45)と接触させた。流出液を精留した後、(総流出液を基にして88.3重量%の収率で得られた)390℃+留分をMEK/トルエンで−20℃で溶剤脱ろうした。得られた基油はVI167、流動点−15℃、100℃の動粘度(Vk100)4.86mm2 /s及びNoack揮発度7.4重量%であった。潤滑基油の総収率はフィッシャー−トロプシュろう原料を基にして39重量%であった。
【0017】
実施例3
得られた390℃+留分を溶剤脱ろうせずに接触脱ろうした以外は実施例2の手順を繰り返した。接触脱ろうは、シリカ結合表面脱アルミン酸ZSM−23(70重量%表面脱アルミン酸ZSM−23、30重量%シリカ、表面脱アルミン酸はヘキサフルオロケイ酸アンモニウムを使用して米国特許第5,157,191号に開示されている方法に従って実施)に担持した0.7重量%のPtを含む脱ろう触媒上に温度310℃、水素分圧40bar、WHSV1kg/l/h及びガス流量693Nl/kgで前記390℃+留分を通じることにより実施した。
得られた基油はVI151、流動点−27℃、100℃の動粘度(Vk100)4.96mm2 /s及びNoack揮発度(CEC−L−40−T87により測定)8.8重量%であった。潤滑基油の総収率はフィッシャー−トロプシュろう原料を基にして62.4重量%であった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing a lubricating base oil from a Fischer-Tropsch wax, in particular a lubricating base oil having a viscosity index (VI) of at least 150.
[0002]
[Prior art]
Methods for producing lubricating base oils having a VI greater than 150 from Fischer-Tropsch wax are known in the art. For example, EP-A-0,515,256 discloses a method for producing such a base oil,
(A) contacting the synthesis or Fischer-Tropsch wax with hydrogen in the presence of an alumina-based hydroconversion catalyst;
(B) contacting the hydroisomerization catalyst comprising the matrix, the specific zeolite Y and the hydrogenation component with the effluent of step (a);
(C) separating the effluent of step (b) into at least one light fraction and a heavy fraction;
(D) dewaxing the heavy fraction to obtain a base oil and a wax fraction. This wax fraction can be partly or wholly recycled to the hydroisomerization stage (b). The Fischer-Tropsch wax used as a raw material in the examples of EP-A-0,515,256 has a wide boiling range (the difference between the 90 wt% boiling point and the 10 wt% boiling point extends to 249 ° C.). This wax is thought to contain a wide variety of paraffin molecules. Due to the presence of such a wide variety of paraffin molecules, it is very difficult to satisfy the volatility specifications when the produced base oil is to be used as a lubricating base oil.
[0003]
US-A-4,943,672 discloses a process for the production of a lubricating base oil having a VI of at least 130 from a Fischer-Tropsch wax, in which the wax is first subjected to severe conditions. After hydrotreating, the hydrotreated wax is contacted with a fluorinated group VIII (noble) metal catalyst supported on alumina for hydroisomerization, and then the effluent from the hydroisomerization stage is rectified and lubricated. An oil fraction is produced and finally the lubricating oil fraction is dewaxed to produce the desired lubricating base oil. Unconverted wax recovered in the final dewaxing stage can be recycled to the hydroisomerization stage. The Fischer-Tropsch wax used should be a high boiling wax because it is intended to convert the material present in the wax having a boiling point above about 565 ° C. in a severe hydroprocessing stage. In the examples of US-4,943,672, Fischer-Tropsch wax obtained from distillation of the Fischer-Tropsch synthesis as 370 ° C + fraction is used. Thus, the wax used as a raw material is a relatively high boiling wax with a wide boiling range and a large and heavy tail. As a result of the presence of such a wide boiling range, particularly large and heavy tails in the wax, the lightest from the wax that has been rectified and hydrotreated after the hydroisomerization stage or when a hydrorefining stage is applied. It is necessary to remove both the fraction (boiling point <338 ° C.) and the heaviest fraction (boiling point> 538 ° C.) to obtain a final base oil product with acceptable volatility.
[0004]
US-A-5,059,299 discloses a process for producing a lubricating base oil having a VI of at least 130 and a pour point of -21 ° C. or less from a wax feed, wherein the wax feed is optionally After the hydrotreating stage, first isomerization is carried out in the isomerization zone at a predetermined conversion rate, and then the entire product of the isomerization zone is rectified to give a boiling point in the lubricating oil range (ie> 330 ° C, preferably> 370 ° C). A lubricating oil fraction is obtained, and the lubricating oil fraction is finally dewaxed to obtain the desired lubricating base oil and unconverted wax. This unconverted wax can be recycled to the isomerization zone. The wax used as the raw material may be a synthetic wax from the Fischer-Tropsch process or a coarse wax obtained from the dewaxing process. The disclosed method does not specifically state that Fischer-Tropsch wax is useful as a raw material. The Fischer-Tropsch wax used in Example 1 of US-A-5,059,299 is a high-boiling wax having a relatively wide boiling range and, as mentioned above, has unacceptable volatility. It becomes a base oil product. The isomerization catalyst used is suitably composed of hydrogenation components supported on a hydrogenated refractory oxide support. The preferred catalyst is disclosed to be platinum supported on fluorinated alumina.
[0005]
[Problems to be solved by the invention]
Although the prior art methods perform satisfactorily in many ways, there is still room for optimization and improvement. The object of the present invention is to provide such an improved method. More particularly, the object of the present invention is a process for producing a base oil having a VI of at least 150 from a Fischer-Tropsch wax by a single hydrotreating stage and a rectifying stage, comprising light components from a hydrotreating effluent. The only way to get rid of it is to provide a way. It is a further object of the present invention to provide a base oil with commercially advantageous yields that have excellent properties, particularly with respect to VI and volatility.
[0006]
[Means for Solving the Problems]
It has been found that these objectives can be effectively achieved by using as a raw material a specific Fischer-Tropsch wax that has a relatively narrow boiling range and meets certain requirements regarding its freezing point.
Accordingly, the present invention relates to a process for producing a lubricating base oil having a VI of at least 150 from a Fischer-Tropsch wax feed, the process comprising:
(A) Fischer-Tropsch wax feed with a processing temperature of 275 to 450 ° C., a hydrogen partial pressure of 10 to 250 bar, a weight hourly space velocity (WHSV) of 0.1 to 10 kg / l / h, and 100 to 5,000 Nl. Contacting with a hydroconversion catalyst under hydroconversion conditions comprising a gas flow rate of / kg ;
(B) The hydroconversion effluent obtained in step (a) is treated with at least one light fraction with an effective cut point of less than 325 ° C and heavy with an effective cut point in the range of 325 to 450 ° C. Separating into fractions;
(C) dewaxing the heavy fraction to obtain a base oil,
Fischer-Tropsch wax material has a freezing point of at least 50 ° C. (according to ASTM D938-92) and a difference between 90 wt% boiling point and 10 wt% boiling point (T 90 -T 10 ) (measured using ASTM D6352-98). Has a boiling point in the range of ~ 150 ° C.
[0007]
The Fischer-Tropsch wax used as a raw material in the method of the present invention is obtained by a well-known Fischer-Tropsch hydrocarbon synthesis method. In general, such Fischer-Tropsch hydrocarbon synthesis produces hydrocarbons from a mixture of carbon monoxide and hydrogen at high temperature and pressure in the presence of a suitable catalyst. Fischer-Tropsch catalysts are generally selective for the production of paraffin molecules, mainly linear paraffins, and thus the products from the Fischer-Tropsch synthesis reaction are usually a mixture of various paraffin molecules. Hydrocarbons that are gaseous or liquid at room temperature are separated and recovered separately by distillation, for example, as fuel gas (C 5- ), solvent feed and detergent feed (up to C 17 ). The heavier paraffin (C 18 +) is separated and recovered (manufactured) from the gas or liquid hydrocarbon as one or more wax fractions commonly referred to as Fischer-Tropsch wax or synthetic wax. The object of the present invention, the Fischer satisfy the above requirements for boiling point and freezing point - only Tropsch wax it practical as a raw material, selected from the one or more wax fractions, are separated.
Suitable Fischer-Tropsch wax raw materials included in the above definition have a freezing point in the range of 55 to 150 ° C, preferably in the range of 60 to 120 ° C and / or a boiling range in which T 90 -T 10 is in the range of 50 to 130 ° C. It has. A Fischer-Tropsch wax with a melting point of less than 100 ° C suitably has a kinematic viscosity (Vk100) at 100 ° C of at least 3 mm 2 / s, preferably 3 to 12 mm 2 / s, more preferably 4 to 10 mm 2 / s. Melting point is above 100 ° C. Fischer - Tropsch wax is suitably 8~15mm at 10 to 20 ° C. higher temperature T above its melting point 2 / s, preferably having a kinematic viscosity 9~14mm 2 / s.
[0008]
The hydroconversion catalyst used in step (a) can in principle be any catalyst known in the art as suitable for isomerizing paraffin molecules. In general, suitable hydroconversion catalysts are those containing a hydrogenation component supported on a refractory oxide support such as amorphous silica-alumina, alumina, fluorinated alumina, molecular sieve (zeolite) or a mixture of two or more thereof. . A first type of catalyst suitable for application in the hydroconversion stage according to the present invention is a hydroconversion catalyst comprising platinum and / or palladium as a hydrogenation component. A very suitable hydroconversion catalyst comprises platinum and palladium supported on an amorphous silica-alumina (ASA) support. The amount of platinum and / or palladium is suitably 0.1 to 5.0% by weight, more suitably 0.2 to 2.0% by weight when calculated as an element based on the total weight of the support. It is. When both platinum and palladium are present, the weight ratio of platinum to palladium (calculated as an element) can take a wide range, but a range of 0.05 to 10 is appropriate, more suitably 0. .1-5. Examples of suitable noble metal catalysts supported on ASA are disclosed, for example, in WO-A-94 / 10264 and EP-A-0,582,347. Other suitable noble metal based catalysts such as platinum supported on a fluorinated alumina support are disclosed, for example, in US-A-5,059,299 and WO-A-92 / 20759.
[0009]
A second type of suitable hydroconversion catalyst comprises at least one group VIB metal, preferably tungsten and / or molybdenum and at least one group VIII non-noble metal, preferably nickel and / or cobalt, as the hydrogenation component. Is included. Usually, both of the two metals are present as oxides, sulfides or combinations thereof. The amount of Group VIB metal is suitably 1 to 35% by weight, more suitably 5 to 30% by weight when calculated as an element based on the total weight of the catalyst. The amount of Group VIII non-noble metal is suitably 1 to 25% by weight, more suitably 2 to 15% by weight, calculated as elements based on the total weight of the support. Particularly suitable for this type of hydroconversion catalyst has been found to be a catalyst comprising nickel and tungsten supported on fluorinated alumina.
A third type of suitable hydroconversion catalyst is based on an intermediate pore size zeolitic material and suitably comprises at least one Group VIII metal component, preferably Pt and / or Pd, as a hydrogenation component It is. Accordingly, suitable zeolitic materials include ZSM-5, ZSM-22, ZSM-23, ZSM-35, SSZ-32, ferrierite, zeolite β, mordenite and silica-aluminophosphates (eg, SAPO-11 and SAPO- 31). Examples of suitable hydroisomerization catalysts are described, for example, in WO-A-92 / 01657.
[0010]
The hydroconversion conditions applied in step (a) are those known to be suitable for hydroisomerization. Accordingly, suitable conditions are 275 to 450 ° C., preferably 300 to 425 ° C. processing temperature, 10 to 250 bar, suitably 25 to 200 bar hydrogen partial pressure, 0.1 to 10 kg / l / h, preferably 0. It includes a weight hourly space velocity (WHSV) of 2-5 kg / l / h and a gas flow rate of 100-5,000 Nl / kg, preferably 500-3,000 Nl / kg.
In step (b) of the process of the invention, the hydroconversion effluent from step (a) is separated into at least one light fraction and a heavy fraction. The effective cut point of the heavy fraction is suitably 325 to 450 ° C., more suitably 350 to 420 ° C. Especially when the obtained lubricating base oil is used as an engine oil, such a range is used. Is appropriate. The effective cut point of the heavy fraction is a temperature such that at least 85%, preferably at least 90% by weight of the hydrocarbons present in the heavy fraction have a boiling point above this temperature. This separation or rectification can be accomplished by techniques known in the art such as atmospheric pressure and vacuum distillation or vacuum flushing.
[0011]
Subjected to dewaxing in step (c) is then heavy hula transfection obtained in step (b), the to the desired pour point. The dewaxing carried out in step (c) can in principle be carried out by any known dewaxing method. Examples of suitable dewaxing methods are conventional solvent dewaxing methods, particularly solvent dewaxing methods using methyl ethyl ketone, toluene or mixtures thereof as dewaxing solvents, and catalytic dewaxing methods. Both types of dewaxing methods are well known in the art. The most commonly applied solvent dewaxing method is the methyl ethyl ketone (MEK) solvent dewaxing route, where MEK is optionally mixed with toluene and used as the dewaxing solvent. Catalytic dewaxing generally decomposes and / or isomerizes linear and low-branched paraffin hydrocarbon molecules that do not degrade the normal temperature flow characteristics of the base oil in the presence of hydrogen and a dewaxing catalyst under suitable dewaxing conditions. It consists of. Suitable dewaxing catalysts that primarily aid in the cracking of paraffin hydrocarbons are those comprising ZSM-5, ferrierite and / or silicalite and optionally a hydrogenation component. Examples of catalysts that primarily promote isomerization of linear or low-branched hydrocarbons include, for example, silicoaluminophosphates (SAPO) such as SAPO-11, SAPO-31 and SAPO-41, ZSM-23 and SSZ-32 is mentioned. Another class of dewaxing catalysts suitable for use in the dewaxing step (c) is a molecular sieve having pores with diameters ranging from 0.35 to 0.80 nm and containing covalently bound alumina molecules in its skeleton. The molecular sieve is suitably modified to reduce the mole percentage of alumina by surface dealumination treatment. This type of catalyst and the dewaxing operation using the catalyst are disclosed in European Patent Application No. 95401379.3 (Docket No. TS5518). Thus, a particularly suitable class of dewaxing catalysts comprises a hydrogenation component supported on a surface deactivated molecular sieve and optionally a low acidity refractory oxide binder. The hydrogenation component includes at least one VIB metal component (eg, one or more of tungsten, molybdenum and chromium) and / or at least one VIII metal component (eg, one or more of palladium, platinum, nickel and cobalt). obtain. For the purposes of the present invention, suitably an amount of platinum of 0.2 to 3.0% by weight (when calculated as an element based on the total weight of the carrier, ie the sum of the modified molecular sieve and the optional binder) and It has proved particularly advantageous to use hydrogenation catalysts containing palladium. Suitable molecular sieves include MFI type zeolites (eg ZSM-5 and silicalite), offretite, ferrierite, ZSM-35 and MTT type zeolites (eg ZSM-23 and SSZ-32). Of course, MTT type zeolite, ferrierite, ZSM-5 and mixtures thereof are suitable for the purposes of the present invention. When a binder is used, low acidity refractory oxides such as silica, zirconia, titanium dioxide, germanium dioxide, boria and mixtures of two or more thereof are suitable, with silica being optimal. The weight ratio of the surface deactivated molecular sieve to the binder can range from 10/90 to 100/0.
[0012]
The coarse wax obtained from the dewaxing process of step (c) is suitably recycled, i.e. all or part of this coarse wax is most conveniently blended with a new Fischer-Tropsch wax feed. Returned to the hydroconversion stage (a). In this way, the final yield of the lubricating base oil can be maximized.
The lubricating base oil obtained by the method of the present invention can be used in various oils. For example, lubricating base oils obtained from Fischer-Tropsch wax having a T 90 of about 400-500 ° C. are very useful in insulating oils, transformer oils and electric refrigerator oils. Base oils obtained from Fischer-Tropsch waxes with T 90 > 450 ° C., suitably 450-575 ° C. are very suitable as lubricating base oils for use in higher quality lubricants required for eg automotive engines Useful for.
[0013]
EXAMPLES Hereinafter, although an Example demonstrates this invention further, the scope of the present invention is not restrict | limited to these specific aspects.
[0014]
【Example】
Example 1
A Fischer-Tropsch wax having the properties shown in Table I (produced by selecting from one or more wax fractions recovered from the Fischer-Tropsch synthesis reaction product by distillation as described above) and a hydrogen content at 383 ° C. Fluorinated NiW / alumina catalyst at a pressure of 140 bar, WHSV 1 kg / l / h and gas flow rate 1,500 Nl / kg (all 5.0 wt% Ni, 23.1 wt% W, 4.6 based on total weight of support) Weight% F). After rectifying the effluent, the 390 ° C. + fraction (obtained in a yield of 87.8% by weight based on the total effluent) was dewaxed with MEK / toluene at −20 ° C. The obtained base oil had a VI165, a pour point of -15 ° C, a kinematic viscosity at 100 ° C (Vk100) of 4.95 mm 2 / s and a Noack volatility (measured by CEC-L-40-T87) of 8.3 wt%. It was. The total yield of the lubricating base oil was 41% by weight based on the Fischer-Tropsch wax feed.
[0015]
[Table 1]
Figure 0003986107
[0016]
Example 2
The same Fischer-Tropsch wax as used in Example 1 was prepared under the same conditions as in Example 1 except for a temperature of 332 ° C. (PtPd / ASA (0.3 wt% Pt, 1 wt% Pd, ASA: silica / alumina molar ratio). 55/45). After rectifying the effluent, the 390 ° C. + fraction (obtained in a yield of 88.3% by weight based on the total effluent) was dewaxed with MEK / toluene at −20 ° C. The obtained base oil had a VI167, a pour point of -15 ° C, a kinematic viscosity (Vk100) of 4.86 mm 2 / s at 100 ° C, and a Noack volatility of 7.4% by weight. The total yield of lubricating base oil was 39% by weight based on the Fischer-Tropsch wax feed.
[0017]
Example 3
The procedure of Example 2 was repeated except that the resulting 390 ° C. + fraction was contact dewaxed without solvent dewaxing. Catalytic dewaxing was performed using silica-bonded surface dealuminated acid ZSM-23 (70 wt.% Surface dealuminated ZSM-23, 30 wt.% Silica, surface dealuminated acid using ammonium hexafluorosilicate. No. 157,191 carried out according to the method disclosed in US Pat. No. 157,191) on a dewaxing catalyst containing 0.7 wt. This was carried out by passing the 390 ° C + fraction.
The resulting base oil had a VI151, a pour point of -27 ° C., a kinematic viscosity (Vk 100) of 4.96 mm 2 / s at 100 ° C. and a Noack volatility (measured by CEC-L-40-T87) of 8.8% by weight. It was. The total yield of lubricating base oil was 62.4% by weight based on the Fischer-Tropsch wax feed.

Claims (12)

フィッシャー−トロプシュろう原料から少なくとも150のVIをもつ潤滑基油を製造する方法であって、
(a)フィッシャー−トロプシュろう原料を、275〜450℃の処理温度、10〜250barの水素分圧、0.1〜10kg/l/hの重量毎時空間速度(WHSV)、及び100〜5,000Nl/kgのガス流量からなる水素化転化条件下で水素化転化触媒と接触させる段階と、
(b)段階(a)で得られた水素化転化流出液を、有効カットポイントが325℃未満である少なくとも1種の軽質留分と、有効カットポイントが325〜450℃の範囲である重質留分に分離する段階と、
(c)重質留分を脱ろうして基油を得る段階とを含み、
フィッシャー−トロプシュろう原料が少なくとも50℃の凝固点(ASTM D938−92による)と、90重量%沸点と10重量%沸点の差(T90−T10(ASTM D6352−98を用いて測定)が40〜150℃の範囲となるような沸点をもつ前記方法。
A process for producing a lubricating base oil having a VI of at least 150 from a Fischer-Tropsch wax feed comprising:
(A) Fischer-Tropsch wax feed with a processing temperature of 275 to 450 ° C., a hydrogen partial pressure of 10 to 250 bar, a weight hourly space velocity (WHSV) of 0.1 to 10 kg / l / h, and 100 to 5,000 Nl. Contacting with a hydroconversion catalyst under hydroconversion conditions comprising a gas flow rate of / kg ;
(B) The hydroconversion effluent obtained in step (a) is treated with at least one light fraction with an effective cut point of less than 325 ° C and heavy with an effective cut point in the range of 325 to 450 ° C. Separating into fractions;
(C) dewaxing the heavy fraction to obtain a base oil,
Fischer-Tropsch wax material has a freezing point of at least 50 ° C. (according to ASTM D938-92) and a difference between 90 wt% boiling point and 10 wt% boiling point (T 90 -T 10 ) (measured using ASTM D6352-98). Said process having a boiling point in the range of ~ 150 ° C.
90−T10が50〜130℃の範囲である請求項1に記載の方法。The method of claim 1 T 90 -T 10 is in the range of 50 to 130 ° C.. フィッシャー−トロプシュろう原料が55〜150℃の範囲の凝固点をもつ請求項1又は2に記載の方法。The process according to claim 1 or 2, wherein the Fischer-Tropsch wax feed has a freezing point in the range of 55 to 150 ° C. フィッシャー−トロプシュろう原料が60〜120℃の範囲の凝固点をもつ請求項3に記載の方法。4. A process according to claim 3, wherein the Fischer-Tropsch wax feed has a freezing point in the range of 60-120 ° C. 水素化転化触媒が耐火性酸化物担体に担持された水素化成分を含む請求項1から4のいずれか一項に記載の方法。The process according to any one of claims 1 to 4, wherein the hydroconversion catalyst comprises a hydrogenation component supported on a refractory oxide support. 水素化転化触媒が水素化成分として白金及び/又はパラジウムを含む請求項5に記載の方法。The process according to claim 5, wherein the hydroconversion catalyst comprises platinum and / or palladium as a hydrogenation component. 水素化転化触媒が非晶質シリカ−アルミナ担体に担持された白金及びパラジウムを含む請求項6に記載の方法。The process of claim 6 wherein the hydroconversion catalyst comprises platinum and palladium supported on an amorphous silica-alumina support. 水素化転化触媒が水素化成分として少なくとも1種のVIB族金属と少なくとも1種のVIII族非貴金属を含む請求項5に記載の方法。6. The process of claim 5, wherein the hydroconversion catalyst comprises at least one Group VIB metal and at least one Group VIII non-noble metal as hydrogenation components. VIB族金属がタングステンであり、VIII族非貴金属がニッケルである請求項8に記載の方法。9. The method of claim 8, wherein the Group VIB metal is tungsten and the Group VIII non-noble metal is nickel. 重質留分が段階b)で350〜420℃の範囲の有効カットポイントで得られる請求項1から9のいずれか一項に記載の方法。The process according to any one of claims 1 to 9, wherein the heavy fraction is obtained in step b) with an effective cut point in the range of 350-420 ° C. 段階(c)の脱ろうが溶剤脱ろうにより実施される請求項1から10のいずれか一項に記載の方法。The process according to any one of claims 1 to 10, wherein the dewaxing of step (c) is carried out by solvent dewaxing. 段階(c)の脱ろうが接触脱ろうにより実施される請求項1から10のいずれか一項に記載の方法。A process according to any one of the preceding claims, wherein the dewaxing of step (c) is carried out by catalytic dewaxing.
JP32906696A 1995-11-28 1996-11-26 Method for producing lubricating base oil Expired - Lifetime JP3986107B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP95402713 1995-11-28
NL95402713.2 1995-11-28

Publications (2)

Publication Number Publication Date
JPH09221685A JPH09221685A (en) 1997-08-26
JP3986107B2 true JP3986107B2 (en) 2007-10-03

Family

ID=8221546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32906696A Expired - Lifetime JP3986107B2 (en) 1995-11-28 1996-11-26 Method for producing lubricating base oil

Country Status (11)

Country Link
JP (1) JP3986107B2 (en)
KR (1) KR100457182B1 (en)
CN (1) CN1089794C (en)
AU (1) AU705415B2 (en)
CA (1) CA2191290C (en)
DE (2) DE69635320T2 (en)
DZ (1) DZ2129A1 (en)
MY (1) MY114570A (en)
SG (1) SG74001A1 (en)
TW (1) TW416981B (en)
ZA (1) ZA969906B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103099A (en) * 1998-09-04 2000-08-15 Exxon Research And Engineering Company Production of synthetic lubricant and lubricant base stock without dewaxing
ES2185445B1 (en) * 1999-04-29 2004-08-16 Institut Francais Du Petrole FLEXIBLE PROCEDURE FOR PRODUCTION OF OIL BASES AND MEDIUM DISTILLATES WITH A CONVERSION-HYDROISOMERIZATION FOLLOWED BY A CATALYTIC DEPARAFINING.
AR032930A1 (en) * 2001-03-05 2003-12-03 Shell Int Research PROCEDURE TO PREPARE AN OIL BASED OIL AND GAS OIL
AR032941A1 (en) 2001-03-05 2003-12-03 Shell Int Research A PROCEDURE TO PREPARE A LUBRICATING BASE OIL AND BASE OIL OBTAINED, WITH ITS VARIOUS USES
WO2004003113A1 (en) * 2002-06-26 2004-01-08 Shell Internationale Research Maatschappij B.V. Lubricant composition
EP1523536B1 (en) * 2002-07-19 2019-08-21 Shell International Research Maatschappij B.V. Silicon rubber comprising an extender oil
US6703353B1 (en) * 2002-09-04 2004-03-09 Chevron U.S.A. Inc. Blending of low viscosity Fischer-Tropsch base oils to produce high quality lubricating base oils
US20040129603A1 (en) * 2002-10-08 2004-07-08 Fyfe Kim Elizabeth High viscosity-index base stocks, base oils and lubricant compositions and methods for their production and use
US7125818B2 (en) * 2002-10-08 2006-10-24 Exxonmobil Research & Engineering Co. Catalyst for wax isomerate yield enhancement by oxygenate pretreatment
US7132042B2 (en) * 2002-10-08 2006-11-07 Exxonmobil Research And Engineering Company Production of fuels and lube oils from fischer-tropsch wax
US7704379B2 (en) * 2002-10-08 2010-04-27 Exxonmobil Research And Engineering Company Dual catalyst system for hydroisomerization of Fischer-Tropsch wax and waxy raffinate
US20040154958A1 (en) * 2002-12-11 2004-08-12 Alexander Albert Gordon Functional fluids having low brookfield viscosity using high viscosity-index base stocks, base oils and lubricant compositions, and methods for their production and use
US6962651B2 (en) * 2003-03-10 2005-11-08 Chevron U.S.A. Inc. Method for producing a plurality of lubricant base oils from paraffinic feedstock
US20050077208A1 (en) * 2003-10-14 2005-04-14 Miller Stephen J. Lubricant base oils with optimized branching
US8137531B2 (en) * 2003-11-05 2012-03-20 Chevron U.S.A. Inc. Integrated process for the production of lubricating base oils and liquid fuels from Fischer-Tropsch materials using split feed hydroprocessing
JP6080489B2 (en) * 2005-01-07 2017-02-15 Jxエネルギー株式会社 Lubricating base oil
CN102911726B (en) * 2011-08-01 2015-04-15 中国石油化工股份有限公司 Production method for base oil of high velocity index lubricating oil
CN103102946B (en) * 2011-11-10 2015-07-22 中国石油化工股份有限公司 Production method for light lubricant base oil and heavy lubricant base oil
CN103773466B (en) * 2012-10-24 2015-06-17 中国石油化工股份有限公司 Method for producing lubricant base oil by hydrocracking-isodewaxing combination
CN103773476B (en) * 2012-10-24 2015-06-17 中国石油化工股份有限公司 Method for producing high-viscosity-index lubricant base oil by hydrocracking-isodewaxing combination
CN103773465B (en) * 2012-10-24 2015-04-15 中国石油化工股份有限公司 Method for production of high viscosity index lubricant base oil by combination technology

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059299A (en) * 1987-12-18 1991-10-22 Exxon Research And Engineering Company Method for isomerizing wax to lube base oils
EP0323092B1 (en) * 1987-12-18 1992-04-22 Exxon Research And Engineering Company Process for the hydroisomerization of fischer-tropsch wax to produce lubricating oil
US4943672A (en) * 1987-12-18 1990-07-24 Exxon Research And Engineering Company Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403)
FR2676749B1 (en) * 1991-05-21 1993-08-20 Inst Francais Du Petrole PROCESS FOR HYDROISOMERIZATION OF PARAFFINS FROM THE FISCHER-TROPSCH PROCESS USING H-Y ZEOLITE CATALYSTS.
US5379533A (en) * 1991-12-06 1995-01-10 Converse Inc. Fluid filled amusement or attention attracting article for attachment to footwear
US5378348A (en) * 1993-07-22 1995-01-03 Exxon Research And Engineering Company Distillate fuel production from Fischer-Tropsch wax
EP0668342B1 (en) * 1994-02-08 1999-08-04 Shell Internationale Researchmaatschappij B.V. Lubricating base oil preparation process
FR2718145B1 (en) * 1994-04-01 1996-05-31 Inst Francais Du Petrole Treatment process with hydroisomerization of charges from the fischer-tropsch process.

Also Published As

Publication number Publication date
CN1089794C (en) 2002-08-28
AU705415B2 (en) 1999-05-20
KR970027273A (en) 1997-06-24
ZA969906B (en) 1997-05-28
DE69633549T2 (en) 2005-11-17
DE69635320T2 (en) 2006-04-20
TW416981B (en) 2001-01-01
CN1167811A (en) 1997-12-17
AU7198896A (en) 1997-06-05
DE69635320D1 (en) 2005-11-24
JPH09221685A (en) 1997-08-26
KR100457182B1 (en) 2005-04-19
MY114570A (en) 2002-11-30
SG74001A1 (en) 2000-07-18
CA2191290A1 (en) 1997-05-29
DE69633549D1 (en) 2004-11-11
CA2191290C (en) 2006-09-26
DZ2129A1 (en) 2002-07-23

Similar Documents

Publication Publication Date Title
EP0776959B1 (en) Process for producing lubricating base oils
JP3986107B2 (en) Method for producing lubricating base oil
JP5110759B2 (en) Process for converting waxy feedstock to low haze heavy base oil
JP4454935B2 (en) Lubricating base oil and gas oil production method
JP5570483B2 (en) Isomerization / dehazing method of base oil from Fischer-Tropsch wax
JP5221035B2 (en) Fuel oils and lubricants using layered bed catalysts in hydroprocessing of waxy feedstocks including Fischer-Tropsch wax, and further solvent dewaxing
US20080045614A1 (en) Process to Make a Base Oil
JP5000296B2 (en) Process for producing base oils from Fischer-Tropsch synthesis products
JP2004528426A (en) Method for producing lubricating base oil and gas oil
JP2004528427A (en) Manufacturing method of lubricant base oil
WO2005083039A1 (en) Process to prepare a lubricating base oil
JP2008525551A (en) Method for producing lubricating base oil
JP2009513727A (en) Method for producing lubricating base oil
JP2008520786A (en) Production method of base oil
KR100426263B1 (en) Method for producing lubricating base oil
CN115698230A (en) Process for the preparation of fischer-tropsch derived middle distillates and base oils
EP0744452B1 (en) Process for producing lubricating base oils
EP2746367A1 (en) Process to prepare base oil and gas oil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070115

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3