JP3985099B2 - Method for drying trace volatile content of ethylene oxide-butylene oxide copolymer resin and ethylene oxide-butylene oxide copolymer resin dried by the method - Google Patents

Method for drying trace volatile content of ethylene oxide-butylene oxide copolymer resin and ethylene oxide-butylene oxide copolymer resin dried by the method Download PDF

Info

Publication number
JP3985099B2
JP3985099B2 JP2004043500A JP2004043500A JP3985099B2 JP 3985099 B2 JP3985099 B2 JP 3985099B2 JP 2004043500 A JP2004043500 A JP 2004043500A JP 2004043500 A JP2004043500 A JP 2004043500A JP 3985099 B2 JP3985099 B2 JP 3985099B2
Authority
JP
Japan
Prior art keywords
resin
drying
amount
gas
ethylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004043500A
Other languages
Japanese (ja)
Other versions
JP2005233518A (en
Inventor
正樹 手塚
寛 田中
貴生 横橋
隆男 西畑
学 菊田
通之 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS CO. LTD.
Nippon Shokubai Co Ltd
Original Assignee
DKS CO. LTD.
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKS CO. LTD., Nippon Shokubai Co Ltd filed Critical DKS CO. LTD.
Priority to JP2004043500A priority Critical patent/JP3985099B2/en
Priority to EP05003336A priority patent/EP1566398A1/en
Priority to CA002497069A priority patent/CA2497069A1/en
Priority to US11/062,151 priority patent/US7354984B2/en
Publication of JP2005233518A publication Critical patent/JP2005233518A/en
Application granted granted Critical
Publication of JP3985099B2 publication Critical patent/JP3985099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Polyethers (AREA)

Description

本発明は、エチレンオキシド−ブチレンオキシド系共重合体樹脂の微量揮発分の乾燥方法、及びこれを用いて乾燥されたエチレンオキシド−ブチレンオキシド系共重合体樹脂に関する。   The present invention relates to a method for drying a small amount of volatile components of an ethylene oxide-butylene oxide copolymer resin, and an ethylene oxide-butylene oxide copolymer resin dried using the method.

エチレンオキシド−ブチレンオキシド系共重合体(以下、EO・BO系共重合体という)樹脂は優れた電気化学的特性を発現する可能性があり、電池等の電気化学デバイスの材料として、その有用性が着目されている。しかしながら、樹脂中に含まれる有機溶媒や水分が樹脂の物性や電気的特性と密接に関係するため、その低減が重要な課題となっている。   An ethylene oxide-butylene oxide copolymer (hereinafter referred to as EO / BO copolymer) resin may exhibit excellent electrochemical characteristics, and is useful as a material for electrochemical devices such as batteries. It is attracting attention. However, since the organic solvent and moisture contained in the resin are closely related to the physical properties and electrical characteristics of the resin, reduction thereof is an important issue.

樹脂の乾燥方法としては、例えば特開平7−316223号公報に示されたように、貯蔵槽に貯蔵されたペレット状や粉体状の樹脂製品の中に乾燥空気を流入させる方法が用いられている。しかしながら、この方法では樹脂製品を短時間でまんべんなく乾燥させることは困難であり、乾燥効率が低いという問題があった。   As a method for drying the resin, for example, as disclosed in JP-A-7-316223, a method of allowing dry air to flow into a pellet-like or powder-like resin product stored in a storage tank is used. Yes. However, this method has a problem that it is difficult to dry the resin product evenly in a short time, and the drying efficiency is low.

また、特開2002−1727号公報には、加熱された気体を樹脂ペレットの貯槽に吹き込み、その状態を維持して静置し、一定時間静置後、貯槽内のペレットを抜き出し、貯槽へ戻すという循環を行う方法が提案されている。このような熱風乾燥方法は、大気中には有機溶剤を含まないので、ヘプタンのような有機溶剤を除去して樹脂を乾燥させるには適している。しかしながら、水分を除去する場合は、大気中に水分を含むために、1%(数千ppm)以下に乾燥させることは困難であり、特に数百ppm以下にすることは非常に困難であった。また、貯槽からペレットを抜き出し、貯槽に戻し循環することは、樹脂を大気を接触させないことが条件となるので、大規模な装置を必要とするという問題もあった。
特開平7−316223号公報 特開2002−1727号公報
Japanese Patent Application Laid-Open No. 2002-1727 discloses that a heated gas is blown into a resin pellet storage tank, and the state is maintained and allowed to stand. After standing for a certain period of time, the pellet in the storage tank is extracted and returned to the storage tank. A method of performing such a cycle has been proposed. Such a hot air drying method does not contain an organic solvent in the atmosphere, and is therefore suitable for removing an organic solvent such as heptane and drying the resin. However, when water is removed, it is difficult to dry to 1% (thousands of ppm) or less, especially to several hundreds of ppm or less, because it contains moisture in the atmosphere. . In addition, extracting the pellet from the storage tank and circulating it back to the storage tank has a problem that a large-scale apparatus is required because the resin is not in contact with the atmosphere.
JP 7-316223 A JP 2002-1727 A

上記の様な観点から、本発明は、比較的簡易な装置で樹脂から微量水分をも除去し得る、効率の良い乾燥方法を提供することを目的とするものである。   In view of the above, an object of the present invention is to provide an efficient drying method capable of removing even a small amount of moisture from a resin with a relatively simple apparatus.

本発明の乾燥方法は、微量揮発分を含むエチレンオキシド−ブチレンオキシド系共重合体樹脂の乾燥方法であって、上記の課題を解決するために、樹脂が投入されるほぼ円錐型又はほぼ円柱型の蒸発槽と、自転しつつ前記蒸発槽内を壁面に沿って公転する攪拌翼とを備えた装置を用い、前記攪拌翼で樹脂を攪拌しつつ乾燥させるに際し、前記蒸発槽内を減圧し、キャリアガスとして露点−40℃以下の乾燥気体を、蒸発槽の下方から、樹脂の仕込量に対する割合(ガス量(L/min)/仕込量(kg))が0.1〜3.0の範囲内となる流量で導入するものである(請求項1)。 The drying method of the present invention is a method for drying an ethylene oxide-butylene oxide copolymer resin containing a small amount of volatile matter, and in order to solve the above-mentioned problems, the resin is charged in a substantially conical type or a substantially cylindrical type. When using an apparatus equipped with an evaporating tank and a stirring blade that revolves along the wall surface while rotating, the inside of the evaporating tank is depressurized and dried while stirring the resin with the stirring blade. A dry gas having a dew point of −40 ° C. or less as a gas from the lower part of the evaporation tank is within a range of 0.1 to 3.0 in terms of the ratio of the resin charge (gas amount (L / min) / charge amount (kg)) it is intended to introduce in to become a flow rate (claim 1).

上記乾燥方法においては、蒸発槽内を圧力5〜40kPaに減圧することが好ましい(請求項2)。また、キャリアガスの温度、乾燥させる樹脂の結晶化温度(以下、Tcと表記する)±10℃の範囲内に調整することがより好ましい(請求項3)。また、低速攪拌又は間歇攪拌を行うことにより樹脂の溶融又は劣化を防止することができる(請求項4)。 In the drying method, the inside of the evaporation tank is preferably decompressed to a pressure of 5 to 40 kPa (Claim 2). More preferably, the temperature of the carrier gas is adjusted within a range of ± 10 ° C. of the crystallization temperature of the resin to be dried (hereinafter referred to as Tc). Moreover, melting or deterioration of the resin can be prevented by performing low speed stirring or intermittent stirring (Claim 4).

上記乾燥方法を行う場合、乾燥所要時間を下記式(1)に基づき推算することができる。

Figure 0003985099
When performing the said drying method, drying required time can be estimated based on following formula (1).
Figure 0003985099

式(1)中、aは初期揮発分濃度(ppm)、bは目標揮発分濃度(ppm)、cは仕込量(kg)、dは乾燥係数(kg/L)、eはガス導入量(L/min)をそれぞれ示し、乾燥係数dは次式より求められる;

Figure 0003985099
In the formula (1), a is the initial volatile concentration (ppm), b is the target volatile concentration (ppm), c is the charged amount (kg), d is the drying coefficient (kg / L), e is the amount of gas introduced ( L / min), respectively, and the drying coefficient d is obtained from the following equation;
Figure 0003985099

但し、各数値の単位は以下の通りである;
揮発分濃度:ppm、仕込量:kg、時間:min、ガス導入量:L/min
However, the unit of each numerical value is as follows;
Volatile concentration: ppm, charge amount: kg, time: min, gas introduction amount: L / min

本発明のエチレンオキシド−ブチレンオキシド系共重合体樹脂は、上記いずれかの乾燥方法により乾燥されたものである。   The ethylene oxide-butylene oxide copolymer resin of the present invention is one dried by any one of the above drying methods.

本発明の乾燥方法によれば、比較的簡易な装置で効率的に樹脂を乾燥から微量水分をも除去することが可能となる(請求項1)。   According to the drying method of the present invention, it is possible to efficiently remove a minute amount of moisture from the resin by efficiently using a relatively simple apparatus.

減圧系で操作することにより製品温度が低い状態で微量溶媒成分の除去行うことができ、樹脂の熱的劣化を防止できると共に、乾燥気体を下方から導入することにより、系内に滞留する微量溶媒ガス成分を系外へ効率良く排出できる(請求項1,2)。 By operating in a reduced pressure system, trace solvent components can be removed at a low product temperature, preventing thermal degradation of the resin, and introducing a dry gas from the bottom to keep the trace amount in the system. The solvent gas component can be efficiently discharged out of the system (claims 1 and 2).

また、キャリアガスの温度を樹脂の(Tc±10)℃以内に調整することにより、効率良く乾燥でき、かつ樹脂の軟化を防止できる(請求項3)。   Further, by adjusting the temperature of the carrier gas within (Tc ± 10) ° C. of the resin, it is possible to dry efficiently and prevent the resin from being softened (Claim 3).

さらに、低速攪拌又は間欠攪拌を行う事により、連続攪拌で生じる発熱による樹脂の溶融や機械的劣化を防止できる(請求項4)。   Further, by performing low-speed stirring or intermittent stirring, resin melting and mechanical deterioration due to heat generated by continuous stirring can be prevented (claim 4).

また、微量溶媒成分が目標値まで除去される所要時間が推算されることにより、除去操作の終点管理が容易になる(請求項5)。   Further, the end point management of the removal operation is facilitated by estimating the time required for removing the trace solvent component to the target value.

上記の乾燥方法により得られるEO・BO系共重合体樹脂は、優れた物性と電気化学的特性を有し、電気化学デバイスの材料として有用なものとなりうる(請求項6)。   The EO / BO copolymer resin obtained by the above drying method has excellent physical properties and electrochemical characteristics, and can be useful as a material for electrochemical devices (claim 6).

本発明の適用対象となるEO・BO系共重合体樹脂とは、主としてエチレンオキシド、ブチレンオキシド及びグリシジルエーテル類が付加共重合してなるものを言い、本発明の目的を損なわない範囲内で他のモノマーが含まれていてもよい。共重合体中のエチレンオキシド、ブチレンオキシド及びグリシジルエーテル類の構成比率は特に限定されないが、電気化学用途では、エチレンオキシド90〜95重量%、ブチレンオキシド3〜10重量%、及びグリシジルエーテル類0〜5重量%のものが一般に用いられている。樹脂の分子量(重量平均分子量をいう、以下同様)は、通常は2万〜50万程度、好ましくは2万〜20万程度である。樹脂の形態は特に限定されず、ペレットや粉体が一般的であるが、粒状物や粉砕物等であってもよい。   The EO / BO copolymer resin to which the present invention is applied refers to those obtained by addition copolymerization of ethylene oxide, butylene oxide and glycidyl ethers, and within the scope of not impairing the object of the present invention. Monomers may be included. The constituent ratios of ethylene oxide, butylene oxide and glycidyl ethers in the copolymer are not particularly limited. For electrochemical applications, ethylene oxide is 90 to 95% by weight, butylene oxide is 3 to 10% by weight, and glycidyl ethers are 0 to 5% by weight. % Is generally used. The molecular weight of the resin (referring to the weight average molecular weight, hereinafter the same) is usually about 20,000 to 500,000, preferably about 20,000 to 200,000. The form of the resin is not particularly limited, and pellets and powder are generally used, but granular materials and pulverized materials may be used.

本発明で用いる乾燥装置は、蒸発槽と、自転しつつ、この蒸発槽内を公転(旋回)する攪拌翼とからなる装置を用いる。装置の概要を図を用いて説明する。   The drying apparatus used in the present invention uses an apparatus comprising an evaporating tank and a stirring blade that revolves around the evaporating tank while rotating. An outline of the apparatus will be described with reference to the drawings.

図1において、符号10は樹脂が導入される蒸発槽、符号11は樹脂導入口、符号12は樹脂吐出口、符号20は攪拌装置、符号21は回転軸、符号22はアーム、符号23は攪拌翼、符号30は熱媒体が充填されるジャケット、符号40はボンベ等のキャリアガス供給源、符号41はキャリアガス導入管、符号50はペレット格納容器等の樹脂供給源をそれぞれ示す。   In FIG. 1, reference numeral 10 denotes an evaporation tank into which resin is introduced, reference numeral 11 denotes a resin introduction port, reference numeral 12 denotes a resin discharge port, reference numeral 20 denotes a stirring device, reference numeral 21 denotes a rotating shaft, reference numeral 22 denotes an arm, and reference numeral 23 denotes stirring. Reference numeral 30 denotes a jacket filled with a heat medium, reference numeral 40 denotes a carrier gas supply source such as a cylinder, reference numeral 41 denotes a carrier gas introduction pipe, and reference numeral 50 denotes a resin supply source such as a pellet storage container.

攪拌装置20は、回転軸21に対して垂直にアーム22が設けられ、その先端にアーム22に対して鋭角をなしてスクリュー型の攪拌翼23が設けられたものである。攪拌翼23は自身の軸の回りに回転(自転)しながら、アーム22に従って蒸発槽10内をその壁面に沿って旋回(公転)するようになされている。このような攪拌動作を行うことにより、蒸発槽内で樹脂が充分に攪拌されて、効率的な乾燥が可能となる。なお、図1に示された装置は、蒸発槽がほぼ円錐型であり、その壁面の傾斜に沿って攪拌翼23も傾斜している。しかしながら、装置の形状はこれに限定されず、例えば蒸発槽はほぼ円柱型であってもよく、その場合、攪拌翼はその壁面に沿うように、アームに対して垂直方向に設けられていることが好ましい。 The stirring device 20 is provided with an arm 22 perpendicular to the rotating shaft 21 and a screw-type stirring blade 23 provided at the tip of the arm 22 at an acute angle. The agitating blade 23 rotates (revolves) in the evaporation tank 10 along the wall surface according to the arm 22 while rotating (rotating) about its own axis. By performing such a stirring operation, the resin is sufficiently stirred in the evaporation tank, and efficient drying becomes possible. In the apparatus shown in FIG. 1, the evaporation tank has a substantially conical shape, and the stirring blades 23 are inclined along the inclination of the wall surface. However, the shape of the apparatus is not limited to this. For example, the evaporation tank may be substantially cylindrical, and in this case, the stirring blade is provided in a direction perpendicular to the arm along the wall surface. Is preferred.

上記のような装置を用いて樹脂を乾燥させるに際しては、蒸発槽内を圧力5〜40kPa程度に減圧し、必要に応じて冷却して槽内温度(製品温度)をその樹脂のTc以下に保持しつつ、槽内にキャリアガスを導入するのが好ましい。   When the resin is dried using the apparatus as described above, the inside of the evaporation tank is reduced to a pressure of about 5 to 40 kPa and cooled as necessary to keep the temperature in the tank (product temperature) below the Tc of the resin. However, it is preferable to introduce a carrier gas into the tank.

このように減圧系で操作した場合、製品温度が低い状態でも微量溶媒成分の除去が行えるため、樹脂の熱的劣化を防止することができる。また、樹脂の温度をTc以下に保持することにより樹脂の軟化を防止することができる。   When operated in a reduced pressure system in this way, trace solvent components can be removed even when the product temperature is low, so that thermal degradation of the resin can be prevented. Moreover, softening of the resin can be prevented by keeping the temperature of the resin below Tc.

導入するキャリアガスとしては、好ましくは露点−40℃、より好ましくは−60℃以下の乾燥気体を使用する。乾燥気体の種類は、樹脂との反応性を有しないものであればよく、特に限定されないが、例えば、空気、窒素、ヘリウム、アルゴン、炭酸ガス等が挙げられ、コストの点から、空気、窒素が好ましい。このような乾燥気体を蒸発槽の下方から上方へ向けて導入することにより、系内に滞留する微量溶媒ガス成分を、この乾燥気体に抽出して系外へ効率良く排出することが可能となる。キャリアガスの流量としては、樹脂の仕込量に対する割合(ガス量(L/min)/仕込量(kg))として0.1〜3.0が好ましい。   As the carrier gas to be introduced, a dry gas having a dew point of −40 ° C., more preferably −60 ° C. or less is used. The type of dry gas is not particularly limited as long as it does not have reactivity with the resin, and examples thereof include air, nitrogen, helium, argon, carbon dioxide gas, etc. From the viewpoint of cost, air, nitrogen Is preferred. By introducing such a dry gas from the bottom to the top of the evaporation tank, it is possible to extract a trace amount of the solvent gas component remaining in the system into the dry gas and efficiently discharge it outside the system. . The flow rate of the carrier gas is preferably 0.1 to 3.0 as a ratio (gas amount (L / min) / charge amount (kg)) to the charge amount of the resin.

室温が低い場合等は、キャリアガスを加熱して導入することにより、効率良く乾燥できる。その温度は(Tc−10)℃以上であることが好ましく、Tc以上であることが更に好ましい。ただし、樹脂の軟化を防ぐために、(Tc+10)℃以下であることが好ましい。 When the room temperature is low, the carrier gas can be dried efficiently by heating and introducing. The temperature is preferably (Tc-10) ° C. or higher, more preferably Tc or higher. However, the softening of the resin in order was proof member is preferably (Tc + 10) ℃ or less.

なお、樹脂の軟化による融着ないしは機械的或いは熱的な劣化を防ぐために、低速攪拌ないし間歇運転を行うこともできる。低速攪拌を行う場合、例えば、自転速度10〜50rpm、公転速度1.0〜3.0rpmで攪拌することが好ましい。間歇運転とは、運転と休止を交互に行うことであり、その運転時間は5〜15分間、休止時間は10〜60分間程度である。   In order to prevent fusion or mechanical or thermal deterioration due to softening of the resin, low-speed stirring or intermittent operation can be performed. When performing low speed stirring, for example, it is preferable to stir at a rotation speed of 10 to 50 rpm and a revolution speed of 1.0 to 3.0 rpm. The intermittent operation is to alternately perform operation and stop, and the operation time is 5 to 15 minutes and the stop time is about 10 to 60 minutes.

導入ガス流量、乾燥温度が決まれば、乾燥係数dを実験的に求めることにより、乾燥前の初期揮発分濃度(ppm)と仕込量(kg)が変わっても、上記推算式(1)により除去時間の推定が可能となる。従って、除去操作の終点管理が容易になる。但し、乾燥係数dが使用可能な範囲は、仕込量に対するガス量(ガス量(L/min)/仕込量(kg))が0.1〜3.0の範囲である。   Once the flow rate of the introduced gas and the drying temperature are determined, the drying coefficient d is determined experimentally, so that even if the initial volatile concentration (ppm) and the amount of charge (kg) before drying are changed, the estimation formula (1) is used. Time estimation is possible. Therefore, the end point management of the removal operation becomes easy. However, the range in which the drying coefficient d can be used is a range where the gas amount relative to the charged amount (gas amount (L / min) / charged amount (kg)) is 0.1 to 3.0.

なお、乾燥後の揮発分濃度が目標揮発分濃度を下回った場合は、適当な量の溶媒を添加し、目標揮発分濃度の範囲内に調整することができる。溶媒の添加方法としては、揮発分濃度を均一にすること、及び効率の面から、蒸発槽に噴霧機能を有するノズルを設けて噴霧することが好ましく、ノズルは、公転軸と共に公転し、溶媒を攪拌翼の進行方向(公転方向)前方に噴霧するように配することが好ましい。溶媒の添加量の調整のためには、必要量を秤量して一旦容器に移した後供給してもよく、あるいは供給源(例えば水道)から流量計を用いて流量を調整しつつ直接供給してもよい。また、溶媒添加速度は、樹脂に対して、10〜150重量ppm/minの範囲内であることが好ましい。10重量ppm/min未満では効率が悪く、150重量ppm/minを超えると樹脂が溶解若しくは膨張し、凝集するおそれがある。なお、ここに記載した方法は、初期揮発分濃度が目標揮発分濃度以下であった場合の揮発分濃度調整にも適用可能である。また、溶媒が水である場合の揮発分濃度調整(加湿)は、湿度を有する気体(例えばエアー)を蒸発槽内に導入することによっても可能である。   In addition, when the volatile matter density | concentration after drying falls below a target volatile matter density | concentration, a suitable quantity of solvent can be added and it can adjust within the range of a target volatile matter density | concentration. As a method for adding the solvent, it is preferable to spray by providing a nozzle having a spray function in the evaporation tank from the viewpoint of making the volatile content uniform and efficiency, and the nozzle revolves together with the revolution shaft to remove the solvent. It is preferable to arrange the spray blades to spray forward in the direction of travel (revolution direction). In order to adjust the addition amount of the solvent, the necessary amount may be weighed and transferred to a container and then supplied, or directly supplied while adjusting the flow rate from a supply source (for example, water supply) using a flow meter. May be. Moreover, it is preferable that a solvent addition rate exists in the range of 10-150 weight ppm / min with respect to resin. If it is less than 10 ppm by weight, the efficiency is poor, and if it exceeds 150 ppm by weight, the resin may be dissolved or expanded and aggregated. The method described here can also be applied to volatile concentration adjustment when the initial volatile concentration is less than or equal to the target volatile concentration. Further, the volatile component concentration adjustment (humidification) when the solvent is water can be achieved by introducing a gas having humidity (for example, air) into the evaporation tank.

以下に、本発明の実施例を示すが、本発明はこれに限定されるものではない。   Examples of the present invention are shown below, but the present invention is not limited thereto.

なお、以下の実施例及び比較例において、ペレット中の水分濃度は、カールフィッシャー法により測定した。具体的には、樹脂を脱水トルエンで溶解して、固形分濃度10重量%の溶液に調整し、平沼産業(株)製平沼微量水分測定装置AQ−2000にて水分含有量を測定した。この測定値を、別途測定した脱水トルエンの水分含有量により補正した。   In the following examples and comparative examples, the moisture concentration in the pellets was measured by the Karl Fischer method. Specifically, the resin was dissolved in dehydrated toluene to prepare a solution having a solid concentration of 10% by weight, and the water content was measured with Hiranuma Sangyo Co., Ltd. Hiranuma trace moisture measuring device AQ-2000. This measured value was corrected by the moisture content of dehydrated toluene measured separately.

結晶化温度(Tc)の測定は熱分析(DSC)により行い、分子量の測定はGPC分析により行った。   The crystallization temperature (Tc) was measured by thermal analysis (DSC), and the molecular weight was measured by GPC analysis.

熱分析はセイコーインスツルメンツ(株)製DSC220Cを用いて行った。測定条件としては、窒素雰囲気下で、室温から速度10℃/分にて100℃まで昇温し、100℃にて1分間保持した後、100℃から速度5℃/分にて−20℃まで降温し、この間に発熱ピークが頂点に達した温度を測定し、これを結晶化温度とした。   Thermal analysis was performed using DSC220C manufactured by Seiko Instruments Inc. As measurement conditions, the temperature was raised from room temperature to 100 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere, held at 100 ° C. for 1 minute, and then from 100 ° C. to −20 ° C. at a rate of 5 ° C./min. The temperature was lowered and the temperature at which the exothermic peak reached the peak during this period was measured, and this was taken as the crystallization temperature.

GPCの測定条件は以下の通りである;
カラム:Guard column PWXL + G5000PWXL
+ G4000PWXL + G3000PWXL
+ G2500PWXL(以上、東ソー(株)製)
カラムサイズ:7.8mmφ×30cm
カラム温度:40℃
溶離液:アセトニトリル/0.08M−酢酸ナトリウム溶液=50/50(溶量比)
流速:1.0ml/min
検出器:示差屈折検出器
標準物質:東ソー(株)製ポリエチレンオキシド、分子量20,000〜900,000
The measurement conditions for GPC are as follows:
Column: Guard column PWXL + G5000PWXL
+ G4000PWXL + G3000PWXL
+ G2500PWXL (above, manufactured by Tosoh Corporation)
Column size: 7.8mmφ × 30cm
Column temperature: 40 ° C
Eluent: acetonitrile / 0.08M-sodium acetate solution = 50/50 (solution ratio)
Flow rate: 1.0 ml / min
Detector: Differential refraction detector Standard material: Polyethylene oxide manufactured by Tosoh Corporation, molecular weight 20,000 to 900,000

[合成例1]
攪拌機を備えた加圧反応容器に脱水トルエンを150kg仕込み、触媒としてナトリウムメチラート27gを加え、100℃まで昇温し、圧力200kPa以下、温度120℃以下になるように調整しながら、エチレンオキシド、1,2−ブチレンオキシド、アリルグリシジルエーテルを90:7:3の割合(重量比)で合計で100kgになるように逐次添加し、樹脂(重合体)溶液を得た。
[Synthesis Example 1]
A pressurized reaction vessel equipped with a stirrer is charged with 150 kg of dehydrated toluene, added with 27 g of sodium methylate as a catalyst, heated to 100 ° C., adjusted to a pressure of 200 kPa or less and a temperature of 120 ° C. or less, ethylene oxide, 1 , 2-butylene oxide and allyl glycidyl ether were sequentially added at a ratio of 90: 7: 3 (weight ratio) to a total of 100 kg to obtain a resin (polymer) solution.

[実施例1]
合成例1で得られた重合体溶液から減圧下で溶媒除去し、シート状に成形したのち、切断することによりペレット状の重合物を得た。重合物のTcは22℃、分子量は100,000であった。
[Example 1]
The solvent was removed from the polymer solution obtained in Synthesis Example 1 under reduced pressure, and after forming into a sheet, the pellet was obtained by cutting. The polymer had a Tc of 22 ° C. and a molecular weight of 100,000.

得られたペレット100kgを円錐型混合攪拌機SVミキサー200L中に仕込み、SVミキサーのジャケットに冷水を通して槽内を20℃にし、槽内を12kPaに減圧した後、窒素300L/minを導入した。攪拌は、自転0.8kW、公転0.2kWで断続運転(運転:10分間、休止:10分間)を行った。   100 kg of the obtained pellets were charged into 200 L of a conical mixing stirrer SV mixer, cold water was passed through the jacket of the SV mixer, the inside of the tank was brought to 20 ° C., the inside of the tank was reduced to 12 kPa, and then, 300 L / min of nitrogen was introduced. Stirring was performed intermittently (running: 10 minutes, pause: 10 minutes) at a rotation of 0.8 kW and a revolution of 0.2 kW.

乾燥係数3.67×10−3を用いて目標水分200ppmになる時間を推算し、乾燥を行った。なお、乾燥係数は、樹脂ペレット130kgを円錐型混合攪拌機SVミキサー200L中に仕込み、SVミキサーのジャケットに冷水を通し、槽内を20℃にし、槽内を減圧にしてから窒素300L/minを導入して乾燥する操作を行い、乾燥前後の水分濃度、仕込量、乾燥時間、ガス導入量から求めた。乾燥前後の水分濃度、乾燥時間、目標値からのズレを表1に示す。 The drying time was estimated by using a drying coefficient of 3.67 × 10 −3 to estimate the time to reach a target moisture of 200 ppm. As for the drying coefficient, 130 kg of resin pellets were charged into a 200 L conical mixer / stirrer, cold water was passed through the jacket of the SV mixer, the inside of the tank was brought to 20 ° C., the inside of the tank was decompressed, and 300 L / min of nitrogen was introduced Then, the drying operation was performed, and the moisture concentration before and after drying, the amount charged, the drying time, and the amount of gas introduced were obtained. Table 1 shows the moisture concentration before and after drying, the drying time, and the deviation from the target value.

[実施例2]
実施例1で用いたのと同じペレットを大気中に放置して置いたところ、吸湿して、水分量は7658ppmとなった。
[Example 2]
When the same pellets used in Example 1 were left in the atmosphere and absorbed, the moisture was absorbed and the water content became 7658 ppm.

このペレット100kgを円錐型混合攪拌機SVミキサー200L中に仕込んだ。実施例1と同条件で、目標水分200ppmになる時間を推算し、乾燥を行った。   100 kg of the pellets were charged into a conical mixing stirrer SV mixer 200L. Drying was performed under the same conditions as in Example 1 by estimating the time to reach a target moisture of 200 ppm.

[合成例2]
単量体の組成(重量比)をEO:BO=92:8に変更した以外は、合成例1と同条件で重合を行い、重合体溶液を得た。
[Synthesis Example 2]
Polymerization was performed under the same conditions as in Synthesis Example 1 except that the monomer composition (weight ratio) was changed to EO: BO = 92: 8 to obtain a polymer solution.

[実施例3]
合成例2により得られた重合体溶液から減圧下で溶媒除去し、シート状に成形したのち、切断することによりペレット状の重合物を得た。ペレットのTcは18℃、分子量は110,000であった。
[Example 3]
The solvent was removed from the polymer solution obtained in Synthesis Example 2 under reduced pressure, and after forming into a sheet, the pellet was polymerized by cutting. The pellet had a Tc of 18 ° C. and a molecular weight of 110,000.

得られたペレット1000kgを円錐型混合攪拌機(ナウターミキサーDBX−2000RWV:ホソカワミクロン製)2000L中に仕込んだ。ナウターミキサーのジャケットに冷水を通し、槽内を20℃にし、かつ槽内を減圧してから窒素300L/minを導入した。攪拌は自転2.0kW(21.5rpm)、公転0.75kW(1.8rpm)で断続運転(運転:10分間、休止:10分間)を行った。乾燥係数3.67×10−3を用いて、目標水分200ppmになる時間を推算し、乾燥を行った。 1000 kg of the obtained pellets were charged into a conical mixing stirrer (Nauter mixer DBX-2000RWV: manufactured by Hosokawa Micron Corporation) 2000L. Cold water was passed through the jacket of the Nauter mixer, the inside of the tank was brought to 20 ° C., and the inside of the tank was decompressed before introducing 300 L / min of nitrogen. Stirring was performed intermittently (running: 10 minutes, pause: 10 minutes) at a rotation of 2.0 kW (21.5 rpm) and a revolution of 0.75 kW (1.8 rpm). Using a drying coefficient of 3.67 × 10 −3 , the time required to reach a target moisture of 200 ppm was estimated and dried.

[比較例1]
実施例1で調製したのと同じ樹脂ペレット50kgを円錐型混合攪拌機SVミキサー200L中に仕込んだ。仕込み量以外は、実施例1と同じ条件を用いて目標水分200ppmになる時間を推算し、乾燥を行った。
[Comparative Example 1]
50 kg of the same resin pellets prepared in Example 1 were charged into a conical mixing stirrer SV mixer 200L. Except for the charged amount, the same conditions as in Example 1 were used to estimate the time to reach the target moisture of 200 ppm, and drying was performed.

[比較例2]
実施例3で調製したのと同じ樹脂ペレット100kgを円錐型混合攪拌機SVミキサー200L中に仕込んだ。窒素ガス導入量を300L/minから5L/minに変更した以外は実施例1と同じ条件を用いて、目標水分200ppmになる時間を推算し、乾燥を行った。
[Comparative Example 2]
100 kg of the same resin pellets prepared in Example 3 were charged into a conical mixing stirrer SV mixer 200L. Using the same conditions as in Example 1 except that the amount of nitrogen gas introduced was changed from 300 L / min to 5 L / min, the time when the target moisture was 200 ppm was estimated and dried.

Figure 0003985099
Figure 0003985099

本発明の乾燥方法により乾燥されたエチレンオキシド−ブチレンオキシド系共重合体樹脂は、電気化学用途に好適に用いられる。   The ethylene oxide-butylene oxide copolymer resin dried by the drying method of the present invention is suitably used for electrochemical applications.

本発明で用いる乾燥装置の概要を示す模式断面図である。It is a schematic cross section which shows the outline | summary of the drying apparatus used by this invention.

符号の説明Explanation of symbols

A ……乾燥装置
10……蒸発槽
11……樹脂導入口
12……樹脂排出口
20……撹拌装置
21……回転軸
22……アーム
23……撹拌翼
30……ジャケット
40……キャリアガス供給源
41……キャリアガス導入管
50……樹脂供給源
A: Drying device 10 ... Evaporation tank 11 ... Resin inlet 12 ... Resin outlet 20 ... Stirrer 21 ... Rotating shaft 22 ... Arm 23 ... Stirring blade 30 ... Jacket 40 ... Carrier gas Supply source 41 …… Carrier gas introduction pipe 50 …… Resin supply source

Claims (6)

微量揮発分を含むエチレンオキシド−ブチレンオキシド系共重合体樹脂の乾燥方法であって、
樹脂が投入されるほぼ円錐型又はほぼ円柱型の蒸発槽と、自転しつつ前記蒸発槽内を壁面に沿って公転する攪拌翼とを備えた装置を用い、前記攪拌翼で樹脂を攪拌しつつ乾燥させるに際し、前記蒸発槽内を減圧し、キャリアガスとして露点−40℃以下の乾燥気体を、蒸発槽の下方から、樹脂の仕込量に対する割合(ガス量(L/min)/仕込量(kg))が0.1〜3.0の範囲内となる流量で導入する
ことを特徴とする乾燥方法。
A method for drying an ethylene oxide-butylene oxide copolymer resin containing a small amount of volatile matter, comprising:
While using a device provided with a substantially conical or substantially cylindrical evaporation tank into which resin is charged and a stirring blade that revolves along the wall surface while rotating , the resin is stirred with the stirring blade. When drying, the inside of the evaporation tank is depressurized, and a dry gas having a dew point of −40 ° C. or less as a carrier gas is supplied from the lower part of the evaporation tank to the resin charge (gas amount (L / min) / charge amount (kg )) Is introduced at a flow rate in the range of 0.1 to 3.0 .
前記蒸発槽内を圧力5〜40kPaに減圧することを特徴とする、請求項1に記載の乾燥方法。The drying method according to claim 1, wherein the inside of the evaporation tank is depressurized to a pressure of 5 to 40 kPa. 前記キャリアガスの温度を、乾燥させる樹脂の結晶化温度(Tc)±10℃の範囲内に調整することを特徴とする、請求項に記載の乾燥方法。 2. The drying method according to claim 1 , wherein the temperature of the carrier gas is adjusted within a range of crystallization temperature (Tc) ± 10 ° C. of the resin to be dried. 低速攪拌又は間歇攪拌を行うことにより樹脂の溶融又は劣化を防止することを特徴とする、請求項1〜3のいずれか1項に記載の乾燥方法。   4. The drying method according to claim 1, wherein melting or deterioration of the resin is prevented by performing low-speed stirring or intermittent stirring. 乾燥所要時間を下記式(1)に基づき推算することを特徴とする、請求項〜4のいずれか1項に記載の乾燥方法。
Figure 0003985099
式(1)中、aは初期揮発分濃度(ppm)、bは目標揮発分濃度(ppm)、cは仕込量(kg)、dは乾燥係数(kg/L)、eはガス導入量(L/min)をそれぞれ示し、乾燥係数dは次式より求められる;
Figure 0003985099
但し、各数値の単位は以下の通りである;
揮発分濃度:ppm、仕込量:kg、時間:min、ガス導入量:L/min
The drying method according to any one of claims 1 to 4, wherein the time required for drying is estimated based on the following formula (1).
Figure 0003985099
In the formula (1), a is the initial volatile concentration (ppm), b is the target volatile concentration (ppm), c is the charged amount (kg), d is the drying coefficient (kg / L), e is the amount of gas introduced ( L / min), respectively, and the drying coefficient d is obtained from the following equation;
Figure 0003985099
However, the unit of each numerical value is as follows;
Volatile concentration: ppm, charge amount: kg, time: min, gas introduction amount: L / min
上記請求項1〜5のいずれか1項に記載の乾燥方法により乾燥されたことを特徴とする、エチレンオキシド−ブチレンオキシド系共重合体樹脂。   An ethylene oxide-butylene oxide copolymer resin, which is dried by the drying method according to any one of claims 1 to 5.
JP2004043500A 2004-02-19 2004-02-19 Method for drying trace volatile content of ethylene oxide-butylene oxide copolymer resin and ethylene oxide-butylene oxide copolymer resin dried by the method Expired - Lifetime JP3985099B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004043500A JP3985099B2 (en) 2004-02-19 2004-02-19 Method for drying trace volatile content of ethylene oxide-butylene oxide copolymer resin and ethylene oxide-butylene oxide copolymer resin dried by the method
EP05003336A EP1566398A1 (en) 2004-02-19 2005-02-16 Method for drying nonionic alkylene oxide-type water soluble resin, method for packaging it, and method for transporting it
CA002497069A CA2497069A1 (en) 2004-02-19 2005-02-16 Method for drying nonionic alkylene oxide-type water-soluble resin, method for packaging it, and method for transporting it
US11/062,151 US7354984B2 (en) 2004-02-19 2005-02-18 Method for drying nonionic alkylene oxide-type water-soluble resin, method for packaging it, and method for transporting it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043500A JP3985099B2 (en) 2004-02-19 2004-02-19 Method for drying trace volatile content of ethylene oxide-butylene oxide copolymer resin and ethylene oxide-butylene oxide copolymer resin dried by the method

Publications (2)

Publication Number Publication Date
JP2005233518A JP2005233518A (en) 2005-09-02
JP3985099B2 true JP3985099B2 (en) 2007-10-03

Family

ID=35016663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043500A Expired - Lifetime JP3985099B2 (en) 2004-02-19 2004-02-19 Method for drying trace volatile content of ethylene oxide-butylene oxide copolymer resin and ethylene oxide-butylene oxide copolymer resin dried by the method

Country Status (1)

Country Link
JP (1) JP3985099B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581773B2 (en) * 2004-03-31 2010-11-17 日本ゼオン株式会社 Method for producing a water-absorbing polymer having a controlled water content

Also Published As

Publication number Publication date
JP2005233518A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
JP6094930B2 (en) Method for producing polyacrylic acid (salt) water-absorbing resin powder
US11459431B2 (en) Method for producing polyacrylic acid (salt)-based water absorbent resin
JP5323053B2 (en) Method for producing water absorbent resin
EP2415822B1 (en) Process for producing particulate water-absorbing resin
KR20190077540A (en) A method of producing a water absorbent resin powder, and a drying apparatus and drying method of a granular gel
JP5905262B2 (en) Process for continuous treatment of mixtures
CN104619412A (en) Method for manufacturing polyacrylic acid (polyacrylate)-based absorbent, and absorbent
CN104231144A (en) Polyacrylic water-absorbent resin powder and method for producing the same
US20180044486A1 (en) A process for producing surface-postcrosslinked water-absorbent polymer particles by polymerizing droplets of a monomer solution
CN101627086A (en) Granulated water absorbent containing water-absorbing resin as the main component
CN104619755A (en) Method for manufacturing polyacrylic acid (polyacrylate)-based water-absorbent agent, and water-absorbent agent
EP3069782B1 (en) Process for producing water-absorbing polyacrylic acid (salt) resin
US20180043052A1 (en) A Process for Producing Surface-Postcrosslinked Water-Absorbent Polymer Particles by Polymerizing Droplets of a Monomer Solution
JP3985099B2 (en) Method for drying trace volatile content of ethylene oxide-butylene oxide copolymer resin and ethylene oxide-butylene oxide copolymer resin dried by the method
CN112714770B (en) Method for producing water-absorbent resin containing chelating agent
CN1986578A (en) Production method for hydrophilic polymer
CN106255708B (en) Method for producing polyacrylic acid (salt) -based water-absorbent resin
US7354984B2 (en) Method for drying nonionic alkylene oxide-type water-soluble resin, method for packaging it, and method for transporting it
JP6006409B2 (en) Method for producing polyacrylic acid (salt) water-absorbing resin
CN115209987A (en) Absorbent, water-absorbing agent, and method for producing water-absorbing agent
JP2004231883A (en) Method for producing polyether polymer
JP4664526B2 (en) Method for producing powdered cement dispersant
JP2006028454A (en) Process for producing water-absorbing polymer having controlled water content
JP4581773B2 (en) Method for producing a water-absorbing polymer having a controlled water content
JP2005298681A (en) Manufacturing apparatus and manufacturing method of water-absorbing resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3