JP3983409B2 - Wideband directional microphone - Google Patents

Wideband directional microphone Download PDF

Info

Publication number
JP3983409B2
JP3983409B2 JP8400199A JP8400199A JP3983409B2 JP 3983409 B2 JP3983409 B2 JP 3983409B2 JP 8400199 A JP8400199 A JP 8400199A JP 8400199 A JP8400199 A JP 8400199A JP 3983409 B2 JP3983409 B2 JP 3983409B2
Authority
JP
Japan
Prior art keywords
microphone
capsule
peak
capsules
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8400199A
Other languages
Japanese (ja)
Other versions
JP2000278783A (en
Inventor
晋一 千葉
正和 岩城
章 盛田
幸郎 清水
敬嗣 今永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP8400199A priority Critical patent/JP3983409B2/en
Publication of JP2000278783A publication Critical patent/JP2000278783A/en
Application granted granted Critical
Publication of JP3983409B2 publication Critical patent/JP3983409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Circuit For Audible Band Transducer (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は有指向性(ここでは全指向性以外の指向性を有するという意味で用いる)マイクロホンに係り、特に少ない個数のマイクロホンカプセルで広帯域にわたり平坦な周波数特性を提供する有指向性マイクロホンに関するものである。
【0002】
【従来の技術】
収音する音の帯域が20Hzから20kHzである従来の単一指向性マイクロホンでは、1つのマイクロホンカプセルで、帯域内ではほぼ平坦な周波数特性の実現が可能であった。更に帯域内での周波数特性、指向特性をより改善するためには中低域および高域に帯域分割した2つのマイクロホンカプセルが必要であった。
しかし、現在の最新の音響機器ではすでに20Hzから20kHzまでの帯域が要求されており、このため、マイクロホンもそれに対応することが要求されている。
【0003】
まず例として単一指向性マイクロホンを得る技術として、2通りの手法を示す(図1、図2参照)。図1は単体の単一指向性マイクロホンカプセル1を用いたブロック線図で、図2は全指向性マイクロホンカプセル2つ2,3を用いた場合のブロック線図である。図1の単体の場合、20Hzから100kHzまでの帯域を実現しようにも、マイクロホンカプセルの大きさと周波数との関係に起因した回折効果(1)のため、マイクロホンカプセル1の外径が8mm程度の場合でも20kHz以上で周波数特性に大きな起伏が発生し、マイクロホンの正面と正面以外とでは音質が大きく異なる現象が生じる。この影響をなるべく小さくするにはマイクロホンカプセルの外径を3mm以下程度の超小型にする必要がある。しかし、この大きさでは感度が小さくなり、S/Nも十分とれないため、良好な収音は不可能である。また、図2のように全指向性マイクロホンカプセル2つ2,3を用いて指向性を持たせる方法は既知の技術であるが(2)、この方法も高での指向特性の劣化と、同じく高域での回折効果により所望の特性は得られない。
【0004】
現在考えられている解決策としては、図3に示すように、中低域4と高域5と更に超高域6の各帯域を分割して受け持つ単一指向性マイクロホンカプセルの出力を合成して広帯域指向性マイクロホンを実現する方法があるが、この場合も超高域での回折効果や反射による音質やS/N の劣化は避けられない。
【0005】
回折効果の低減方法としては、全指向性マイクロホンカプセルを所定の間隔をあけて音軸方向に同じ向きで前後に配列し、 2つの信号出力を適切な値で加算することにより、やや大きいマイクロホンカプセルでも高域における回折効果を低減でき、 S/N も劣化しない方法が提案されている(特開平09−182184号)。
【0006】
参考文献
(1)「Acoustical Engineering」 Olson D.Van Nostrand Company,INC.,1957 ,pp17-24
(2) 「オーディオ工学」 中島平太郎, 実教出版(株),1973,pp204-205
【0007】
【発明が解決しようとする課題】
超高域までの帯域を有する広帯域指向性マイクロホンの実現において解決を要する課題は、▲1▼帯城を広げるために原理的に生じるマイクロホンカプセルの感度低下、更に回折効果による周波数特性の激しい起伏を避けるためのマイクロホンカプセルの超小型化による一層の感度低下と、 これらマイクロホンカプセルの感度低下に基づくS/N の劣化である。
更に▲2▼超高域では音波の波長が短くなるため、障害物による音波の乱れや反射が発生しやすくなる。このため複数のマイクロホンカプセルを用いるとマイクロホンの形状も大きくなり、このような音波の乱れが生じやすくなるので、マイクロホンカプセルの数は極力少ない方が望ましい。
【0008】
そこで本発明の目的は、少ない個数の単一指向性マイクロホンカプセルで、広い帯域にわたり、平坦な周波数特性を有し、指向性およびS/N の良好な広帯域指向性マイクロホンを提供せんとするものである。
【0009】
【課題を解決するための手段】
この目的を達成するための本発明広帯域指向性マイクロホンは、単一指向性で20Hzから100kHzまでの帯域をカバーする広帯域指向性マイクロホンであって、同軸上同方向に離間して配置した同一構成の2つのマイクロホンカプセルと、前記2つのマイクロホンカプセルの各出力信号を各別に増幅する増幅手段と、前記増幅手段により増幅した各々の信号を加算する加算手段とを備え、前記2つのマイクロホンカプセルの各々は、前記帯域内で正面方向感度として第1のピーク及び第2のピークを生じさせる円形の開口形状を有し、前記2つのマイクロホンカプセルの円形の開口形状は、前記第1のピークのピーク周波数ほぼ音速/マイクロホンカプセルの前記円形の開口形状の直径、となるように、且つ、前記円形の開口形状の直径が前記第2のピークのピーク周波数波長のほぼ3倍の長さとなるように、予め定められており、前記2つのマイクロホンカプセルの離間距離は、前記円形の開口形状の直径のほぼ1/2となるように予め定められていることを特徴とするものである。
【0010】
さらに本発明広帯域指向性マイクロホンは、前記増幅手段により増幅した2つのマイクロホンカプセル出力信号のいずれか一方を、前記加算手段に入力する前に低域通過フィルタリングを施す低域通過フィルタを更に備えることを特徴とするものである。
【0012】
【発明の実施の形態】
超広帯域まで平坦な周波数特性を保った有指向性マイクロホンを実現するためには、まず単体の有指向性マイクロホンカプセルの振動膜のスティフネスを強めたり、あるいは等価質量を軽くして共振周波数を超高域まで伸ばす必要がある。この時、単体での感度低下は避けられないが数dB程度にとどめる(11 →12,図4(a)) 。また、100 kHz までの帯域を目標とする超広帯域マイクロホンにおいて、所要のS/N を得るにはある程度以上の大きさを要するマイクロホンカプセルが必要となるが、その場合にはマイクロホンカプセルの外径を13mmとした場合の例として図4(b)に示すような回折効果による周波数特性の起伏が2つ以上帯域内に発生することとなる(13)。
【0013】
本発明では有指向性マクロホンカプセルを2個使用し、その出力を加算することにより感度を6dB 高くすることでS/N を3dB 改善できる。本発明の実施例として、 100 kHz までの帯域を目標とすることにより、回折効果の第2のピークを100 kHz 付近に設定する。そのためにマクロホンカプセルの外径を10.5mmに設計した。この場合のマイクロホンカプセル単体の周波数特性は、回折効果により図4(c)に示す起伏を生じる(15)。なぜなら、マイクロホンカプセルの開口形状が円形の場合、回折効果による起伏のうち、第1のピークのピーク周波数は音速/マイクロホンカプセルの外径寸法(即ち、前記円形の開口形状の直径)となり、第2のピークのピーク周波数は第1のピークのピーク周波数の約3倍の周波数となるからである。すなわち、第2のピークのピーク周波数を100kHz付近に設定することは、マイクロホンカプセルの外径寸法を100kHzの音波の波長のほぼ3倍の長さにすることに等しい。ここで32kHz に生じる特性の山は2つの有指向性マイクロホンカプセルを指向性の主軸方向で前後に所定の間隔(円形のマイクロホンカプセルの半径と等しい距離)をおいて配置し、2つのマイクロホンカプセルの出力を所定の割合で加算し、位相差を利用して回折効果を減衰させることによって、ほぼ平坦な周波数特性とすることができる。
【0014】
97kHz 付近に生じる特性の山は以下の方法により平坦にする。
前述のように、帯域を広く設定するとマイクロホン感度が低下するため、本発明ではマイクロホンカプセルの外径はそのままのサイズで、例えば振動膜と背電極間の空隙長や、振動膜のスティフネスを調整することにより、マイクロホンカプセル単体の帯域を100 kHz より狭く設定する(約70kHz )。 その結果、単体のマイクロホンカプセルにおいて回折効果による32kHz 付近の山は残るが、97kHz 付近の山は平坦(18)となる。超高域ではマイクロホンカプセル単体の回折効果による感度の上昇を利用し、正面以外では回折効果による感度上昇が少ないことを利用して、より鋭い指向性を得る。
以上の方法により、図4(d)に示すように平坦な周波数特性と高感度(優れたS/N を有する)と超高域まで所要の指向性を有する有指向性超広帯域マイクロホン(17)の実現が可能となる。
【0015】
以下添付図面を参照し実施例により本発明の実施の形態をより具体的に説明する。本発明に基づくマイクロホンの実施例を図5のブロック線図で示し、図6でマイクロホンの基本的な構造を示す。図5において、用いるマクロホンカプセルは単一指向性で超広帯域をカバーする特性を持つ(ただし、単体での超高域での特性は、回折効果によって目的とする平坦な周波数特性、及び指向特性は得られない) 。そして前方指向性カプセル21と後方指向性カプセル22を、同軸上に同方向でカプセルの半径の距離を置いて配置する。次に一方のマイクロホンの出力信号を周波数特性調整用の低域通過フイルタ23に介して後加算24することにより、超高域での回折効果による周波数特性の起伏をさらに少なくすることが可能となり、平坦な周波数特性、必要とする指向特性を得ることが出来る。なお低域通過フィルタ23はあくまで周波数特性の平坦化のためのものであり、そのため必要に応じて加除可能な回路である。また、低域通過フィルタに代わりカットオフ周波数の調整を行うことでも目的の周波数特性を得ることができる。
【0016】
上記事項を更に詳細に説明すると、単体のマイクロホンカプセル21または22では、回折効果により超高域での正面特性に大きな起伏を生じる(31, 図7(a))。そこで、全く同じ2つの単一指向性マクロホンカプセル21,22 を同軸上に同方向で配置し、その距離を調整すると、マイクロホンカプセル間の距離がほぼカプセルの半径に相当する長さのとき、超高域周波数帯では位相差により2つのマイクロホン出力がうち消し合うため正面感度が低下し、同時に横方向の感度は低下しない。すなわち上記の配置の場合は回折効果と逆の特性を示すため、単体のマイクロホンの場合の特性と打ち消し合って、所望の平坦な単一指向性の周波数特性が得られることとなる(33, 図7(b))。
【0017】
【発明の効果】
超高域まで収音出来るマイクロホンを実現するには、いくつかの難題がある。その主なものは▲1▼超高域までの帯域を実現すると、マイクロホンカプセル感度が低くなる。 ▲2▼回折効果により高域乃至超高域の周波数特性に大きな起伏があらわれ、正面と正面以外の音質に差が生じる。 ▲3▼回折効果の影響を小さくするのにマイクロホンカプセルを超小型化すると、感度が低下しS/N も劣化する。 ▲4▼従来の設計法ではスリーウェイまたはフォーウェイとなり、マイクロホンが大きくなり超高域では音場の乱れが発生する。
これらの問題は、マイクロホン構成に本発明を採用することにより解決され、広帯城マイクロホンが比較的容易に実現でさる。
【図面の簡単な説明】
【図1】 従来の単一指向性マイクロホンのブロック線図(単体のマイクロホンカプセルを用いた場合)。
【図2】 従来の単一指向性マイクロホンのブロック線図(2個のマイクロホンカプセルを用いた場合)。
【図3】 帯域分割したマイクロホンのブロック線図。
【図4】 種々のマイクロホンの周波数特性を示す図で、(a)は従来のマイクロホン(11)と帯域を伸ばしたマイクロホン(12)の予想される周波数特性、(b)はマクロホンカプセルの外径が13mmの場合の周波数特性(正面(0度)13と横方向(90度)14)、(c)はマイクロホンカプセルの外径が10.5mmの場合の周波数特性(正面(0度)15と横方向(90度)16)、(d)はマイクロホンカプセルの外径が10.5mmの場合の本発明によるマイクロホンの周波数特性(本発明正面特性17と単体での正面特性18)を示す図。
【図5】 本発明のマイクロホンのブロック線図。
【図6】 本発明のマイクロホンの基本的な構造図。
【図7】 比較のために示された周波数特性図で、(a)は単体のマイクロホンカプセルの周波数特性、(b)は本発明によるマイクロホンの周波数特性を示す図。
【符号の説明】
1:単一指向性カプセル
2:前方全指向性カプセル
3:後方全指向性カプセル
4:中低域用単一指向性カプセル
5:高域用単一指向性カプセル
6:超高域用単一指向性カプセル
21:前方指向性カプセル
22:後方指向性カプセル
23:低域通過フィルタ
24:加算器
25:ヘッドカバー
26:電子回路
27:マイクロホンケース
28:出力コネクタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a directional microphone (used herein to mean a directivity other than omnidirectional), and more particularly to a directional microphone that provides a flat frequency characteristic over a wide band with a small number of microphone capsules. is there.
[0002]
[Prior art]
With a conventional unidirectional microphone in which the band of sound to be collected is 20 Hz to 20 kHz, it is possible to realize a substantially flat frequency characteristic within one band with one microphone capsule. Furthermore, in order to further improve the frequency characteristics and directivity characteristics within the band, two microphone capsules divided into a middle low band and a high band are necessary.
However, the latest state-of-the-art audio equipment already requires a band from 20 Hz to 20 kHz, and for this reason, the microphone is also required to support it.
[0003]
First, as an example, two techniques are shown as techniques for obtaining a unidirectional microphone (see FIGS. 1 and 2). FIG. 1 is a block diagram using a single unidirectional microphone capsule 1, and FIG. 2 is a block diagram using two omnidirectional microphone capsules 2 and 3. In the case of the single body of FIG. 1, in order to realize a band from 20 Hz to 100 kHz, the outer diameter of the microphone capsule 1 is about 8 mm because of the diffraction effect (1) due to the relationship between the size and frequency of the microphone capsule. However, a large undulation occurs in the frequency characteristics at 20 kHz or more, and a phenomenon occurs in which the sound quality differs greatly between the front side of the microphone and other than the front side. In order to reduce this influence as much as possible, it is necessary to make the outer diameter of the microphone capsule very small, such as about 3 mm or less. However, with this size, the sensitivity is low, and the S / N cannot be sufficient, so that good sound collection is impossible. Further, as shown in FIG. 2, a method for imparting directivity by using two omnidirectional microphone capsules 2 and 3 is a known technique (2) . However, this method also causes deterioration of directivity characteristics at high frequencies , Similarly, a desired characteristic cannot be obtained due to a diffraction effect in a high range.
[0004]
As shown in FIG. 3, the currently considered solution is to synthesize the output of a unidirectional microphone capsule that divides and handles the mid-low range 4, high range 5, and ultra-high range 6 bands. However, in this case as well, sound quality and S / N degradation due to diffraction effects and reflections in the ultra high frequency range are inevitable.
[0005]
As a method for reducing the diffraction effect, omnidirectional microphone capsules are arranged in the same direction in the sound axis direction at a predetermined interval, and the two signal outputs are added together with an appropriate value. However, a method has been proposed that can reduce the diffraction effect in the high range and does not deteriorate the S / N (Japanese Patent Laid-Open No. 09-182184).
[0006]
Reference (1) "Acoustical Engineering" Olson D. Van Nostrand Company, INC., 1957, pp17-24
(2) "Audio Engineering" Hirataro Nakajima, Jikkyo Publishing Co., Ltd., 1973, pp204-205
[0007]
[Problems to be solved by the invention]
The issues that need to be solved in the realization of a wide-band directional microphone with a bandwidth up to the super-high frequency are: (1) The microphone capsule's desensitization that occurs in principle to widen the castle, and the undulations in the frequency characteristics due to the diffraction effect. This is a further decrease in sensitivity due to the miniaturization of microphone capsules to avoid, and a deterioration in S / N based on the decrease in sensitivity of these microphone capsules.
Furthermore, (2) since the wavelength of the sound wave becomes shorter in the ultra high frequency range, the disturbance and reflection of the sound wave due to the obstacle are likely to occur. For this reason, when a plurality of microphone capsules are used, the shape of the microphone becomes large, and such disturbance of sound waves tends to occur. Therefore, it is desirable that the number of microphone capsules be as small as possible.
[0008]
Accordingly, an object of the present invention is to provide a wide-band directional microphone with a small number of unidirectional microphone capsules, flat frequency characteristics over a wide band, and good directivity and S / N. is there.
[0009]
[Means for Solving the Problems]
The wideband directional microphone of the present invention for achieving this object is a wideband directional microphone that covers a band from 20 Hz to 100 kHz with a single directivity, and has the same configuration arranged in the same direction on the same axis . Two microphone capsules , amplification means for separately amplifying each output signal of the two microphone capsules, and addition means for adding each signal amplified by the amplification means, each of the two microphone capsules being has a circular opening shape to produce a first peak and the second peak as the front direction sensitive within the band, circular opening shape of the two microphones capsule, the peak frequencies of the first peak approximately, so that the acoustic velocity / microphone said circular opening shape diameter of the capsule, and, and, the circular opening shape So that the diameter is substantially three times the length of the peak frequency wavelength of the second peak, is determined in advance, the distance of the two microphone capsule is approximately the diameter of the circular opening shape 1/2 It is characterized by being predetermined so that
[0010]
Further, the wideband directional microphone of the present invention further includes a low-pass filter that performs low-pass filtering before inputting any one of the two microphone capsule output signals amplified by the amplifying unit to the adding unit. It is a feature.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In order to realize a directional microphone that maintains flat frequency characteristics up to an ultra-wideband, first, the stiffness of the diaphragm of a single directional microphone capsule is strengthened, or the equivalent mass is reduced to make the resonance frequency extremely high. It is necessary to extend to the area. At this time, the sensitivity drop by itself is inevitable, but it is limited to about a few dB (11 → 12, FIG. 4A). In addition, in an ultra-wideband microphone that targets a band up to 100 kHz, a microphone capsule that requires a certain size or more is required to obtain the required S / N. In this case, the outer diameter of the microphone capsule is reduced. As an example in the case of 13 mm, two or more frequency characteristic undulations due to the diffraction effect as shown in FIG. 4B occur in the band (13).
[0013]
In the present invention, the S / N can be improved by 3 dB by using two directional macrophone capsules and adding the outputs to increase the sensitivity by 6 dB. As an embodiment of the present invention, the second peak of the diffraction effect is set around 100 kHz by targeting a band up to 100 kHz. For this purpose, the outer diameter of the macrophone capsule was designed to be 10.5 mm. In this case, the frequency characteristic of the microphone capsule alone has the undulation shown in FIG. 4C due to the diffraction effect (15). This is because when the opening shape of the microphone capsule is circular, the peak frequency of the first peak among the undulations due to the diffraction effect is the speed of sound / outer diameter of the microphone capsule (that is, the diameter of the circular opening shape) , and the second This is because the peak frequency of the peak is approximately three times the peak frequency of the first peak. That is, setting the peak frequency of the second peak to around 100 kHz is equivalent to setting the outer diameter dimension of the microphone capsule to approximately three times the wavelength of the sound wave of 100 kHz. Here, the peak of the characteristic that occurs at 32 kHz is that two directional microphone capsules are arranged at a predetermined interval (a distance equal to the radius of the circular microphone capsule) in the direction of the main axis of the directivity. By adding the outputs at a predetermined ratio and using the phase difference to attenuate the diffraction effect, a substantially flat frequency characteristic can be obtained.
[0014]
The peak of the characteristic occurring around 97kHz is flattened by the following method.
As described above, since the microphone sensitivity decreases when the band is set wide, in the present invention, the outer diameter of the microphone capsule is kept as it is, for example, the gap length between the diaphragm and the back electrode and the stiffness of the diaphragm are adjusted. Therefore, the bandwidth of the microphone capsule alone is set to be narrower than 100 kHz (about 70 kHz). As a result, in the single microphone capsule, the peak near 32kHz remains due to the diffraction effect, but the peak near 97kHz becomes flat (18). Sharper directivity is obtained by using the increase in sensitivity due to the diffraction effect of the microphone capsule alone in the ultra-high range and by utilizing the fact that the sensitivity increase due to the diffraction effect is small except in the front.
By the above method, as shown in FIG. 4 (d), a directional ultra-wideband microphone (17) having a flat frequency characteristic, high sensitivity (having excellent S / N) and required directivity up to an ultra high frequency range (17). Can be realized.
[0015]
Hereinafter, embodiments of the present invention will be described more specifically with reference to the accompanying drawings. An embodiment of a microphone according to the present invention is shown in the block diagram of FIG. 5, and the basic structure of the microphone is shown in FIG. In FIG. 5, the macrophone capsule to be used has a single directivity and a characteristic that covers an ultra-wide band (however, the characteristic in a single ultra-high frequency range is a flat frequency characteristic and a directivity characteristic intended by the diffraction effect). Cannot be obtained). Then, the front directional capsule 21 and the rear directional capsule 22 are arranged on the same axis in the same direction at a distance of the capsule radius. Next, the output signal of one microphone is post-added 24 through the low-pass filter 23 for adjusting the frequency characteristics, thereby making it possible to further reduce the undulation of the frequency characteristics due to the diffraction effect in the ultra-high frequency range. Flat frequency characteristics and necessary directivity can be obtained. Note that the low-pass filter 23 is only for flattening the frequency characteristics, and is therefore a circuit that can be added and removed as necessary. Further, the target frequency characteristic can be obtained by adjusting the cutoff frequency instead of the low-pass filter.
[0016]
Explaining the above matters in more detail, the single microphone capsule 21 or 22 has a large undulation in the front characteristics in the ultra high frequency region due to the diffraction effect (31, FIG. 7 (a)). Therefore, when two identical unidirectional macrophone capsules 21 and 22 are arranged on the same axis in the same direction and the distance is adjusted, when the distance between the microphone capsules is approximately the length corresponding to the radius of the capsule, In the ultra-high frequency band, the output of the two microphones cancels out due to the phase difference, so that the front sensitivity is lowered and the lateral sensitivity is not lowered at the same time. That is, in the case of the above arrangement, since the characteristic opposite to the diffraction effect is exhibited, the desired flat unidirectional frequency characteristic can be obtained by canceling the characteristic of the single microphone (33, FIG. 7 (b)).
[0017]
【The invention's effect】
There are several challenges to realizing a microphone that can pick up sound in the ultra high range. The main one is (1) Microphone capsule sensitivity is lowered when the band up to ultra high frequency is realized. {Circle around (2)} Due to the diffraction effect, a large undulation appears in the frequency characteristics of the high frequency range or the ultra high frequency range, resulting in a difference in sound quality between the front and the front. (3) If the microphone capsule is miniaturized to reduce the influence of the diffraction effect, the sensitivity is lowered and the S / N is also deteriorated. (4) The conventional design method is three-way or four-way, the microphone becomes large, and the sound field is disturbed in the super high range.
These problems are solved by adopting the present invention in a microphone configuration, and a wide band castle microphone can be realized relatively easily.
[Brief description of the drawings]
FIG. 1 is a block diagram of a conventional unidirectional microphone (when a single microphone capsule is used).
FIG. 2 is a block diagram of a conventional unidirectional microphone (when two microphone capsules are used).
FIG. 3 is a block diagram of a microphone whose band is divided.
FIGS. 4A and 4B are diagrams showing frequency characteristics of various microphones, where FIG. 4A shows expected frequency characteristics of a conventional microphone (11) and an extended microphone (12), and FIG. 4B shows the outside of the microphone capsule. Frequency characteristics when the diameter is 13 mm (front (0 degree) 13 and lateral direction (90 degrees) 14), (c) is the frequency characteristic when the outer diameter of the microphone capsule is 10.5 mm (front (0 degree) 15 and Horizontal direction (90 degree | times) 16), (d) is a figure which shows the frequency characteristic (this invention front characteristic 17 and this invention's front characteristic 18) of the microphone by this invention when the outer diameter of a microphone capsule is 10.5 mm.
FIG. 5 is a block diagram of the microphone of the present invention.
FIG. 6 is a basic structural diagram of the microphone of the present invention.
7A and 7B are frequency characteristic diagrams shown for comparison, in which FIG. 7A is a frequency characteristic of a single microphone capsule, and FIG. 7B is a frequency characteristic of a microphone according to the present invention.
[Explanation of symbols]
1: Unidirectional capsule 2: Front omnidirectional capsule 3: Rear omnidirectional capsule 4: Unidirectional capsule for mid-low range 5: Unidirectional capsule for high range 6: Single for ultra high range Directional capsule 21: Forward directional capsule 22: Backward directional capsule 23: Low-pass filter 24: Adder 25: Head cover 26: Electronic circuit 27: Microphone case 28: Output connector

Claims (2)

単一指向性で20Hzから100kHzまでの帯域をカバーする広帯域指向性マイクロホンであって、
同軸上同方向に離間して配置した同一構成の2つのマイクロホンカプセルと、
前記2つのマイクロホンカプセルの各出力信号を各別に増幅する増幅手段と、
前記増幅手段により増幅した各々の信号を加算する加算手段とを備え、
前記2つのマイクロホンカプセルの各々は、前記帯域内で正面方向感度として第1のピーク及び第2のピークを生じさせる円形の開口形状を有し、
前記2つのマイクロホンカプセルの円形の開口形状は、前記第1のピークのピーク周波数ほぼ音速/マイクロホンカプセルの前記円形の開口形状の直径、となるように、且つ、前記円形の開口形状の直径が前記第2のピークのピーク周波数波長のほぼ3倍の長さとなるように、予め定められており、
前記2つのマイクロホンカプセルの離間距離は、前記円形の開口形状の直径のほぼ1/2となるように予め定められていることを特徴とする広帯域指向性マイクロホン。
A broadband directional microphone that covers a band from 20 Hz to 100 kHz with a single directivity ,
Two microphone capsules having the same configuration and spaced apart in the same direction on the same axis ;
Amplifying means for amplifying each output signal of the two microphone capsules;
Adding means for adding each signal amplified by the amplification means,
Each of the two microphone capsules has a circular aperture shape that produces a first peak and a second peak as frontal sensitivity within the band;
The circular opening shapes of the two microphone capsules are such that the peak frequency of the first peak is approximately the speed of sound / the diameter of the circular opening shape of the microphone capsule , and the diameter of the circular opening shape. Is predetermined to be approximately three times the peak frequency wavelength of the second peak,
A wideband directional microphone , wherein a distance between the two microphone capsules is predetermined to be approximately ½ of a diameter of the circular opening shape .
前記増幅手段により増幅した2つのマイクロホンカプセル出力信号のいずれか一方を、前記加算手段に入力する前に低域通過フィルタリングを施す低域通過フィルタを更に備えることを特徴とする請求項1に記載の広帯域指向性マイクロホン。The low-pass filter which performs low-pass filtering before either one of the two microphone capsule output signals amplified by the amplifying unit is input to the adding unit is provided. Wideband directional microphone.
JP8400199A 1999-03-26 1999-03-26 Wideband directional microphone Expired - Lifetime JP3983409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8400199A JP3983409B2 (en) 1999-03-26 1999-03-26 Wideband directional microphone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8400199A JP3983409B2 (en) 1999-03-26 1999-03-26 Wideband directional microphone

Publications (2)

Publication Number Publication Date
JP2000278783A JP2000278783A (en) 2000-10-06
JP3983409B2 true JP3983409B2 (en) 2007-09-26

Family

ID=13818314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8400199A Expired - Lifetime JP3983409B2 (en) 1999-03-26 1999-03-26 Wideband directional microphone

Country Status (1)

Country Link
JP (1) JP3983409B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146795B1 (en) 2011-04-15 2012-05-16 주식회사 비에스이 Wideband ultra directional microphone
RU2538031C2 (en) * 2012-10-16 2015-01-10 Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования Московский технический университет связи и информатики (ФГОБУ ВПО МТУСИ) Method for highly directional reception of sound waves
RU2623654C1 (en) * 2016-03-01 2017-06-28 Михаил Алексеевич Горбунов Directional reception of sound signals in solid angle
CN108184180A (en) * 2018-03-26 2018-06-19 东莞市哲巫本计文化传播有限公司 A kind of full range sound collector

Also Published As

Publication number Publication date
JP2000278783A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
US4589137A (en) Electronic noise-reducing system
US8184823B2 (en) Headphone device, sound reproduction system, and sound reproduction method
CA1276283C (en) Unidirectional second order gradient microphone
US20020150270A1 (en) Sound system having a HF horn coaxially aligned in the mouth of a midrange horn
DE102020109138A1 (en) IN-EAR HEADPHONE DEVICE WITH ACTIVE NOISE COMPENSATION
US5925856A (en) Loudspeaker horn
JP2769738B2 (en) Speaker device
US8111836B1 (en) System and method using a phased array of acoustic generators for producing an adaptive null zone
JP3983409B2 (en) Wideband directional microphone
JPH10304496A (en) Border layer microphone
JP2000050385A (en) Microphone with narrow directivity
JP2002095084A (en) Directivity reception system
JP2002152873A (en) Microphone
KR102340366B1 (en) Speaker device, method for processing input signal of speaker device, and audio system
CN110099330A (en) A kind of earphone, earphone system and earphone charging system
JPH0965482A (en) Sound collecting method and microphone device executing the method
KR20110066493A (en) The folding type directional speaker array module
KR101330208B1 (en) Array speaker system using sound hole
JPH06233371A (en) Broad band narrow angle directive microphone
JP5268713B2 (en) Back sensitivity suppression type narrow directivity microphone and method of manufacturing the same
JP2846363B2 (en) Speaker device with directivity
JPH0423697A (en) Horn speaker
JP4383242B2 (en) Small narrow-angle directional microphone
JPH01241298A (en) Speaker system
JP3326063B2 (en) Omnidirectional microphone

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070417

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term