JP3983358B2 - Cylindrical heat exchanger - Google Patents

Cylindrical heat exchanger Download PDF

Info

Publication number
JP3983358B2
JP3983358B2 JP32913297A JP32913297A JP3983358B2 JP 3983358 B2 JP3983358 B2 JP 3983358B2 JP 32913297 A JP32913297 A JP 32913297A JP 32913297 A JP32913297 A JP 32913297A JP 3983358 B2 JP3983358 B2 JP 3983358B2
Authority
JP
Japan
Prior art keywords
inner cylinder
cylinder
outer cylinder
heat exchanger
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32913297A
Other languages
Japanese (ja)
Other versions
JPH11159926A (en
Inventor
慎哉 坂野
二郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP32913297A priority Critical patent/JP3983358B2/en
Publication of JPH11159926A publication Critical patent/JPH11159926A/en
Application granted granted Critical
Publication of JP3983358B2 publication Critical patent/JP3983358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Description

【0001】
【発明の属する技術分野】
本発明は、例えばオーガ式製氷機の冷凍系に使用し得る円筒型熱交換器に関する。
【0002】
【従来の技術】
円筒型熱交換器は例えば特開昭55−25735号公報に示されていて、この公報に示されている円筒型熱交換器は、内面及び外面が平滑な内筒と、所定範囲の内面に螺旋状の溝を有し且つ該溝の一端部と他端部には媒体の入口と出口を形成した外筒とを備え、前記溝の開口を前記内筒の外面で塞ぎ、且つ該溝以外の前記外筒の平坦部と前記内筒の外面との間に間隙を存する様に内筒と外筒を配置して前記内筒の外面と前記外筒の平坦部とをブレージング加工により結合し前記内筒の外面と前記溝によって媒体流通路を形成して成るものである。
【0003】
【発明が解決しようとする課題】
上記した公報の円筒型熱交換器においては、媒体流通路が螺旋状に形成されているため、媒体流通路を流れる媒体が遠心力によって主として媒体流通路の外側、すなわち外筒の螺旋状内面に沿って流れることとなり、媒体と外筒間での熱交換が十分に得られるものの、媒体と内筒間での熱交換が十分に得られなくて、媒体流通路内の媒体と内筒の内部に存在する物質間での熱交換を効率よく行うことができない。
【0004】
本発明は、上記の問題に対処するため、平滑な内周面と外周面を有する円筒状の内筒と、周方向に変位した部位にてその一部分を大径部とした複数のリング状小径部を軸方向にて等間隔に離間して形成した円筒蛇腹形状の外筒によって構成され、前記外筒を前記内筒に嵌合した状態にて同外筒の前記複数のリング状小径部が前記内筒の外周面に圧入固定され前記内筒と外筒がその嵌合部分にて炉中ろう付けによって一体にされることにより前記内筒の外周面に前記リング状小径部の間に多段の環状通路が形成されこれらの環状通路が前記リング状小径部の大径部分にて連通して冷却媒体の流通路が形成された円筒型熱交換器を提供するものである。
【0005】
本発明の実施にあたっては、前記外筒の両端に円筒状の小径部を形成して、これら小径部を前記内筒の外周面に嵌合した部分にて前記内筒と外筒を炉中ろう付けにより一体にするのが望ましい。この場合、前記外筒の一端部に冷却媒体の流入口を設け、同外筒の他端部に前記冷却媒体の流出口を設けて、前記流入口と流出口に冷凍配管を接続することにより冷却媒体を流通させるのが望ましい。
【0006】
【発明の作用・効果】
上記のように構成した本発明による円筒型熱交換器においては、前記外筒を前記内筒に嵌合した状態にて同外筒の前記複数のリング状小径部が前記内筒の外周面に圧入固定され前記内筒と外筒がその嵌合部分にて炉中ろう付けによって一体にされることにより前記内筒の外周面に前記リング状小径部の間に多段の環状通路が形成されこれらの環状通路が前記リング状小径部の大径部分にて連通して冷却媒体の流通路が形成される。しかして、多段に形成された環状通路に供給される冷却媒体は、各環状通路内を螺旋状通路に比して通路の外周に偏りが少ない状態にて流れ、内筒の外周面に沿っても十分に流れる。このため、媒体流通路内の媒体と内筒間での熱交換が十分に得られて、媒体流通路内の媒体と内筒の内部に存在する物質間での熱交換を効率よく行うことができる。
【0008】
また、本発明による円筒型熱交換器は、上記の外筒を内筒に圧入嵌合してその嵌合部分にて炉中ろう付けするだけで簡単に製造できるため、作業者によるハンダ付けやガス溶接に比して、製品の品質を安定させることができるとともに、作業環境を改善することができる。
【0009】
【発明の実施の形態】
以下に、本発明の一実施形態を図面に基づいて説明する。図1及び図2は本発明による円筒型熱交換器をオーガ式製氷機の冷凍系に使用した例を示していて、この円筒型熱交換器10は、内面11a及び外面11bが平滑な内筒11と、上下両端部に筒状小径部12a,12bを有するとともに中間部に一部分を欠いたリング状小径部12cを複数個(11個)有する外筒12を備えている。なお、図1に示したオーガ式製氷機は円筒型熱交換器10以外の構成(例えば、オーガ21、上部ハウジング22、軸受23、下部ハウジング24、メカニカルシール25、連結スリーブ26、ギヤドモータ27及び氷放出管28等)が周知のものである。
【0010】
内筒11は、熱伝達が良好で耐水性の素材、例えばステンレス鋼管にて円筒形状に形成されていて、上下両端段部11c,11dには環状フランジ13,14が圧入固定された状態で炉内ろう付けされる(炉内ろう付けされる部位の内筒外面11aにはろう材が予め塗布されている)ことにより一体的に組付けられている。また、内筒11の下部所定位置に設けたパイプ取付孔11eには、内筒11内に製氷水を給排するための給排水パイプ15が圧入固定された状態で炉内ろう付けされる(炉内ろう付けされる部位の内筒外面11aにはろう材が予め塗布されている)ことにより一体的に組付けられている。なお、給排水パイプ15には、製氷水タンク(図示省略)内の製氷水を内筒11内に導くための給水パイプ(図示省略)と、内筒11内の水を排水路(図示省略)に導くための排水パイプ(図示省略)が接続されるようになっている。
【0011】
外筒12は、薄肉金属管にて円筒蛇腹形状に形成されていて、上端部一側には媒体入口12dが形成され、下端部一側には媒体出口12eが形成されている。媒体入口12dはハンダ付けまたはガス溶接あるいは炉内ろう付けされる入口パイプ16と冷凍配管(図示省略)を介して冷凍系の膨張弁(図示省略)に接続され、また媒体出口12eはハンダ付けまたはガス溶接あるいは炉内ろう付けされる出口パイプ17と冷凍配管(図示省略)を介して冷凍系の圧縮機(図示省略)に接続されるようになっている。また、外筒12の上端には、上方の環状フランジ13の下面に密着する環状フランジ部12fが形成されている。また、外筒12の上下両端には折り曲げ加工部12g,12hが形成されている。
【0012】
ところで、本実施形態においては、内筒11の外面11bと外筒12の筒状小径部12a,12b及び多数のリング状小径部12cが圧入固定され、また外筒12の環状フランジ部12fが環状フランジ13の下面に密着した状態で、内筒11と外筒12が炉内ろう付けされる(このときに内筒11に圧入固定されている両環状フランジ13,14及び給排水パイプ15も同時に内筒11に炉内ろう付けされる)ことにより、内筒11と外筒12が密着結合されて一体化されていて、これによって内筒11と外筒12間に媒体流通路Pが形成されている。
【0013】
媒体流通路Pは、多段の環状通路P1と、これら環状通路P1で隣接する各環状通路P1を周方向に変位した部位にて連通させる連通路P2(リング状小径部12cの一部を大径にした部分、すなわち小径としない部分によって形成されている)からなるもので、一端は外筒12に設けた媒体入口12dに連通し、また他端は外筒12に設けた媒体出口12eに連通している。また、媒体流通路Pを構成する各連通路P2が各段毎で対向位置(図示左端位置と図示右端位置)に交互に設けられていて、媒体流通路Pがジクザク形状とされている。
【0014】
上記のように構成した本実施形態の円筒型熱交換器10においては、内筒11と外筒12が内筒11の外面11aと外筒12の筒状小径部12a,12b及び多数のリング状小径部12cにて密着結合されることにより、内筒11と外筒12間に多段の環状通路P1とこれら環状通路P1で隣接する各環状通路P1を周方向に変位した部位にて連通させる連通路P2からなる媒体流通路Pが形成される。このため、媒体入口12dから媒体流通路Pに入った媒体(冷媒)は環状通路P1と連通路P2を順次通って媒体出口12eに至り、その間に或る段の環状通路P1を一方に流れた媒体が次段の環状通路P1を他方に流れて、媒体流通路Pを媒体がジクザクに流れる。
【0015】
したがって、媒体流通路P内の媒体は、各環状通路P1内を螺旋状通路に比して通路の外周に偏りが少ない状態、すなわち媒体の多くが自重で各段の底面に沿って流れ、一部が内筒11の外面11bに沿って流れ、外筒12の内面に沿って殆ど流れない状態(実験により確認されている)にて流れ、内筒11の外面11bに沿っても十分に流れる。このため、媒体流通路P内の媒体と内筒11間での熱交換が十分に得られて、媒体流通路P内の媒体と内筒11の内部に存在する製氷水間での熱交換を効率よく行うことができる。
【0016】
また、本実施形態の円筒型熱交換器10においては、媒体流通路Pを構成する各連通路P2が各段毎で対向位置に交互に設けられているため、媒体入口12dから媒体出口12eに至る媒体流通路Pの実質的な全長を長くすることができて、媒体の媒体流通路P内での滞留時間を十分に確保でき、これによっても熱交換効率を高めることができる。また、内筒11と外筒12の密着結合手段として圧入固定手段及び炉内ろう付け固定手段を採用しているため、作業者によるハンダ付けやガス溶接に比して、製品の品質を安定させることができるとともに、作業環境を改善することができる。
【0017】
また、本実施形態の円筒型熱交換器10においては、内筒11と外筒12が炉内ろう付けされるときに内筒11に圧入固定されている両環状フランジ13,14及び給排水パイプ15も同時に内筒11に炉内ろう付けされるようにしたため、両環状フランジ13,14及び給排水パイプ15を内筒11にハンダ付けやガス溶接によって固着する場合のような内筒11の局部加熱による歪みの発生を無くすことができて、最終工程での内筒11の内面11aの寸法出し加工を不要とすることができる。
【0018】
また、本実施形態の円筒型熱交換器10においては、外筒12の上下両端に折り曲げ加工部12g,12hが形成されているため、各折り曲げ加工部12g,12hを所要の大きさとしてろう材の保持部とすることも可能であり、各折り曲げ加工部12g,12hにろう材を置いて炉内ろう付けを行えば、内筒11の外面11bと外筒12の筒状小径部12a,12bとの密着結合を更に確実とすることが可能である。
【0019】
上記実施形態においては、外筒12の上下に単一の媒体入口12d及び媒体出口12eを設けるとともに、中間部に一部分を欠いたリング状小径部12cを複数個(11個)設けて、内筒11と外筒12間に多段の環状通路P1とこれら環状通路P1で隣接する各環状通路P1を周方向に変位した部位にて連通させる連通路P2からなる媒体流通路P(隣接する環状通路P1を単一の連通路P2によって連通させた通路)が形成されるようにしたが、外筒12の上下に対向する一対の媒体入口及び媒体出口をそれぞれ設けるとともに、中間部に対向する二箇所を欠いたリング状小径部を複数個(11個)設けて、内筒11と外筒12間に多段の環状通路とこれら環状通路で隣接する各環状通路を周方向に変位した部位にて連通させる連通路からなる媒体流通路(隣接する環状通路を対向する一対の連通路によって連通させた通路)が形成されるようにして実施することも可能である。また、上記実施形態においては、外筒12の上方に媒体入口12dを設けるとともに外筒12の下方に媒体出口12eを設けて実施したが、外筒の上方に媒体出口を設けるとともに外筒の下方に媒体入口を設けて実施することも可能である。
【0020】
また、上記実施形態においては、炉内ろう付けに先だって内筒11の外面11bに予めろう材を塗布して実施したが、これに代えて或いはこれに加えて外筒12の内面に予めろう材を塗布して実施することも可能である。また、外筒12のリング状小径部12cでは外筒12の筒状小径部12a,12bほどに内筒11と外筒12の密着結合が要求されないため、外筒12のリング状小径部12cでは圧入固定のみによる密着結合でも実施可能である。この場合には、内筒11の外面11bや外筒12の内面に予めろう材を塗布しないで、各折り曲げ加工部12g,12hにろう材を置いて炉内ろう付けを行うのが望ましい。
【0021】
また、上記実施形態においては、本発明による円筒型熱交換器をオーガ式製氷機の冷凍系に実施した例について説明したが、本発明による円筒型熱交換器はソフトクリーム製造機、冷凍炭酸飲料製造機等他の機械にも同様に実施し得るものである。
【図面の簡単な説明】
【図1】 本発明による円筒型熱交換器をオーガ式製氷機の冷凍系に使用した例を示す一部破断側面図である。
【図2】 図1に示した円筒型熱交換器の一部破断側面図である。
【符号の説明】
10…円筒型熱交換器、11…内筒、11a…内面、11b…外面、12…外筒、12a,12b…筒状小径部、12c…リング状小径部、12d…媒体入口、12e…媒体出口、12f…環状フランジ部、12g,12h…折り曲げ部、13,14…環状フランジ、15…給排水パイプ、P…媒体流通路、P1…環状通路、P2…連通路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical heat exchanger that can be used, for example, in a refrigeration system of an auger type ice making machine.
[0002]
[Prior art]
A cylindrical heat exchanger is disclosed in, for example, Japanese Patent Application Laid-Open No. 55-25735. A cylindrical heat exchanger disclosed in this publication has an inner tube with a smooth inner surface and outer surface, and an inner surface within a predetermined range. An outer cylinder having a spiral groove and having a medium inlet and outlet formed at one end and the other end of the groove, the opening of the groove being blocked by the outer surface of the inner cylinder, and other than the groove The inner cylinder and the outer cylinder are arranged so that there is a gap between the flat part of the outer cylinder and the outer surface of the inner cylinder, and the outer surface of the inner cylinder and the flat part of the outer cylinder are joined by brazing. A medium flow path is formed by the outer surface of the inner cylinder and the groove.
[0003]
[Problems to be solved by the invention]
In the cylindrical heat exchanger of the above publication, the medium flow passage is formed in a spiral shape, so that the medium flowing through the medium flow passage is mainly formed on the outside of the medium flow passage, that is, on the spiral inner surface of the outer cylinder by centrifugal force. Although the heat exchange between the medium and the outer cylinder is sufficiently obtained, the heat exchange between the medium and the inner cylinder is not obtained sufficiently, and the medium in the medium flow path and the inside of the inner cylinder are obtained. It is not possible to efficiently exchange heat between substances existing in
[0004]
In order to address the above problems , the present invention provides a cylindrical inner cylinder having a smooth inner peripheral surface and an outer peripheral surface, and a plurality of ring-shaped small diameters having a large diameter portion at a portion displaced in the circumferential direction. A plurality of ring-shaped small-diameter portions of the outer cylinder in a state in which the outer cylinder is fitted to the inner cylinder. The inner cylinder and the outer cylinder are press-fitted and fixed to the outer peripheral surface of the inner cylinder, and the inner cylinder and the outer cylinder are integrated with each other by brazing in the furnace at a fitting portion thereof, so that a multi-stage is provided between the ring-shaped small diameter portions on the outer peripheral surface of the inner cylinder The annular heat exchanger is formed, and these annular passages communicate with each other at the large diameter portion of the ring-shaped small diameter portion to provide a cylindrical heat exchanger in which a flow passage for the cooling medium is formed .
[0005]
In carrying out the present invention, cylindrical small-diameter portions are formed at both ends of the outer tube, and the inner tube and the outer tube are brazed in a furnace at a portion where these small-diameter portions are fitted to the outer peripheral surface of the inner tube. It is desirable to unite by attaching. In this case, by providing an inlet for the cooling medium at one end of the outer cylinder, an outlet for the cooling medium at the other end of the outer cylinder, and connecting a refrigeration pipe to the inlet and the outlet. It is desirable to distribute the cooling medium.
[0006]
[Operation and effect of the invention]
In the cylindrical heat exchanger according to the present invention configured as described above, the plurality of ring-shaped small diameter portions of the outer cylinder are formed on the outer peripheral surface of the inner cylinder in a state where the outer cylinder is fitted to the inner cylinder. When the inner cylinder and the outer cylinder are press-fitted and fixed together by brazing in the furnace at the fitting portion, a multistage annular passage is formed between the ring-shaped small diameter portions on the outer peripheral surface of the inner cylinder. The annular passage communicates with the large-diameter portion of the ring-shaped small-diameter portion to form a cooling medium flow passage. Thus, the cooling medium supplied to the annular passages formed in multiple stages flows in each annular passage in a state where the deviation is less on the outer periphery of the passage than the spiral passage, and along the outer peripheral surface of the inner cylinder. Well flowing. For this reason, sufficient heat exchange between the medium in the medium flow path and the inner cylinder can be obtained, and heat exchange between the medium in the medium flow path and the substance existing in the inner cylinder can be efficiently performed. it can.
[0008]
Further, the cylindrical heat exchanger according to the present invention can be easily manufactured by simply press-fitting the outer cylinder into the inner cylinder and brazing in the fitting portion at the fitting portion. Compared with gas welding, the product quality can be stabilized and the working environment can be improved.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 and 2 show an example in which a cylindrical heat exchanger according to the present invention is used in a refrigerating system of an auger type ice making machine. This cylindrical heat exchanger 10 has an inner cylinder having a smooth inner surface 11a and outer surface 11b. 11 and an outer cylinder 12 having a plurality of (11) ring-shaped small-diameter portions 12c having cylindrical small-diameter portions 12a and 12b at both upper and lower ends and a portion lacking in the middle portion. The auger type ice making machine shown in FIG. 1 has a configuration other than the cylindrical heat exchanger 10 (for example, auger 21, upper housing 22, bearing 23, lower housing 24, mechanical seal 25, connecting sleeve 26, geared motor 27, and ice). The discharge tube 28 and the like are well known.
[0010]
The inner cylinder 11 is formed in a cylindrical shape with a heat-resistant and water-resistant material, for example, a stainless steel pipe, and the annular flanges 13 and 14 are press-fitted and fixed to the upper and lower end step portions 11c and 11d. It is assembled integrally by being internally brazed (a brazing material is applied in advance to the inner cylinder outer surface 11a of the part to be brazed in the furnace). Also, the pipe mounting hole 11e provided at a predetermined position below the inner cylinder 11 is brazed in the furnace in a state where a water supply / drainage pipe 15 for supplying and discharging ice making water into the inner cylinder 11 is press-fitted and fixed (furnace The brazing material is preliminarily applied to the outer surface 11a of the inner cylinder of the part to be brazed internally. The water supply / drainage pipe 15 includes a water supply pipe (not shown) for guiding ice making water in an ice making water tank (not shown) into the inner cylinder 11, and water in the inner cylinder 11 into a drainage path (not shown). A drainage pipe (not shown) for guiding is connected.
[0011]
The outer cylinder 12 is formed of a thin metal tube in a cylindrical bellows shape. A medium inlet 12d is formed on one side of the upper end and a medium outlet 12e is formed on the lower end. The medium inlet 12d is connected to an expansion valve (not shown) of the refrigeration system via an inlet pipe 16 and a refrigeration pipe (not shown) that are soldered, gas welded or brazed in the furnace, and the medium outlet 12e is soldered or It is connected to a refrigeration system compressor (not shown) through an outlet pipe 17 and a refrigeration pipe (not shown) that are gas-welded or brazed in the furnace. Further, an annular flange portion 12 f that is in close contact with the lower surface of the upper annular flange 13 is formed at the upper end of the outer cylinder 12. Further, bent portions 12g and 12h are formed on the upper and lower ends of the outer cylinder 12, respectively.
[0012]
By the way, in this embodiment, the outer surface 11b of the inner cylinder 11, the cylindrical small-diameter portions 12a and 12b of the outer cylinder 12, and a large number of ring-shaped small-diameter portions 12c are press-fitted and the annular flange portion 12f of the outer cylinder 12 is annular. The inner cylinder 11 and the outer cylinder 12 are brazed in the furnace in close contact with the lower surface of the flange 13 (both the annular flanges 13 and 14 and the water supply / drainage pipe 15 that are press-fitted and fixed to the inner cylinder 11 at this time are also included in the inner cylinder 11). The inner cylinder 11 and the outer cylinder 12 are tightly coupled and integrated with each other by the brazing of the cylinder 11 to the furnace, thereby forming a medium flow path P between the inner cylinder 11 and the outer cylinder 12. Yes.
[0013]
The medium flow passage P is a communication passage P2 ( a part of the ring-shaped small-diameter portion 12c having a large diameter) that connects the multi-stage annular passages P1 and the annular passages P1 adjacent to each other at the circumferentially displaced portions. made of portions, that is, formed by a portion which is not a small diameter) to one end communicates with the medium inlet 12d provided in the outer tube 12, the other end is communicated with the media outlet 12e provided in the outer tube 12 is doing. Further, the communication paths P2 constituting the medium flow path P are alternately provided at opposing positions (left end position in the drawing and right end position in the drawing) for each stage, and the medium flow passage P has a zigzag shape.
[0014]
In the cylindrical heat exchanger 10 of the present embodiment configured as described above, the inner cylinder 11 and the outer cylinder 12 include the outer surface 11a of the inner cylinder 11, the cylindrical small diameter portions 12a and 12b of the outer cylinder 12, and a large number of ring shapes. By being tightly coupled at the small-diameter portion 12c, the multi-stage annular passage P1 between the inner cylinder 11 and the outer cylinder 12 and each annular passage P1 adjacent to the annular passage P1 are communicated at a portion displaced in the circumferential direction. A medium flow path P composed of the path P2 is formed. For this reason, the medium (refrigerant) that has entered the medium flow path P from the medium inlet 12d sequentially passes through the annular path P1 and the communication path P2 to the medium outlet 12e, and flows through one stage of the annular path P1 between them. The medium flows through the annular passage P1 at the next stage to the other, and the medium flows in a zigzag manner through the medium flow path P.
[0015]
Accordingly, the medium in the medium flow passage P is less biased on the outer periphery of the passage in each annular passage P1 than the spiral passage, that is, most of the medium flows under its own weight along the bottom surface of each stage. Part flows along the outer surface 11 b of the inner cylinder 11, flows in a state where it hardly flows along the inner surface of the outer cylinder 12 (confirmed by experiments), and flows sufficiently along the outer surface 11 b of the inner cylinder 11. . For this reason, sufficient heat exchange between the medium in the medium flow path P and the inner cylinder 11 is obtained, and heat exchange between the medium in the medium flow path P and the ice making water existing inside the inner cylinder 11 is achieved. It can be done efficiently.
[0016]
Further, in the cylindrical heat exchanger 10 of the present embodiment, the communication paths P2 constituting the medium flow path P are alternately provided at opposite positions in each stage, and therefore, from the medium inlet 12d to the medium outlet 12e. The substantial total length of the reaching medium flow path P can be lengthened, and the residence time of the medium in the medium flow path P can be sufficiently secured, thereby improving the heat exchange efficiency. Moreover, since the press-fitting fixing means and the in-furnace brazing fixing means are adopted as the tight coupling means of the inner cylinder 11 and the outer cylinder 12, the product quality is stabilized as compared with soldering and gas welding by the operator. Work environment can be improved.
[0017]
In the cylindrical heat exchanger 10 of the present embodiment, both the annular flanges 13 and 14 and the water supply / drainage pipe 15 that are press-fitted and fixed to the inner cylinder 11 when the inner cylinder 11 and the outer cylinder 12 are brazed in the furnace. At the same time, since the inner cylinder 11 is brazed into the furnace, both the annular flanges 13 and 14 and the water supply / drainage pipe 15 are locally heated by the inner cylinder 11 as in the case of being fixed to the inner cylinder 11 by soldering or gas welding. Generation of distortion can be eliminated, and dimensioning of the inner surface 11a of the inner cylinder 11 in the final process can be made unnecessary.
[0018]
Further, in the cylindrical heat exchanger 10 of the present embodiment, the bent portions 12g and 12h are formed at the upper and lower ends of the outer cylinder 12, so that the brazed materials have the required sizes of the bent portions 12g and 12h. If the brazing material is placed on the bent portions 12g and 12h and brazing is performed in the furnace, the outer surface 11b of the inner cylinder 11 and the cylindrical small diameter portions 12a and 12b of the outer cylinder 12 are used. It is possible to further ensure the tight coupling with.
[0019]
In the above embodiment, a single medium inlet 12d and a medium outlet 12e are provided above and below the outer cylinder 12, and a plurality of (11) ring-shaped small-diameter portions 12c lacking a part in the intermediate portion are provided. 11 and the outer cylinder 12, a medium flow passage P (adjacent annular passage P1) comprising a multi-stage annular passage P1 and a communication passage P2 that communicates the annular passages P1 adjacent to each other in the circumferential direction with the annular passages P1. Is formed by a single communication path P2, but a pair of medium inlets and medium outlets facing the upper and lower sides of the outer cylinder 12 are provided, and two positions facing the intermediate part are provided. A plurality (11) of ring-shaped small-diameter portions lacking are provided, and the multistage annular passages between the inner cylinder 11 and the outer cylinder 12 and the annular passages adjacent to each other in the annular passages are communicated with each other at a location displaced in the circumferential direction. Is it a communication passage It is also possible to become medium passage (passages communicated by a pair of communication passages facing the adjacent annular passage) is carried out so as to be formed. In the above embodiment, the medium inlet 12d is provided above the outer cylinder 12 and the medium outlet 12e is provided below the outer cylinder 12. However, the medium outlet is provided above the outer cylinder 12 and the lower side of the outer cylinder. It is also possible to carry out by providing a medium inlet.
[0020]
In the above embodiment, the brazing material is previously applied to the outer surface 11b of the inner cylinder 11 prior to the brazing in the furnace, but instead of or in addition to this, the brazing material is previously applied to the inner surface of the outer cylinder 12. It is also possible to apply and apply. Further, in the ring-shaped small-diameter portion 12c of the outer cylinder 12, the ring-shaped small-diameter portion 12c of the outer cylinder 12 does not require the tight coupling between the inner cylinder 11 and the outer cylinder 12 as much as the cylindrical small-diameter portions 12a and 12b of the outer cylinder 12. It can also be implemented by tight coupling only by press-fitting. In this case, it is desirable to perform brazing in the furnace by placing a brazing material in each of the bent portions 12g and 12h without previously applying a brazing material to the outer surface 11b of the inner cylinder 11 and the inner surface of the outer cylinder 12.
[0021]
In the above embodiment, the example in which the cylindrical heat exchanger according to the present invention is implemented in the refrigeration system of the auger type ice making machine has been described. However, the cylindrical heat exchanger according to the present invention is a soft ice cream manufacturing machine, a frozen carbonated beverage. It can be similarly applied to other machines such as a manufacturing machine.
[Brief description of the drawings]
FIG. 1 is a partially broken side view showing an example in which a cylindrical heat exchanger according to the present invention is used in a refrigerating system of an auger type ice making machine.
FIG. 2 is a partially broken side view of the cylindrical heat exchanger shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Cylindrical heat exchanger, 11 ... Inner cylinder, 11a ... Inner surface, 11b ... Outer surface, 12 ... Outer cylinder, 12a, 12b ... Cylindrical small diameter part, 12c ... Ring-shaped small diameter part, 12d ... Medium inlet, 12e ... Medium Outlet, 12f ... annular flange, 12g, 12h ... bent part, 13, 14 ... annular flange, 15 ... water supply / drainage pipe, P ... medium flow passage, P1 ... annular passage, P2 ... communication passage.

Claims (3)

平滑な内周面と外周面を有する円筒状の内筒と、周方向に変位した部位にてその一部分を大径部とした複数のリング状小径部を軸方向にて等間隔に離間して形成した円筒蛇腹形状の外筒によって構成され、前記外筒を前記内筒に嵌合した状態にて同外筒の前記複数のリング状小径部が前記内筒の外周面に圧入固定され前記内筒と外筒がその嵌合部分にて炉中ろう付けによって一体にされることにより前記内筒の外周面に前記リング状小径部の間に多段の環状通路が形成されこれらの環状通路が前記リング状小径部の大径部分にて連通して冷却媒体の流通路が形成された円筒型熱交換器。 A cylindrical inner cylinder having a smooth inner peripheral surface and an outer peripheral surface, and a plurality of ring-shaped small-diameter portions having a large-diameter portion at a portion displaced in the circumferential direction are spaced apart at equal intervals in the axial direction. The outer ring is formed by a cylindrical bellows-shaped outer cylinder, and the plurality of ring-shaped small diameter portions of the outer cylinder are press-fitted and fixed to the outer peripheral surface of the inner cylinder in a state where the outer cylinder is fitted to the inner cylinder. The tube and the outer tube are integrated at the fitting portion by brazing in the furnace, so that a multistage annular passage is formed between the ring-shaped small diameter portions on the outer peripheral surface of the inner tube, and these annular passages are A cylindrical heat exchanger in which a cooling medium flow passage is formed in communication with a large diameter portion of a ring-shaped small diameter portion . 前記外筒の両端に円筒状の小径部を形成して、これら小径部を前記内筒の外周面に嵌合した部分にて前記内筒と外筒を炉中ろう付けしたことを特徴とする請求項1に記載の円筒型熱交換器。 A cylindrical small diameter portion is formed at both ends of the outer cylinder, and the inner cylinder and the outer cylinder are brazed in a furnace at a portion where the small diameter portion is fitted to the outer peripheral surface of the inner cylinder. The cylindrical heat exchanger according to claim 1. 前記外筒の一端部に冷却媒体の流入口を設け、同外筒の他端部に前記冷却媒体の流出口を設けたことを特徴とする請求項2に記載の円筒型熱交換器。The cylindrical heat exchanger according to claim 2 , wherein an inlet of a cooling medium is provided at one end of the outer cylinder, and an outlet of the cooling medium is provided at the other end of the outer cylinder .
JP32913297A 1997-11-28 1997-11-28 Cylindrical heat exchanger Expired - Fee Related JP3983358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32913297A JP3983358B2 (en) 1997-11-28 1997-11-28 Cylindrical heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32913297A JP3983358B2 (en) 1997-11-28 1997-11-28 Cylindrical heat exchanger

Publications (2)

Publication Number Publication Date
JPH11159926A JPH11159926A (en) 1999-06-15
JP3983358B2 true JP3983358B2 (en) 2007-09-26

Family

ID=18217992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32913297A Expired - Fee Related JP3983358B2 (en) 1997-11-28 1997-11-28 Cylindrical heat exchanger

Country Status (1)

Country Link
JP (1) JP3983358B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ300488B6 (en) * 2003-07-04 2009-06-03 Heat exchanger system
US20100116823A1 (en) * 2008-11-07 2010-05-13 Applied Materials, Inc. Hydroformed fluid channels

Also Published As

Publication number Publication date
JPH11159926A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
US5797449A (en) Heat exchanger
US6837419B2 (en) Recuperator for use with turbine/turbo-alternator
JP4452919B2 (en) Components subject to high thermal loads during operation and methods for manufacturing such components
JP4878287B2 (en) Heat exchanger
US7246437B2 (en) Heat exchanger for cooling exhaust gas and method of manufacturing same
EP0357602B1 (en) Heat exchanger
JP2003139327A (en) Fuel injector fuel conduit with multiple laminated fuel strips
EP1214558B1 (en) A spiral heat exchanger
JP3983358B2 (en) Cylindrical heat exchanger
US6089465A (en) Heater with exhaust outlet connection integrated into the heat exchanger
KR101461701B1 (en) A spiral heat exchanger
KR100328275B1 (en) Heat exchager
US20010045275A1 (en) Cylindrical heat exchanger
US20070107885A1 (en) Heat exchanger with integral shell and tube plates
WO2001069064B1 (en) Cast heat exchanger system
JP2000249438A (en) Cylindrical heat exchanger
EP0635691B1 (en) Roller for furnaces, particularly for iron and steel making furnaces for heating slabs or the like
JP4267724B2 (en) Cylindrical heat exchanger
US6116332A (en) Plate heat exchanger and a support arrangement for a plate heat exchanger
US20020079085A1 (en) Turbine recuperator
CN108278920A (en) Heat exchanger shell
KR101694670B1 (en) I-o pipe connecting member for heat exchanger
JPH09113155A (en) Triple-tube type heat exchanger
KR20160117159A (en) Manufacturing method for heat exchanger with i-o pipe connecting member for heat exchanger
WO2010116239A1 (en) Double pipe system for an air conditioning system of a vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees