JP3983224B2 - Patch antenna - Google Patents

Patch antenna Download PDF

Info

Publication number
JP3983224B2
JP3983224B2 JP2004009418A JP2004009418A JP3983224B2 JP 3983224 B2 JP3983224 B2 JP 3983224B2 JP 2004009418 A JP2004009418 A JP 2004009418A JP 2004009418 A JP2004009418 A JP 2004009418A JP 3983224 B2 JP3983224 B2 JP 3983224B2
Authority
JP
Japan
Prior art keywords
dielectric substrate
patch antenna
hole
pin
radiation conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004009418A
Other languages
Japanese (ja)
Other versions
JP2005204151A (en
Inventor
勝 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2004009418A priority Critical patent/JP3983224B2/en
Publication of JP2005204151A publication Critical patent/JP2005204151A/en
Application granted granted Critical
Publication of JP3983224B2 publication Critical patent/JP3983224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Description

本発明は、誘電体基板の片面に設けられた放射導体が給電ピンによって給電されるパッチアンテナに係り、特に、車載用として好適なパッチアンテナに関する。   The present invention relates to a patch antenna in which a radiating conductor provided on one surface of a dielectric substrate is fed by a feed pin, and more particularly to a patch antenna suitable for in-vehicle use.

近年、小型薄型化に好適な誘電体アンテナとしてパッチアンテナの需要が高まっており、その一例として図3の断面図に示すような構造のパッチアンテナが従来より知られている(例えば、特許文献1参照)。同図に示すパッチアンテナ1は、セラミック等の誘電体材料からなる誘電体基板2と、誘電体基板2の上面に設けられた放射導体(パッチ電極)3と、誘電体基板2の底面に設けられた接地導体(裏面電極)4と、誘電体基板2を貫通して放射導体3の給電点に接続された給電ピン5とによって主に構成されている。   In recent years, the demand for patch antennas as dielectric antennas suitable for miniaturization and thinning has increased, and as an example, a patch antenna having a structure as shown in the cross-sectional view of FIG. 3 has been conventionally known (for example, Patent Document 1). reference). The patch antenna 1 shown in FIG. 1 is provided on a dielectric substrate 2 made of a dielectric material such as ceramic, a radiation conductor (patch electrode) 3 provided on the top surface of the dielectric substrate 2, and a bottom surface of the dielectric substrate 2. The grounding conductor (back electrode) 4 and the feeding pin 5 that penetrates the dielectric substrate 2 and is connected to the feeding point of the radiation conductor 3 are mainly configured.

誘電体基板2には、給電点と対応する位置に給電ピン5を挿通させるための貫通孔2aが設けられている。放射導体3と接地導体4は、銅箔等の良導電性金属からなり、エッチング加工等によってそれぞれ所定形状に形成されている。放射導体3は矩形や円形等の適宜形状に形成されており、円偏波アンテナとして動作させる場合、必要に応じて放射導体3に縮退分離素子が装荷される。接地導体4は、貫通孔2aの周縁部を除いて誘電体基板2の底面のほぼ全面に形成されている。給電ピン5は良導電性の金属ピンであって、その上端部(頭部)は放射導体3に半田付けされている。また、給電ピン5の下端部は、接地導体4とは絶縁されて誘電体基板2の下方へ突出し、図示せぬ給電回路のランド部に半田付けされている。   The dielectric substrate 2 is provided with a through hole 2a for inserting the power supply pin 5 at a position corresponding to the power supply point. The radiation conductor 3 and the ground conductor 4 are made of a highly conductive metal such as a copper foil, and are formed in a predetermined shape by etching or the like. The radiation conductor 3 is formed in an appropriate shape such as a rectangle or a circle, and when operated as a circularly polarized antenna, a degenerate separation element is loaded on the radiation conductor 3 as necessary. The ground conductor 4 is formed on almost the entire bottom surface of the dielectric substrate 2 except for the peripheral edge of the through hole 2a. The power feed pin 5 is a highly conductive metal pin, and its upper end (head) is soldered to the radiation conductor 3. The lower end portion of the power supply pin 5 is insulated from the ground conductor 4 and protrudes downward from the dielectric substrate 2 and is soldered to a land portion of a power supply circuit (not shown).

このように概略構成されたパッチアンテナ1の共振周波数は、誘電体基板2の誘電率や厚みあるいは放射導体3の大きさや形状等によって決定される。また、かかるパッチアンテナ1を製造する際には、予め誘電体基板2の所定位置(給電点と対応する位置)に貫通孔2aを設けておく。これにより、製造段階で給電ピン5を貫通孔2aに挿入した後、この給電ピン5の頭部を放射導体3に半田付けすればアンテナ素子(パッチアンテナ1)が完成するため、製造工程が簡素化されて低コスト化が図りやすくなっている。
特開平6−152237号公報(第2頁、図5)
The resonance frequency of the patch antenna 1 schematically configured as described above is determined by the dielectric constant and thickness of the dielectric substrate 2 or the size and shape of the radiation conductor 3. Further, when the patch antenna 1 is manufactured, the through hole 2 a is provided in advance at a predetermined position (a position corresponding to the feeding point) of the dielectric substrate 2. As a result, the antenna element (patch antenna 1) is completed by inserting the feeding pin 5 into the through-hole 2a in the manufacturing stage and then soldering the head of the feeding pin 5 to the radiation conductor 3, thereby simplifying the manufacturing process. This makes it easier to reduce costs.
JP-A-6-152237 (2nd page, FIG. 5)

前述した従来のパッチアンテナ1においては、その設計段階で、最適なインピーダンス整合が得られる位置(例えば放射導体3の中心点から50Ωに相当する位置)に給電点が設定され、この給電点に合致する貫通孔2aが誘電体基板2の成形時に形成されるため、貫通孔2aに挿入した給電ピン5の頭部が所望の給電点に配置されるようになっている。しかしながら、パッチアンテナ1が例えば車載用ナビゲーションのGPSアンテナとして使用される場合、アンテナ素子であるパッチアンテナ1は防塵用のレドームで覆われて金属製のブラケット上に設置されるため、これらレドームやブラケット等の後付け部材の影響によって入力インピーダンスが変化し、最適なインピーダンス整合が得られる給電点の位置がずれてしまう虞がある。もちろん、使用するレドームやブラケットが1種類であれば、その影響を予め考慮して給電点の位置を調整しておくことはできるが、実際には多種多様なレドームやブラケットに適用可能な汎用性に富むパッチアンテナが要求されるため、給電点が最適位置から大きくずれた状態で製品化されてしまうことがあり、その場合、利得の低下によりアンテナ性能は劣化する。また、製品化したときに所望のアンテナ性能が得られないパッチアンテナは不良品となってしまうため、かかる給電点の位置ずれは製造歩留まりを低下させる要因ともなっていた。   In the conventional patch antenna 1 described above, at the design stage, a feeding point is set at a position where an optimum impedance matching is obtained (for example, a position corresponding to 50Ω from the center point of the radiation conductor 3). Since the through-hole 2a to be formed is formed at the time of molding the dielectric substrate 2, the head of the feed pin 5 inserted into the through-hole 2a is arranged at a desired feed point. However, when the patch antenna 1 is used as, for example, a GPS antenna for in-vehicle navigation, the patch antenna 1 as an antenna element is covered with a dust-proof radome and installed on a metal bracket. There is a possibility that the input impedance changes due to the influence of the retrofitting member, and the position of the feeding point at which the optimum impedance matching is obtained shifts. Of course, if only one type of radome or bracket is used, the position of the feeding point can be adjusted in consideration of the effect in advance, but in reality it can be applied to a wide variety of radomes and brackets. Therefore, there are cases where the product is commercialized in a state where the feeding point is greatly deviated from the optimum position. In this case, the antenna performance is deteriorated due to a decrease in gain. In addition, since patch antennas that do not achieve desired antenna performance when commercialized are defective, such feed point misalignment has also been a factor in reducing manufacturing yield.

なお、給電点が最適位置からずれるという現象は、誘電体基板2の誘電体材料のばらつき(誘電率のばらつき)によっても発生する。また、給電点の位置ずれを回避するために、使用するレドームやブラケットに応じてその都度、最適形状の誘電体基板2を用意するとなると、誘電体基板2の金型が共通化できないため製造コストの高騰を余儀なくされる。   Note that the phenomenon that the feeding point deviates from the optimum position also occurs due to variations in the dielectric material of the dielectric substrate 2 (variations in dielectric constant). In addition, in order to avoid the displacement of the feeding point, if the dielectric substrate 2 having the optimum shape is prepared each time depending on the radome or bracket to be used, the mold of the dielectric substrate 2 cannot be made common, so that the manufacturing cost is reduced. Will be forced to soar.

本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、取付環境や部品材料にばらつきがあっても最適な給電点に給電して所望のアンテナ性能を確保することが容易なパッチアンテナを提供することにある。   The present invention has been made in view of the actual situation of the prior art, and its purpose is to ensure the desired antenna performance by supplying power to the optimum feeding point even if the mounting environment and component materials vary. Is to provide an easy patch antenna.

上述した目的を達成するため、本発明のパッチアンテナでは、誘電体基板と、該誘電体基板の片面に設けられた放射導体と、前記誘電体基板の他面に設けられた接地導体と、前記誘電体基板を貫通して一端が前記放射導体に接続され他端が給電回路に接続された給電ピンとを備え、前記誘電体基板が異なる給電点に対応する複数の貫通孔を有し、このうちの一つの貫通孔に前記給電ピンを挿入する構成とした。   In order to achieve the above-described object, in the patch antenna of the present invention, a dielectric substrate, a radiation conductor provided on one surface of the dielectric substrate, a ground conductor provided on the other surface of the dielectric substrate, A feed pin penetrating through the dielectric substrate and having one end connected to the radiation conductor and the other end connected to a feed circuit, the dielectric substrate having a plurality of through holes corresponding to different feed points, The power feed pin is inserted into one through hole.

このように構成されたパッチアンテナは、誘電体基板に予め複数の貫通孔が設けられているため、給電ピンを挿入する貫通孔を適宜選択することができる。つまり、設計段階で最適と判定された給電点と合致する位置に貫通孔を設けるだけでなく、レドームやブラケット等の後付け部材の多様性に起因する取付環境のばらつき、あるいは誘電体基板等の部品材料のばらつき等を考慮して、該貫通孔から若干ずらした位置に別の貫通孔を設けておくことにより、製品化したときに最適となる給電点と略合致する貫通孔を選択し、そこに給電ピンを挿入することができる。したがって、このパッチアンテナは、取付環境や部品材料にばらつきがあっても、常に最適な給電点に給電することが容易であり、製造コストが上昇する心配もない。   In the patch antenna configured as described above, since a plurality of through holes are provided in advance in the dielectric substrate, a through hole into which the feed pin is inserted can be appropriately selected. In other words, in addition to providing a through hole at a position that matches the feeding point determined to be optimal at the design stage, variations in the mounting environment due to the diversity of retrofit members such as radomes and brackets, or parts such as dielectric substrates In consideration of material variations, etc., by providing another through-hole at a position slightly shifted from the through-hole, a through-hole that substantially matches the optimum feeding point when commercialized is selected. A power supply pin can be inserted into the. Therefore, this patch antenna can easily feed power to the optimum feeding point even if there are variations in the mounting environment and component materials, and there is no fear that the manufacturing cost will increase.

本発明のパッチアンテナは、誘電体基板に異なる給電点に対応する複数の貫通孔が設けられており、このうちの一つの貫通孔を適宜選択して給電ピンを挿入するという構成になっているため、取付環境や部品材料にばらつきがあっても、常に最適な給電点に給電ピンを接続することが可能である。それゆえ、製造工程を複雑化することなく所望のアンテナ性能を容易に確保できると共に、製造歩留まりの向上が図れ、高信頼性のパッチアンテナを安価に提供することができる。   The patch antenna of the present invention has a structure in which a plurality of through holes corresponding to different feeding points are provided in a dielectric substrate, and one of these through holes is appropriately selected to insert a feeding pin. Therefore, it is possible to always connect the power feed pin to the optimum power feed point even if there are variations in the mounting environment and component materials. Therefore, desired antenna performance can be easily secured without complicating the manufacturing process, the manufacturing yield can be improved, and a highly reliable patch antenna can be provided at low cost.

発明の実施の形態を図面を参照して説明すると、図1は本発明の実施形態例に係るパッチアンテナの平面図、図2は該パッチアンテナを回路基板上に実装した状態を示す断面図である。   1 is a plan view of a patch antenna according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a state in which the patch antenna is mounted on a circuit board. is there.

これらの図に示すパッチアンテナ11は、セラミック等の誘電体材料からなり3箇所に貫通孔12a〜12cを有する誘電体基板12と、誘電体基板12の上面に設けられた正方形状の放射導体(パッチ電極)13と、誘電体基板12の底面に設けられた接地導体(裏面電極)14と、誘電体基板12を貫通して放射導体13の給電点に接続された給電ピン15とによって主に構成されており、給電ピン15は貫通孔12a〜12cのうちのいずれか一つ(図では貫通孔12b)に挿通されている。   The patch antenna 11 shown in these drawings includes a dielectric substrate 12 made of a dielectric material such as ceramic and having through holes 12a to 12c at three locations, and a square-shaped radiation conductor (provided on the upper surface of the dielectric substrate 12). Patch electrode) 13, ground conductor (back electrode) 14 provided on the bottom surface of dielectric substrate 12, and feed pin 15 that penetrates dielectric substrate 12 and is connected to the feed point of radiation conductor 13. The power feed pin 15 is inserted into any one of the through holes 12a to 12c (the through hole 12b in the figure).

誘電体基板12の各貫通孔12a〜12cは、それぞれの上端が略等間隔な開口端として放射導体13に露出し、かつ、各貫通孔12a〜12cから放射導体13の中心点までの距離が少しずつ異なるような配置で形成されている。すなわち、放射導体13の中心点に対し、貫通孔12aは最も近く、次いで貫通孔12bが近く、貫通孔12cは最も遠い位置に形成されている。このうち、貫通孔12bの上端は、設計段階で最適なインピーダンス整合が得られると判定された給電点(具体的には放射導体13の中心点から50Ωに相当すると判定された地点)に位置している。   The through holes 12a to 12c of the dielectric substrate 12 are exposed to the radiating conductor 13 as open ends having substantially equal intervals at the upper ends, and the distance from the through holes 12a to 12c to the center point of the radiating conductor 13 is It is formed in a slightly different arrangement. That is, the through hole 12a is closest to the center point of the radiation conductor 13, the through hole 12b is next, and the through hole 12c is formed at the farthest position. Among these, the upper end of the through hole 12b is located at a feeding point (specifically, a point determined to correspond to 50Ω from the center point of the radiating conductor 13) at which the optimum impedance matching is determined at the design stage. ing.

放射導体13と接地導体14は銅箔等の良導電性金属からなり、エッチング加工等によってそれぞれ所定形状に形成されている。本実施形態例では、放射導体13は正方形状に形成されているが、円形等であってもよい。接地導体14は、貫通孔12a〜12cの周縁部を除いて、誘電体基板12の底面のほぼ全面に形成されている。給電ピン15は良導電性の金属ピンであって、その上端部(頭部)は放射導体13に半田付けされている。また、給電ピン15の下端部は、接地導体14とは絶縁されて誘電体基板12の下方へ突出し、回路基板20の裏面で図示せぬ給電回路のランド部21に半田付けされている。   The radiation conductor 13 and the ground conductor 14 are made of a highly conductive metal such as a copper foil, and are formed in a predetermined shape by etching or the like. In the present embodiment, the radiation conductor 13 is formed in a square shape, but may be a circular shape or the like. The ground conductor 14 is formed on substantially the entire bottom surface of the dielectric substrate 12 except for the peripheral portions of the through holes 12a to 12c. The power feed pin 15 is a highly conductive metal pin, and its upper end (head) is soldered to the radiation conductor 13. Further, the lower end portion of the power supply pin 15 is insulated from the ground conductor 14 and protrudes below the dielectric substrate 12, and is soldered to the land portion 21 of the power supply circuit (not shown) on the back surface of the circuit substrate 20.

このように構成されたパッチアンテナ11は、製品化に際して、防塵用のレドームで覆われて金属製のブラケット上に設置されるが、一般にレドームやブラケットの形状や大きさは多種多様である。そのため、使用するレドームやブラケット等の影響によってパッチアンテナ11の入力インピーダンスが変化し、最適なインピーダンス整合が得られる給電点の位置がずれてしまうことがある。また、誘電体基板12の誘電体材料のばらつき(誘電率のばらつき)によっても、入力インピーダンスが変化して最適な給電点の位置がずれてしまうことがある。すなわち、図示したパッチアンテナ11は、設計段階で最適位置と判定された給電点に対応する貫通孔12bに給電ピン15を挿入しているが、使用するレドームやブラケット等の後付け部材の多様性に起因する取付環境のばらつき、あるいは誘電体基板12等の部品材料のばらつきによって、最適な給電点の位置が大きくずれてしまう可能性があり、その場合、製品化しても所望のアンテナ性能を得ることは困難となる。   The patch antenna 11 configured as described above is covered with a dust-proof radome and placed on a metal bracket when commercialized. Generally, the radome and the bracket have various shapes and sizes. For this reason, the input impedance of the patch antenna 11 may change due to the influence of a radome, a bracket, or the like to be used, and the position of the feeding point where optimum impedance matching is obtained may be shifted. In addition, variations in the dielectric material of the dielectric substrate 12 (variations in dielectric constant) may change the input impedance and shift the optimum feed point position. That is, the illustrated patch antenna 11 has the feed pin 15 inserted in the through hole 12b corresponding to the feed point determined to be the optimum position at the design stage. Due to variations in mounting environment due to variations in component materials such as the dielectric substrate 12, there is a possibility that the position of the optimum feeding point may be greatly shifted. In this case, the desired antenna performance can be obtained even if commercialized. Will be difficult.

そこで本実施形態例では、こうした取付環境や部品材料のばらつきによって最適な給電点の位置がパッチアンテナ11の中心点側へ大きくずれる場合には、給電ピン15を貫通孔12bではなく貫通孔12aに挿入することとし、これによってほぼ最適な位置に給電点を設定することができる。また、取付環境や部品材料のばらつきによって最適な給電点の位置がパッチアンテナ11の周縁側(中心点から離れる側)へ大きくずれる場合には、給電ピン15を貫通孔12bではなく貫通孔12cに挿入することとし、これによってほぼ最適な位置に給電点を設定することができる。   Therefore, in this embodiment, when the position of the optimum feeding point greatly deviates toward the center point side of the patch antenna 11 due to the variation in the mounting environment and component materials, the feeding pin 15 is changed to the through hole 12a instead of the through hole 12b. Accordingly, the feeding point can be set at a substantially optimal position. Further, when the position of the optimum feeding point is greatly shifted to the peripheral side (the side away from the center point) of the patch antenna 11 due to variations in the mounting environment and component materials, the feeding pin 15 is changed to the through hole 12c instead of the through hole 12b. Accordingly, the feeding point can be set at a substantially optimal position.

なお、給電ピン15を貫通孔12aや貫通孔12cに挿入する場合、回路基板20上におけるパッチアンテナ11の搭載位置を適宜変更することによって、給電ピン15の下端部を図2に示すランド部21に半田付けすることができる。ただし、各貫通孔12a〜12cに別々に対応する複数のランド部を予め回路基板20に設けておいてもよい。   When inserting the power feed pin 15 into the through hole 12a or the through hole 12c, the land portion 21 shown in FIG. 2 is formed at the lower end of the power feed pin 15 by appropriately changing the mounting position of the patch antenna 11 on the circuit board 20. Can be soldered to. However, a plurality of land portions corresponding respectively to the through holes 12a to 12c may be provided in the circuit board 20 in advance.

このように本実施形態例に係るパッチアンテナ11は、誘電体基板12に予め複数の貫通孔12a〜12cが設けられているため、給電ピン15を挿入する貫通孔を適宜選択することができる。つまり、設計段階で最適と判定された給電点と合致する位置に貫通孔12bを設けるだけでなく、レドームやブラケット等の後付け部材の多様性に起因する取付環境のばらつき、あるいは誘電体基板12等の部品材料のばらつきを考慮して、貫通孔12bから若干ずらした位置に別の貫通孔12a,12cを設けておくことにより、製品化したときに最適となる給電点と略合致する貫通孔を選択し、そこに給電ピン15を挿入することができる。したがって、このパッチアンテナ11は、取付環境や部品材料にばらつきがあっても常に最適な給電点に給電ピン15を接続することが可能であり、製造工程を複雑化することなく所望のアンテナ性能が容易に確保できる。また、製造歩留まりが向上するため、コストダウンも期待できる。   As described above, the patch antenna 11 according to the present embodiment is provided with the plurality of through holes 12 a to 12 c in the dielectric substrate 12 in advance, so that a through hole into which the feed pin 15 is inserted can be appropriately selected. That is, not only the through hole 12b is provided at a position that matches the feeding point determined to be optimal in the design stage, but also variations in the mounting environment due to the diversity of retrofitting members such as radomes and brackets, or the dielectric substrate 12 and the like. In consideration of the variation of the parts materials, by providing another through hole 12a, 12c at a position slightly shifted from the through hole 12b, a through hole that substantially matches the optimum feeding point when commercialized is obtained. A power supply pin 15 can be inserted there. Therefore, the patch antenna 11 can always connect the power supply pin 15 to the optimal power supply point even if the mounting environment and the parts material vary, and the desired antenna performance can be obtained without complicating the manufacturing process. Easy to secure. Moreover, since the manufacturing yield is improved, cost reduction can be expected.

なお、上述した実施形態例では、直線偏波用のパッチアンテナについて例示しているが、円偏波用のパッチアンテナであっても本発明が適用できることは言うまでもない。また、給電ピンが選択的に挿入可能な貫通孔の数が2個または4個以上であってもよい。   In the above-described embodiment, the linearly polarized patch antenna is illustrated. However, it goes without saying that the present invention can be applied to a circularly polarized patch antenna. Further, the number of through holes into which the power supply pins can be selectively inserted may be two or four or more.

本発明の実施形態例に係るパッチアンテナの平面図である。It is a top view of the patch antenna concerning the example of an embodiment of the present invention. 回路基板上に実装した該パッチアンテナを示す断面図である。It is sectional drawing which shows this patch antenna mounted on the circuit board. 従来例に係るパッチアンテナの断面図である。It is sectional drawing of the patch antenna which concerns on a prior art example.

符号の説明Explanation of symbols

11 パッチアンテナ
12 誘電体基板
12a〜12c 貫通孔
13 放射導体
14 接地導体
15 給電ピン
20 回路基板
21 ランド部
DESCRIPTION OF SYMBOLS 11 Patch antenna 12 Dielectric board 12a-12c Through-hole 13 Radiation conductor 14 Ground conductor 15 Feed pin 20 Circuit board 21 Land part

Claims (1)

誘電体基板と、該誘電体基板の片面に設けられた放射導体と、前記誘電体基板の他面に設けられた接地導体と、前記誘電体基板を貫通して一端が前記放射導体に接続され他端が給電回路に接続された給電ピンとを備え、前記誘電体基板が異なる給電点に対応する複数の貫通孔を有し、このうちの一つの貫通孔に前記給電ピンが挿入されていることを特徴とするパッチアンテナ。
A dielectric substrate, a radiation conductor provided on one surface of the dielectric substrate, a ground conductor provided on the other surface of the dielectric substrate, and one end penetrating the dielectric substrate connected to the radiation conductor; The other end of the dielectric substrate has a plurality of through holes corresponding to different power feeding points, and the power feeding pins are inserted into one of the through holes. A patch antenna characterized by.
JP2004009418A 2004-01-16 2004-01-16 Patch antenna Expired - Fee Related JP3983224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009418A JP3983224B2 (en) 2004-01-16 2004-01-16 Patch antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009418A JP3983224B2 (en) 2004-01-16 2004-01-16 Patch antenna

Publications (2)

Publication Number Publication Date
JP2005204151A JP2005204151A (en) 2005-07-28
JP3983224B2 true JP3983224B2 (en) 2007-09-26

Family

ID=34822468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009418A Expired - Fee Related JP3983224B2 (en) 2004-01-16 2004-01-16 Patch antenna

Country Status (1)

Country Link
JP (1) JP3983224B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159031A (en) * 2005-12-08 2007-06-21 Alps Electric Co Ltd Patch antenna
JP5934453B1 (en) * 2016-03-15 2016-06-15 ソフトバンク株式会社 Antenna device
GB2556185A (en) * 2016-09-26 2018-05-23 Taoglas Group Holdings Ltd Patch antenna construction
CN117673732A (en) * 2022-08-24 2024-03-08 Oppo广东移动通信有限公司 Antenna module, positioning system and electronic equipment

Also Published As

Publication number Publication date
JP2005204151A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP3959068B2 (en) Circularly polarized antenna
US7821460B2 (en) Tunable patch antenna of planar construction
EP3235059B1 (en) Surface mounted broadband element
JP5712964B2 (en) Antenna device
US20050116875A1 (en) Antenna device suitable for miniaturization
JP6451865B2 (en) Antenna device
US20140375527A1 (en) Antenna Arrangement
CN103460506B (en) There is the double-antenna structure of circular polarization characteristics
JP2005124056A (en) Patch antenna
US20150002356A1 (en) Tube and ring directional end-fire array antenna
WO2019107382A1 (en) Antenna device
KR101992620B1 (en) The Antenna with High Gain and Omni-Directional characteristics
US8009109B2 (en) Internal antenna having surface-mounted receptacle
US20110109510A1 (en) Antenna
JP2007208692A (en) Patch antenna
JP3983224B2 (en) Patch antenna
JP2009194783A (en) Pattern antenna and antenna apparatus with pattern antenna mounted on master substrate
JP2004235729A (en) Antenna apparatus
US7358900B2 (en) Symmetric-slot monopole antenna
JP2007159031A (en) Patch antenna
JP6807946B2 (en) Antenna, module board and module
US20140043190A1 (en) Planar inverted f antenna structure
JP2005203879A (en) Composite antenna
JPH08162846A (en) Print antenna
JP2006303946A (en) Antenna and antenna adjusting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees