JP3982978B2 - Catalyst for selective oxidation reaction of rhenium oxide - Google Patents

Catalyst for selective oxidation reaction of rhenium oxide Download PDF

Info

Publication number
JP3982978B2
JP3982978B2 JP2000177972A JP2000177972A JP3982978B2 JP 3982978 B2 JP3982978 B2 JP 3982978B2 JP 2000177972 A JP2000177972 A JP 2000177972A JP 2000177972 A JP2000177972 A JP 2000177972A JP 3982978 B2 JP3982978 B2 JP 3982978B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
lower alcohol
phase catalytic
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000177972A
Other languages
Japanese (ja)
Other versions
JP2001353443A (en
Inventor
康裕 岩澤
友珠 袁
貴文 紫藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000177972A priority Critical patent/JP3982978B2/en
Publication of JP2001353443A publication Critical patent/JP2001353443A/en
Application granted granted Critical
Publication of JP3982978B2 publication Critical patent/JP3982978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化レニウム、特に金属酸化物担体に担持された酸化レニウムを活性成分とする選択酸化反応用触媒や、かかる選択酸化反応用触媒を用いたメタノール等の低級アルコールからジメトキシメタン等の低級アルコール部分酸化物及び低級炭化水素からの低級炭化水素ニトリル化物の製造方法に関する。
【0002】
【従来の技術】
従来、ジメトキシメタンは、メタノールとホルムアルデヒドとを原料とし、酸性触媒を用いて水溶液中で反応させることにより製造されており、これら酸性触媒としては、例えば、塩酸、硫酸などの鉱酸、FeCl3、AlCl3などのルイス酸、強酸性陽イオン交換樹脂、無機固体酸などが使用されている(ドイツ特許明細書第800399号、ドイツ特許明細書第1177126号、ドイツ特許明細書第1155780号、特開昭47−29309号公報及び特開昭58−162546号公報)。しかし、原料となるホルムアルデヒドは、メタノールを酸化することにより調製されており、上記方法は、メタノールから調製されたホルムアルデヒドをメタノールと反応させる二段階プロセスであるためその生産性に問題があった。
【0003】
一方、ホルムアルデヒドを用いることなく、メタノールから直接ジメトキシメタンを製造する方法として、例えば、酸化銅を含む触媒を用いる方法(特開平5−237387号公報)や、イオン伝導体上に異なる二種類以上の金属種からなる金属及び/又はこれらの金属化合物を存在させた触媒を用いる方法(特開平6−65123号公報)が知られているが、前者の酸化銅を含む触媒を用いたジメトキシメタンの製造方法では反応に要する時間が長く、その収率も必ずしも満足するものではなく、後者の触媒を用いたジメトキシメタンの製造方法ではギ酸メチルの選択率は高いもののジメトキシメタンの選択率が7%と低く、いずれの方法も実用性の面において解決すべき問題があった。
【0004】
【発明が解決しようとする課題】
ジメトキシメタンはホルムアルデヒドジメチルアセタールあるいはメチラールとも呼ばれ、主として医薬品、香料、樹脂の原料として用いられる有用な化合物として知られている。かかる有用化合物をメタノールの直接酸化により選択的かつ効率よく製造することができる固体触媒として、本発明者らは先にレニウム・アンチモン複合酸化物触媒を提案している(特願平11−269480号)。本発明の課題は、メタノール等の低級アルコールの直接酸化により選択的かつ効率よくジメトキシメタン等の低級アルコール部分酸化物をより選択的かつ効率よく製造することができる選択酸化反応用触媒や、かかる選択酸化反応用触媒を用いたメタノール等の低級アルコールからジメトキシメタン等の低級アルコール部分酸化物を選択的かつ効率よく製造する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究した結果、酸化レニウム、特に金属酸化物担体に担持された酸化レニウムを活性成分とする触媒がメタノール等の低級アルコールの酸化反応に優れた触媒活性を示し、かかる酸化レニウムを活性成分とする触媒を用いるとジメトキシメタン等の低級アルコール部分酸化物を選択的かつ効率よく製造しうることを見い出し、本発明を完成するに至った。
【0006】
すなわち本発明は、酸化レニウムを活性成分とすることを特徴とする低級アルコールの気相接触酸化用触媒(請求項1)や、酸化レニウムが金属酸化物からなる担体に担持されていることを特徴とする請求項1記載の低級アルコールの気相接触酸化用触媒(請求項2)や、金属酸化物が、鉄、チタン、ジルコニウム、ケイ素、アルミニウム又はバナジウムの酸化物であることを特徴とする請求項2記載の低級アルコールの気相接触酸化用触媒(請求項3)や鉄酸化物がα−Fe 2 3 又はγ−Fe 2 3 であることを特徴とする請求項3記載の低級アルコールの気相接触酸化用触媒(請求項4)や、酸化レニウムを活性成分とすることを特徴とする低級炭化水素の気相接触アンモ酸化用触媒(請求項5)や、酸化レニウムが金属酸化物からなる担体に担持されていることを特徴とする請求項5記載の低級炭化水素の気相接触アンモ酸化用触媒(請求項6)や、金属酸化物が、鉄、チタン、ジルコニウム、ケイ素、アルミニウム又はバナジウムの酸化物であることを特徴とする請求項6記載の低級炭化水素の気相接触アンモ酸化用触媒(請求項7)や、鉄酸化物がα−Fe 2 3 又はγ−Fe 2 3 であることを特徴とする請求項7記載の低級炭化水素の気相接触アンモ酸化用触媒(請求項8)に関する。
【0007】
また本発明は、請求項1〜のいずれか記載の触媒の存在下、低級アルコールを分子状酸素含有ガスにより気相接触酸化することを特徴とする低級アルコール部分酸化物の製造方法(請求項9)や、気相接触酸化が、200〜400℃の温度下で行われることを特徴とする請求項9記載の低級アルコール部分酸化物の製造方法(請求項10)や、低級アルコールが、メタノールであることを特徴とする請求項9又は10記載の低級アルコール部分酸化物の製造方法(請求項11)や、低級アルコール部分酸化物が、ジメトキシメタンであることを特徴とする請求項9〜11のいずれか記載の低級アルコール部分酸化物の製造方法(請求項12)や、請求項〜8のいずれか記載の触媒の存在下、低級炭化水素を分子状酸素及びアンモニアを含有するガスにより気相接触アンモ酸化することを特徴とする低級炭化水素ニトリル化物の製造方法(請求項13)に関する。
【0008】
【発明の実施の形態】
本発明の選択酸化反応用触媒としては、酸化レニウムを活性成分とする酸化反応用触媒であれば特に制限されるものではないが、酸化レニウムが金属酸化物等の担体に担持された酸化反応用触媒が好ましい。上記酸化レニウムとしては、一般式ReOX(X=2〜3.5)で表されるものを例示することができ、これらは、NH4ReO4を400℃で加熱分解することによって得ることができる。また、上記金属酸化物としては、γ−Fe23、α−Fe23、Fe23等の鉄酸化物、ルチル型又はアナターゼ型TiO2等のチタン酸化物、ZrO2等のジルコニウム酸化物、SiO2等のケイ素酸化物、Al23等のアルミニウム酸化物、V23等のバナジウム酸化物、MoO3等のモリブデン酸化物を具体的に例示することができるが、α−Fe23、γ−Fe23、TiO2等が、メタノール等の低級アルコールからジメトキシメタン等の低級アルコール部分酸化物を選択的かつ効率よく製造することができる点で好ましい。
【0009】
酸化レニウムを金属酸化物等からなる担体に担持させる方法としては特に制限されるものではないが、例えば、NH4ReO4を担体上に含浸させ、110℃で一晩乾燥させた後、ヘリウムガス流通下、昇温速度4℃/分で400℃まで昇温し、400℃で6時間加熱することにより得ることができる。また、担体へのレニウムの担持量としては特に制限されるものではないが、金属酸化物等の担体当たり0.1〜20重量%、特に1〜10重量%担持させることが好ましい。担持量が約1〜3重量%のとき通常反応速度が最大となり、約2〜10重量%のとき通常選択率が最大となる。本発明の選択酸化反応用触媒は個体触媒であり、その形状としては、粉末状、顆粒状、ペレット上、球状、ハニカム状等を例示することができる。
【0010】
本発明の低級アルコール部分酸化物の製造方法は、酸化レニウムや金属酸化物等の担体に担持されている酸化レニウムを活性成分とする上記選択酸化反応用触媒の存在下、低級アルコールを分子状酸素含有ガスにより気相接触酸化することを特徴とする。本発明において低級アルコールとは、C1〜4のアルコール、すなわちメタノール、エタノール、プロパノール、ブタノールをいい、これらの中でも特にメタノールがアルコール転化率の点で好ましい。また、本発明における低級アルコール部分酸化物としては、例えば、ジメトキシメタン等のジアルコキシメタンやジメチルエーテル等のジアルキルエーテルを具体的に例示することができる。
【0011】
また、上記分子状酸素含有ガスとしては、純酸素ガス、空気等酸素含有ガスを挙げることができ、本発明の選択酸化反応用触媒の存在下における気相接触酸化は、例えば低級アルコールに、分子状酸素含有ガスと希釈ガスを添加した混合ガスからなる原料ガスを前記触媒が収納された固定床反応器内に導入することにより行うことができる。希釈ガスとしては、窒素や、二酸化炭素や、ヘリウム、アルゴン等の希ガスや、水蒸気等の不活性ガス及びこれらの混合ガスを例示することができる。
【0012】
また、本発明の選択酸化反応用触媒を用いたメタノール等の低級アルコールの酸化反応におけるメタノール等の低級アルコール濃度や酸素濃度は、ジメトキシメタン等の目的とする低級アルコール部分酸化物の生成効率を低下させない範囲であれば特に制限されることはない。また、酸化反応における反応温度は、原料低級アルコールの種類や、目的とする低級アルコール部分酸化物の種類、酸化レニウムを担持する担体の種類等によって異なるが、例えばメタノールを部分酸化してジメトキシメタンを製造する場合は200〜400℃で約80〜99%の選択率でジメトキシメタンを得ることができる。
【0013】
本発明の選択酸化反応用触媒は、低級アルコールの選択酸化反応を触媒するばかりでなく、脂肪族炭化水素のアンモ酸化用の触媒としても使用することができる。本発明の低級炭化水素ニトリル化物の製造方法としては、本発明の選択酸化反応用触媒の存在下、低級炭化水素を分子状酸素及びアンモニアを含有するガスにより気相接触アンモ酸化する方法であれば特に制限されないが、上記選択酸化反応用触媒の存在下、イソブタン等の低級脂肪族炭化水素を分子状酸素含有ガス及びアンモニアと約400℃で気相接触アンモ酸化することにより、メタクリロニトリル等の不飽和ニトリルを製造する方法を具体的に例示することができる。
【0014】
【実施例】
以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はかかる実施例により限定されるものではない。なお、メタノール酸化による各種生成物を例にとって、実施例における転化率、選択率を説明すると、これらはそれぞれ以下の式で表される。
メタノール転化率=(反応したメタノールのモル数)/(供給したメタノールのモル数)×100
ジメトキシメタン選択率=(生成したジメトキシメタンのモル数)×3/(反応したメタノールのモル数)×3×100
ホルムアルデヒド選択率=(生成したホルムアルデヒドのモル数)/(反応したメタノールのモル数)×100
ジメチルエーテル選択率=(生成したジメチルエーテルのモル数)/(反応したメタノールのモル数)×2×100
ギ酸メチル選択率=(生成したギ酸メチルのモル数)/(反応したメタノールのモル数)×2×100
ギ酸選択率=(生成したギ酸のモル数)/(反応したメタノールのモル数)×100
一酸化炭素+二酸化炭素の選択率=(生成した一酸化炭素+二酸化炭素のモル数)/(反応したメタノールのモル数)×100
【0015】
実施例1(選択酸化反応用触媒の調製)
ReO3及びReO2は市販品(添川社製、純度99%)を用いた。ReOXは、NH4ReO4を110℃で一晩乾燥させた後、ヘリウムガス流通下、昇温速度4℃/分で400℃まで昇温し、400℃で6時間加熱することにより調製した。このReOXのXRDパターンをX線回折装置(理学社製「XPS−7000」)を用いて調べたところ、主に単斜晶系のReO2であることがわかった。また、アモルファス型Fe23は、Fe(NO33の溶液に、NH4OH(和光純薬社製;純度99.9%)の溶液を加え、濾過後に脱イオン水で洗浄し、120℃で乾燥して400℃で4時間空気中で焼成することにより調製した。
【0016】
また、触媒担持担体金属酸化物としては、α−Fe23(添川社製、純度99%)、γ−Fe23(添川社製、純度99%)、上記調製したアモルファス型Fe23、ルチル型TiO2(添川社製、純度99%)、アナターゼ型TiO2(添川社製、純度99%)、ZrO2(添川社製、純度99%)、SiO2(日本エアロジル社製、純度99%)、α−Al23(添川社製、純度99%)、V25(添川社製、純度99%)、MoO3(添川社製、純度99%)を用いた。担体担持触媒は、これら金属酸化物担体上にNH4ReO4を含浸し、得られた固形物を110℃で一晩乾燥させた後、ヘリウムガス流通下、昇温速度4℃/分で400℃まで昇温し、400℃で6時間加熱することにより調製した。各担体におけるレニウムの担持量は担体の10重量%であった。
【0017】
実施例2(選択酸化反応用触媒によるメタノールの選択酸化反応)
表1に示された各種複合酸化物触媒又は含浸触媒0.2gを石英製反応管に充填し、触媒をHeガスにて300℃で前処理した後、前記反応管へHe/O2/MeOH[86.3/9.7/4.0(mol%)]からなる混合ガスをGHSV=40,000ml/(h・g-cat)の流速で導入しながら240℃でメタノールの酸化反応を行った。この反応は固定層流動反応系の装置を用い、生成物をTCD検出器を備えたガスクロマトグラフィー(GC)を用いて分析した。このガスクロマトグラフィー用カラムとしては、メタノール、ジメチルエーテル、ジメトキシメタン、ホルムアルデヒド、ギ酸メチルの分離定量にはPolapack-N(3m)を、CO及びCO2の分離定量にはUnibeads C(3m)をそれぞれ用いて分析した。
【0018】
【表1】

Figure 0003982978
【0019】
表1に各種触媒を用いた場合のメタノールの選択酸化反応におけるメタノールの転化率と、ジメトキシメタン、ホルムアルデヒド、ジメチルエーテル、ギ酸メチル、COX(CO+CO2)の各選択率を示す。これらの結果から、ReO3触媒を用いた場合、ジメトキシメタンの選択率は99%と非常に高く、また、ReOX/α−Fe23やReOX/γ−Fe23のFe酸化物担持ReOX触媒を用いた場合でもジメトキシメタンの選択率は90%以上と高いことがわかった。しかし、α−Fe23のみの触媒を用いた場合ではメタノールの選択酸化反応は全く起こらなかった。また、V25、TiO2−ルチル、ZrO2、α−Al23、MoO3等の担体を担持させたReOX触媒を用いた場合でもジメトキシメタンの選択率はいずれも80%以上であり、特にReOX/V25は93.7%と非常に高いジメトキシメタンの選択率を示した。
【0020】
実施例3(Re担持Fe酸化物触媒におけるReの担持量の影響)
実施例1と同様の条件で、Reの担持量が0.5重量%、1.0重量%、2.0重量%、3.0重量%、6.0重量%、10.0重量%の各ReOX/α−Fe23触媒を調製し、これらの触媒を用いて実施例2と同様の条件でメタノールの選択酸化反応を行った。その結果を図1に示す。図1中、(◆)はメタノールの転化率を、(◇)はジメトキシメタンの選択率を、(●)はジメトキシメタンの反応速度をそれぞれ示す。この結果から、メタノールの転化率はReの担持量を増加するにつれ徐々に増加し、Reの担持量が2〜3重量%以上で定常期に達し、ジメトキシメタンの選択率を90%以上に維持しうることがわかった。また、Reの担持量が1〜3重量%において反応速度が最大となることもわかった。
【0021】
実施例4(選択酸化反応用触媒によるイソブタンのアンモ酸化反応)
ReO2とRe/α−Fe23をそれぞれ酸化反応用触媒とし、固定層流動反応系の装置を用いてイソブタンのアンモ酸化反応を行った。これら触媒0.15gをそれぞれ充填した石英製反応管を400℃に調整した後、イソブタン/NH3/O2/He[10/15/25/50(mol%)]からなる混合ガスをGHSV=5,000ml/(h・g-cat)の流速で導入しながらアンモ酸化反応を行った。反応生成物をガスクロマトグラフィーにより分析し、各反応時間におけるイソブタンの転化率、メタクリロニトリルの選択率、イソブチレンの選択率、アセトニトリルの選択率をそれぞれ求めた。触媒としてReO2を用いた場合の結果を図4に、Re/α−Fe23を用いた場合の結果を図5にそれぞれ示す。
【0022】
【発明の効果】
本発明において、酸化レニウム、特に金属酸化物担体に担持された酸化レニウムをメタノール等の低級アルコールの選択酸化反応用触媒として用いることにより、メタノール等の低級アルコールからジメトキシメタン等の低級アルコール部分酸化物を選択的かつ効率よく製造することができる。
【図面の簡単な説明】
【図1】本発明のRe/α−Fe23触媒を用いたメタノール選択酸化反応におけるReの担持量の影響を示す図である。
【図2】本発明のReO2触媒を用いたイソブタンのアンモ酸化反応におけるメタクリロニトリル等の選択率を示す図である。
【図3】本発明のRe/α−Fe23触媒を用いたイソブタンのアンモ酸化反応におけるメタクリロニトリル等の選択率を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for selective oxidation reaction using rhenium oxide, particularly rhenium oxide supported on a metal oxide support as an active component, and a lower alcohol such as dimethoxymethane from a lower alcohol such as methanol using such a catalyst for selective oxidation reaction. The present invention relates to a method for producing a lower hydrocarbon nitrile from an alcohol partial oxide and a lower hydrocarbon.
[0002]
[Prior art]
Conventionally, dimethoxymethane has been produced by reacting methanol and formaldehyde as raw materials and using an acidic catalyst in an aqueous solution. Examples of these acidic catalysts include mineral acids such as hydrochloric acid and sulfuric acid, FeCl 3 , Lewis acids such as AlCl 3 , strong acid cation exchange resins, inorganic solid acids and the like are used (German Patent Specification No. 80000399, German Patent Specification No. 1177126, German Patent Specification No. 1155780, JP, Sho 47-29309 and JP 58-162546). However, formaldehyde as a raw material is prepared by oxidizing methanol, and the above method has a problem in productivity because it is a two-stage process in which formaldehyde prepared from methanol is reacted with methanol.
[0003]
On the other hand, as a method for producing dimethoxymethane directly from methanol without using formaldehyde, for example, a method using a catalyst containing copper oxide (JP-A-5-237387) or two or more different types on an ion conductor A method using a metal comprising a metal species and / or a catalyst in which these metal compounds are present (Japanese Patent Laid-Open No. 6-65123) is known, but the former production of dimethoxymethane using a catalyst containing copper oxide In this method, the reaction takes a long time and the yield is not always satisfactory. In the latter method of producing dimethoxymethane, the selectivity of methyl formate is high, but the selectivity of dimethoxymethane is as low as 7%. Both methods have problems to be solved in terms of practicality.
[0004]
[Problems to be solved by the invention]
Dimethoxymethane is also called formaldehyde dimethyl acetal or methylal, and is known as a useful compound mainly used as a raw material for pharmaceuticals, fragrances and resins. The present inventors have previously proposed a rhenium / antimony composite oxide catalyst as a solid catalyst capable of selectively and efficiently producing such useful compounds by direct oxidation of methanol (Japanese Patent Application No. 11-269480). ). An object of the present invention is to provide a selective oxidation reaction catalyst capable of selectively and efficiently producing a lower alcohol partial oxide such as dimethoxymethane more selectively and efficiently by direct oxidation of a lower alcohol such as methanol, and such a selection. It is an object of the present invention to provide a method for selectively and efficiently producing a lower alcohol partial oxide such as dimethoxymethane from a lower alcohol such as methanol using an oxidation reaction catalyst.
[0005]
[Means for Solving the Problems]
As a result of diligent research to solve the above problems, the present inventors have found that a catalyst containing rhenium oxide, particularly rhenium oxide supported on a metal oxide support, as an active component is excellent in the oxidation reaction of lower alcohols such as methanol. It has been found that when a catalyst having catalytic activity and such rhenium oxide as an active component is used, a lower alcohol partial oxide such as dimethoxymethane can be selectively and efficiently produced, and the present invention has been completed.
[0006]
That is, the present invention is characterized in that a catalyst for vapor-phase catalytic oxidation of a lower alcohol characterized by using rhenium oxide as an active component (Claim 1) or rhenium oxide is supported on a carrier made of a metal oxide. The catalyst for vapor phase catalytic oxidation of lower alcohol according to claim 1 (claim 2) or the metal oxide is an oxide of iron, titanium, zirconium, silicon, aluminum or vanadium. lower alcohol according to claim 3, wherein the lower alcohol vapor phase catalytic oxidation catalyst for (claim 3) or iron oxides to claim 2 is characterized in that the alpha-Fe 2 O 3 or gamma-Fe 2 O 3 A catalyst for gas phase catalytic ammoxidation of lower hydrocarbons characterized in that rhenium oxide is an active component (Claim 5), rhenium oxide is a metal oxide Consist of 6. The catalyst for gas phase catalytic ammoxidation of lower hydrocarbons according to claim 5 or the metal oxide according to claim 5, wherein the metal oxide is iron, titanium, zirconium, silicon, aluminum or vanadium. The catalyst for vapor phase catalytic ammoxidation of lower hydrocarbons according to claim 6 (Claim 7), wherein the iron oxide is α-Fe 2 O 3 or γ-Fe 2 O 3. The catalyst for gas phase catalytic ammoxidation of lower hydrocarbon according to claim 7 (claim 8), wherein
[0007]
The present invention is a manufacturing method of claim 1 the presence of a catalytic according to any one of 4, a lower alcohol partial oxide, characterized in that the gas-phase catalytic oxidation with a molecular oxygen-containing gas a lower alcohol (wherein Item 9), the gas phase catalytic oxidation is carried out at a temperature of 200 to 400 ° C., the method for producing a lower alcohol partial oxide according to claim 9 (Claim 10), and the lower alcohol, The process for producing a lower alcohol partial oxide according to claim 9 or 10 (claim 11), or the lower alcohol partial oxide is dimethoxymethane, characterized in that it is methanol. 11 the method of manufacturing a lower alcohol partial oxide (claim 12) and any one of, the presence of a catalytic according to any one of claims 5-8, molecular oxygen and ammonia lower hydrocarbons Method for producing a lower hydrocarbon nitriles product, characterized in that the vapor-phase catalytic ammoxidation with a gas having about (claim 13).
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The catalyst for selective oxidation reaction of the present invention is not particularly limited as long as it is a catalyst for oxidation reaction containing rhenium oxide as an active component, but for oxidation reaction in which rhenium oxide is supported on a support such as a metal oxide. A catalyst is preferred. Examples of the rhenium oxide include those represented by the general formula ReO x (X = 2 to 3.5), which can be obtained by thermally decomposing NH 4 ReO 4 at 400 ° C. it can. Examples of the metal oxide include iron oxides such as γ-Fe 2 O 3 , α-Fe 2 O 3 , and Fe 2 O 3 , titanium oxides such as rutile or anatase TiO 2 , and ZrO 2 . zirconium oxide, silicon oxide such as SiO 2, aluminum oxides such as Al 2 O 3, vanadium oxide such as V 2 O 3, can be specifically exemplified molybdenum oxide such as MoO 3, α-Fe 2 O 3 , γ-Fe 2 O 3 , TiO 2 and the like are preferable in that a lower alcohol partial oxide such as dimethoxymethane can be selectively and efficiently produced from a lower alcohol such as methanol.
[0009]
A method for supporting rhenium oxide on a support made of a metal oxide or the like is not particularly limited. For example, NH 4 ReO 4 is impregnated on a support and dried at 110 ° C. overnight, and then helium gas is used. It can be obtained by raising the temperature to 400 ° C. at a heating rate of 4 ° C./min under heating and heating at 400 ° C. for 6 hours. The amount of rhenium supported on the carrier is not particularly limited, but it is preferably 0.1 to 20% by weight, particularly 1 to 10% by weight, based on the carrier such as a metal oxide. When the loading amount is about 1 to 3% by weight, the normal reaction rate becomes maximum, and when it is about 2 to 10% by weight, the normal selectivity becomes maximum. The selective oxidation reaction catalyst of the present invention is a solid catalyst, and examples of the shape thereof include powder, granules, pellets, spheres, and honeycombs.
[0010]
The method for producing a lower alcohol partial oxide according to the present invention comprises the step of converting a lower alcohol into molecular oxygen in the presence of the catalyst for selective oxidation reaction comprising rhenium oxide supported on a carrier such as rhenium oxide or metal oxide as an active component. It is characterized by vapor phase catalytic oxidation with a contained gas. In the present invention, the lower alcohol refers to a C1-4 alcohol, that is, methanol, ethanol, propanol, and butanol. Among these, methanol is particularly preferable in terms of alcohol conversion. Specific examples of the lower alcohol partial oxide in the present invention include dialkoxymethane such as dimethoxymethane and dialkyl ether such as dimethyl ether.
[0011]
Examples of the molecular oxygen-containing gas include pure oxygen gas and oxygen-containing gas such as air. Gas phase catalytic oxidation in the presence of the catalyst for selective oxidation reaction of the present invention can be performed by, for example, converting a lower alcohol to a molecular It can be carried out by introducing a raw material gas comprising a mixed gas to which a gaseous oxygen-containing gas and a dilution gas are added into a fixed bed reactor in which the catalyst is accommodated. Examples of the dilution gas include nitrogen, carbon dioxide, rare gases such as helium and argon, inert gases such as water vapor, and mixed gases thereof.
[0012]
In addition, the lower alcohol concentration or oxygen concentration of methanol or the like in the oxidation reaction of lower alcohol such as methanol using the selective oxidation reaction catalyst of the present invention reduces the production efficiency of the desired lower alcohol partial oxide such as dimethoxymethane. If it is the range which is not made, it will not be restrict | limited in particular. The reaction temperature in the oxidation reaction varies depending on the type of raw material lower alcohol, the type of target lower alcohol partial oxide, the type of carrier supporting rhenium oxide, etc., for example, by partially oxidizing methanol to dimethoxymethane. In the case of production, dimethoxymethane can be obtained at a selectivity of about 80 to 99% at 200 to 400 ° C.
[0013]
The catalyst for selective oxidation reaction of the present invention can be used not only as a catalyst for selective oxidation reaction of lower alcohols but also as a catalyst for ammoxidation of aliphatic hydrocarbons. The method for producing the lower hydrocarbon nitrile of the present invention is a method in which the lower hydrocarbon is vapor-phase catalytically ammoxidized with a gas containing molecular oxygen and ammonia in the presence of the selective oxidation reaction catalyst of the present invention. Although not particularly limited, by subjecting a lower aliphatic hydrocarbon such as isobutane or the like to gas phase catalytic ammoxidation with a molecular oxygen-containing gas and ammonia at about 400 ° C. in the presence of the selective oxidation reaction catalyst, methacrylonitrile or the like is obtained. A method for producing an unsaturated nitrile can be specifically exemplified.
[0014]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited by this Example. In addition, taking various products by methanol oxidation as an example, the conversion rate and selectivity in the examples will be described, and these are represented by the following equations, respectively.
Methanol conversion rate = (number of moles of reacted methanol) / (number of moles of supplied methanol) × 100
Dimethoxymethane selectivity = (number of moles of dimethoxymethane produced) × 3 / (number of moles of reacted methanol) × 3 × 100
Formaldehyde selectivity = (number of moles of formaldehyde produced) / (number of moles of reacted methanol) × 100
Dimethyl ether selectivity = (number of moles of dimethyl ether formed) / (number of moles of reacted methanol) × 2 × 100
Methyl formate selectivity = (number of moles of methyl formate produced) / (number of moles of reacted methanol) × 2 × 100
Formic acid selectivity = (number of moles of formic acid produced) / (number of moles of reacted methanol) × 100
Selectivity of carbon monoxide + carbon dioxide = (number of moles of produced carbon monoxide + carbon dioxide) / (number of moles of reacted methanol) × 100
[0015]
Example 1 (Preparation of selective oxidation reaction catalyst)
As ReO 3 and ReO 2 , commercially available products (manufactured by Soekawa, purity 99%) were used. ReO X was prepared by drying NH 4 ReO 4 at 110 ° C. overnight, then heating to 400 ° C. at a heating rate of 4 ° C./min under heating with helium gas, and heating at 400 ° C. for 6 hours. . When this XRD pattern of ReO X was examined using an X-ray diffractometer (“XPS-7000” manufactured by Rigaku Corporation), it was found that it was mainly monoclinic ReO 2 . Amorphous Fe 2 O 3 is added to a solution of Fe (NO 3 ) 3 with a solution of NH 4 OH (manufactured by Wako Pure Chemical Industries, Ltd .; purity 99.9%), washed with deionized water after filtration, It was prepared by drying at 120 ° C. and firing in air at 400 ° C. for 4 hours.
[0016]
Further, as the catalyst-supported carrier metal oxide, α-Fe 2 O 3 (manufactured by Soekawa, purity 99%), γ-Fe 2 O 3 (manufactured by Soekawa, purity 99%), the above prepared amorphous Fe 2 O 3 , rutile TiO 2 (manufactured by Soekawa Co., purity 99%), anatase TiO 2 (manufactured by Soekawa Co., purity 99%), ZrO 2 (manufactured by Soekawa Co., purity 99%), SiO 2 (manufactured by Nippon Aerosil Co., Ltd.) , Purity 99%), α-Al 2 O 3 (manufactured by Soekawa, 99% purity), V 2 O 5 (manufactured by Soekawa, 99% purity), MoO 3 (manufactured by Soekawa, 99% purity). . The carrier-supported catalyst was impregnated with NH 4 ReO 4 on these metal oxide supports, and the resulting solid was dried at 110 ° C. overnight, and then heated at 400 ° C./min under a helium gas flow. The mixture was heated to 400C and heated at 400C for 6 hours. The amount of rhenium supported on each carrier was 10% by weight of the carrier.
[0017]
Example 2 (Selective oxidation reaction of methanol by selective oxidation reaction catalyst)
After filling 0.2 g of various complex oxide catalysts or impregnated catalysts shown in Table 1 into a quartz reaction tube and pretreating the catalyst with He gas at 300 ° C., the reaction tube was filled with He / O 2 / MeOH. While introducing a mixed gas consisting of [86.3 / 9.7 / 4.0 (mol%)] at a flow rate of GHSV = 40,000 ml / (h · g −cat ), methanol was oxidized at 240 ° C. It was. For this reaction, a fixed bed flow reaction system was used, and the product was analyzed by gas chromatography (GC) equipped with a TCD detector. As the gas chromatographic column, using methanol, dimethyl ether, dimethoxymethane, formaldehyde, Polapack-N (3m) in the separation and determination of methyl formate, in the separation and determination of CO and CO 2 Unibeads C a (3m) respectively And analyzed.
[0018]
[Table 1]
Figure 0003982978
[0019]
Table 1 shows the conversion rate of methanol in the selective oxidation reaction of methanol when various catalysts are used, and the selectivity of each of dimethoxymethane, formaldehyde, dimethyl ether, methyl formate, and CO x (CO + CO 2 ). From these results, when the ReO 3 catalyst was used, the selectivity of dimethoxymethane was as high as 99%, and Fe oxidation of ReO x / α-Fe 2 O 3 and ReO x / γ-Fe 2 O 3 It was found that the selectivity of dimethoxymethane was as high as 90% or more even when the object-supported ReO X catalyst was used. However, in the case of using only the catalyst of α-Fe 2 O 3 , the selective oxidation reaction of methanol did not occur at all. Further, even when a ReO x catalyst supporting a carrier such as V 2 O 5 , TiO 2 -rutile, ZrO 2 , α-Al 2 O 3 , MoO 3 is used, the selectivity of dimethoxymethane is 80% or more. In particular, ReO x / V 2 O 5 showed a very high dimethoxymethane selectivity of 93.7%.
[0020]
Example 3 (Influence of the amount of Re supported on the Re-supported Fe oxide catalyst)
Under the same conditions as in Example 1, the amount of Re supported was 0.5 wt%, 1.0 wt%, 2.0 wt%, 3.0 wt%, 6.0 wt%, 10.0 wt%. ReO x / α-Fe 2 O 3 catalysts were prepared and methanol was subjected to selective oxidation reaction under the same conditions as in Example 2 using these catalysts. The result is shown in FIG. In FIG. 1, (♦) shows the conversion rate of methanol, ()) shows the selectivity of dimethoxymethane, and (●) shows the reaction rate of dimethoxymethane. From this result, the conversion rate of methanol gradually increases as the amount of Re loaded increases, reaches the stationary phase when the amount of Re loaded is 2 to 3% by weight or more, and maintains the selectivity of dimethoxymethane to 90% or more. I knew it was possible. It was also found that the reaction rate was maximum when the amount of Re supported was 1 to 3% by weight.
[0021]
Example 4 (Isobutane ammoxidation reaction using selective oxidation reaction catalyst)
Using ReO 2 and Re / α-Fe 2 O 3 as oxidation reaction catalysts, isobutane ammoxidation was carried out using a fixed bed fluidized reaction system. After adjusting the reaction tube made of quartz filled with 0.15 g of each catalyst to 400 ° C., a mixed gas composed of isobutane / NH 3 / O 2 / He [10/15/25/50 (mol%)] was added to GHSV = The ammoxidation reaction was carried out while introducing at a flow rate of 5,000 ml / (h · g -cat ). The reaction product was analyzed by gas chromatography, and the conversion of isobutane, the selectivity of methacrylonitrile, the selectivity of isobutylene, and the selectivity of acetonitrile were determined for each reaction time. FIG. 4 shows the results when ReO 2 is used as the catalyst, and FIG. 5 shows the results when Re / α-Fe 2 O 3 is used.
[0022]
【The invention's effect】
In the present invention, rhenium oxide, particularly rhenium oxide supported on a metal oxide support is used as a catalyst for selective oxidation reaction of lower alcohols such as methanol, so that lower alcohol partial oxides such as dimethoxymethane from lower alcohols such as methanol. Can be produced selectively and efficiently.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of the amount of Re supported in a methanol selective oxidation reaction using the Re / α-Fe 2 O 3 catalyst of the present invention.
FIG. 2 is a graph showing the selectivity of methacrylonitrile and the like in isobutane ammoxidation reaction using the ReO 2 catalyst of the present invention.
FIG. 3 is a graph showing the selectivity of methacrylonitrile and the like in an ammoxidation reaction of isobutane using the Re / α-Fe 2 O 3 catalyst of the present invention.

Claims (13)

酸化レニウムを活性成分とすることを特徴とする低級アルコールの気相接触酸化用触媒。A catalyst for gas phase catalytic oxidation of a lower alcohol, comprising rhenium oxide as an active ingredient. 酸化レニウムが金属酸化物からなる担体に担持されていることを特徴とする請求項記載の低級アルコールの気相接触酸化用触媒。Claim 1 lower alcohol vapor phase catalytic oxidation catalyst of, wherein the rhenium oxide is supported on a support comprising a metal oxide. 金属酸化物が、鉄、チタン、ジルコニウム、ケイ素、アルミニウム又はバナジウムの酸化物であることを特徴とする請求項記載の低級アルコールの気相接触酸化用触媒。The catalyst for vapor-phase catalytic oxidation of a lower alcohol according to claim 2 , wherein the metal oxide is an oxide of iron, titanium, zirconium, silicon, aluminum or vanadium. 鉄酸化物がα−Fe23又はγ−Fe23であることを特徴とする請求項記載の低級アルコールの気相接触酸化用触媒。Iron oxide α-Fe 2 O 3 or γ-Fe 2 O 3 according to claim 3 lower alcohol vapor phase catalytic oxidation catalyst as claimed, characterized in that. 酸化レニウムを活性成分とすることを特徴とする低級炭化水素の気相接触アンモ酸化用触媒。A catalyst for gas phase catalytic ammoxidation of a lower hydrocarbon, comprising rhenium oxide as an active component. 酸化レニウムが金属酸化物からなる担体に担持されていることを特徴とする請求項記載の低級炭化水素の気相接触アンモ酸化用触媒。 6. The catalyst for gas phase catalytic ammoxidation of a lower hydrocarbon according to claim 5, wherein rhenium oxide is supported on a support made of a metal oxide . 金属酸化物が、鉄、チタン、ジルコニウム、ケイ素、アルミニウム又はバナジウムの酸化物であることを特徴とする請求項記載の低級炭化水素の気相接触アンモ酸化用触媒。The catalyst for gas phase catalytic ammoxidation of a lower hydrocarbon according to claim 6, wherein the metal oxide is an oxide of iron, titanium, zirconium, silicon, aluminum or vanadium. 鉄酸化物がα−Fe23又はγ−Fe23であることを特徴とする請求項記載の低級炭化水素の気相接触アンモ酸化用触媒。The catalyst for gas phase catalytic ammoxidation of a lower hydrocarbon according to claim 7, wherein the iron oxide is α-Fe 2 O 3 or γ-Fe 2 O 3 . 請求項1〜のいずれか記載の触媒の存在下、低級アルコールを分子状酸素含有ガスにより気相接触酸化することを特徴とする低級アルコール部分酸化物の製造方法。The process according to claim 1 the presence of a catalytic according to any one of 4, a lower alcohol partial oxide, characterized in that the gas-phase catalytic oxidation with a molecular oxygen-containing gas a lower alcohol. 気相接触酸化が、200〜400℃の温度下で行われることを特徴とする請求項9記載の低級アルコール部分酸化物の製造方法。The method for producing a lower alcohol partial oxide according to claim 9, wherein the gas phase catalytic oxidation is performed at a temperature of 200 to 400 ° C. 低級アルコールが、メタノールであることを特徴とする請求項9又は10記載の低級アルコール部分酸化物の製造方法。The method for producing a lower alcohol partial oxide according to claim 9 or 10, wherein the lower alcohol is methanol. 低級アルコール部分酸化物が、ジメトキシメタンであることを特徴とする請求項9〜11のいずれか記載の低級アルコール部分酸化物の製造方法。The method for producing a lower alcohol partial oxide according to any one of claims 9 to 11, wherein the lower alcohol partial oxide is dimethoxymethane. 請求項〜8のいずれか記載の触媒の存在下、低級炭化水素を分子状酸素及びアンモニアを含有するガスにより気相接触アンモ酸化することを特徴とする低級炭化水素ニトリル化物の製造方法。The presence of any description of the catalysts of claims 5-8, method for producing a lower hydrocarbon nitriles product, characterized in that the vapor-phase catalytic ammoxidation by gas containing molecular oxygen and ammonia lower hydrocarbon.
JP2000177972A 2000-06-14 2000-06-14 Catalyst for selective oxidation reaction of rhenium oxide Expired - Fee Related JP3982978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000177972A JP3982978B2 (en) 2000-06-14 2000-06-14 Catalyst for selective oxidation reaction of rhenium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000177972A JP3982978B2 (en) 2000-06-14 2000-06-14 Catalyst for selective oxidation reaction of rhenium oxide

Publications (2)

Publication Number Publication Date
JP2001353443A JP2001353443A (en) 2001-12-25
JP3982978B2 true JP3982978B2 (en) 2007-09-26

Family

ID=18679487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000177972A Expired - Fee Related JP3982978B2 (en) 2000-06-14 2000-06-14 Catalyst for selective oxidation reaction of rhenium oxide

Country Status (1)

Country Link
JP (1) JP3982978B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100566830C (en) * 2006-08-24 2009-12-09 中国科学院山西煤炭化学研究所 A kind of catalyst of synthesizing dimethoxym ethane and preparation method and application
JP5110471B2 (en) * 2008-04-01 2012-12-26 独立行政法人産業技術総合研究所 Method for producing acetal
FR2931819B1 (en) * 2008-06-03 2010-06-11 Arkema France PROCESS FOR THE SYNTHESIS OF DIACOXYALKANES BY SELECTIVE OXIDATION OF ALCOHOLS
CN101428211B (en) * 2008-12-12 2012-07-25 中国科学院山西煤炭化学研究所 Catalyst for producing dimethoxymethane with methanol selective oxidation and preparation method thereof
CN101757906B (en) * 2008-12-23 2012-01-18 南京大学 Preparation method for V-Ti-Al-O composite catalyst for methylal synthesis through methanol oxidation
JP5600260B2 (en) * 2009-02-27 2014-10-01 中国石油化工股▲ふん▼有限公司 Method for oxidative conversion of methanol

Also Published As

Publication number Publication date
JP2001353443A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
KR20090108121A (en) Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof
US4075127A (en) Catalyst for production of α,β-unsaturated carboxylic acids
KR100237976B1 (en) Vanadium-phosphorous based oxide, its production, catalyst for vaporation comprising the sameand partial vapor-phase oxidation for hydrocarbon
JPH09183748A (en) Conversion of alkane to unsaturated carboxylid acid
US4171316A (en) Preparation of maleic anhydride using a crystalline vanadium(IV)bis(metaphosphate) catalyst
JP3982978B2 (en) Catalyst for selective oxidation reaction of rhenium oxide
US4425260A (en) Catalysts for the oxidation and ammoxidation of alcohols
US6025523A (en) Process for the manufacture of acrylic acid from acrolein by a redox reaction and use of a solid mixed oxide composition as redox system in the said reaction
JP4081824B2 (en) Acrylic acid production method
US4009194A (en) Catalytic ammoxidation of olefins to nitriles
US4541964A (en) Production of methacrylonitrile
JP4182237B2 (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
US4052417A (en) Vapor phase oxidation of butane producing maleic anhydride and acetic acid
US10301245B2 (en) Use of molybdenum and vanadium mixed oxides as catalysts for the oxidation of unsaturated alcohols into unsaturated carboxylic acids
US4162992A (en) Oxidation and ammoxidation catalysts
EP0107638B1 (en) Catalysts for the oxidation and ammoxidation of alcohols
US4388248A (en) Ammoxidation processes
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
EP1142854B1 (en) Dimethyl ether methylation of alpha carbon adjacent an electron withdrawing group
US3544624A (en) Process for preparing acrylic acid and methacrylic acid
US4129592A (en) Hydrocarbon oxidation process
JPS62106049A (en) Production of carboxylic acid ester
JP2001089409A (en) Method of producing partially oxidized substance of lower alcohol
US4727198A (en) Process for the production of formaldehyde from methane
USRE31364E (en) Oxidation and ammoxidation catalysis

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees