JP3982141B2 - Extrusion product cutting mechanism - Google Patents

Extrusion product cutting mechanism Download PDF

Info

Publication number
JP3982141B2
JP3982141B2 JP2000063518A JP2000063518A JP3982141B2 JP 3982141 B2 JP3982141 B2 JP 3982141B2 JP 2000063518 A JP2000063518 A JP 2000063518A JP 2000063518 A JP2000063518 A JP 2000063518A JP 3982141 B2 JP3982141 B2 JP 3982141B2
Authority
JP
Japan
Prior art keywords
cutting
cutting blade
extrusion
molded product
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000063518A
Other languages
Japanese (ja)
Other versions
JP2001252962A (en
Inventor
光豊 田中
博志 小島
昇 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000063518A priority Critical patent/JP3982141B2/en
Publication of JP2001252962A publication Critical patent/JP2001252962A/en
Application granted granted Critical
Publication of JP3982141B2 publication Critical patent/JP3982141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Nonmetal Cutting Devices (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は押出成形品の切断機構及び押出成形装置に係り、特に、連続的に成形品を押し出しながら成形する押出成形装置において、押出成形品を切断するための構造に関する。
【0002】
【従来の技術】
一般に、押出成形装置においては、成形材料を所定形状のダイスを通して押し出すことによって連続的に成形する。この押出成形装置を用いた成形品としては、例えば、磁性粉をナイロン(商標)等の樹脂バインダと混練したものを押出成形し、樹脂バインダを硬化させることによって形成した磁石がある。押出成形装置には、通常、ダイスを通して押し出される押出成形品を所定の長さに切断するための切断機構が設けられる。
【0003】
従来の押出成形装置の切断機構としては、押出成形機本体の出口において、押出成形品の押出方向に配列された複数の円盤状のダイヤモンドブレードを搭載し、全体が押出成形品の押出方向に往復動作可能に構成されたものがある。この切断機構は、押出成形品がある程度押し出されると、全体が押出方向に押出成形品の押出速度と同じ速度で移動しながらダイヤモンドブレードによって複数箇所で同時に切断を行い、切断が完了すると、最初の位置に復帰するという動作を繰り返すように構成されている。
【0004】
また、一般に用いられている切断方法としては、振動、熱(レーザー光による切断等)、水流等を用いた種々の方法があり、切断ではなく、押出成形品を折り割りによって分離する方法もある。さらに、押出成形品の切断時において、押出成形機の押出を一時的に停止させ、その停止期間中に押出成形品を切断する機構も用いられている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の押出成形装置の切断機構においては、複数枚のダイヤモンドブレードを同時に用いることによって作業効率を高めているものの、ダイヤモンドブレードの磨耗状態や寸法ばらつきによって各ブレード間に厚さのばらつきが生じるとともに、各ダイヤモンドブレードの取り付け精度等によってブレード間隔にもばらつきが生ずるので、切断によって分離された各成形品の長さに寸法のばらつきが発生しやすい。したがって、各成形品の寸法誤差を低減するためにダイヤモンドブレードの取り付け位置をスペーサ等により調整する必要があり、さらに、機構が複雑で、しかも全体を押出成形品の進行方向に往復移動させる必要があるので、動作精度に限界があるなど、成形品の形状精度を高めにくいとともに機構の管理が困難且つ煩雑であって、しかも、或る程度長い切断時間が必要となるので、生産性が低いという問題点がある。
【0006】
また、振動、熱、水流を用いた切断方法ではいずれも装置構造が大掛かりになりコストが高くつくとともに、切断精度の面でも問題がある。また、折り割り(破断)による分離方法では、分離可能な成形品の長さに制約が生じたり、破断面形状にばらつきが存在したりするという問題点がある。
【0007】
さらに、切断時に一時的に押出成形機の押出動作を停止する場合には、押出成形品に停止期間に対応する部位に節が形成されてしまうという問題点がある。
【0008】
そこで本発明は上記問題点を解決するものであり、その課題は、連続的に押し出される押出成形品を切断する切断機構において、成形品の連続的な押出動作中においても切断が可能であって、簡単な構造で成形品の寸法精度を確保することができ、しかも押出成形品を迅速に切断することの可能な機構を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明の押出成形品の切断機構は、押出成形によって押出される押出成形品を切断するための押出成形品の切断機構において、前記押出成形品の押出方向に伸びる成形品案内路と、前記成形品案内路に沿って進行する前記押出成形品を切断するための切断刃と、該切断刃を駆動する駆動手段とを有し、前記切断刃の前記押出方向に向いた表面にのみ傾斜刃面が形成されてなることを特徴とする。
【0010】
この発明によれば、切断刃は、押出方向に向いた表面にのみ、刃先を形成するための傾斜刃面を備えていることにより、成形品案内路の上流側に向いた表面には傾斜刃面が形成されていないので、傾斜刃面が上流側の表面にも形成されている場合や上流側の表面にのみ形成されている場合と比べて、切断中における押出成形品の押出量に起因する切断刃と上流側の押出成形品との間相互の押し付け度合を低減することができる。したがって、切断機構を固定した場合であっても押出成形を中断することなく、切断位置のずれ、切断面の傾斜、押出成形品の損傷などを低減することができる。
【0011】
本発明において、前記切断刃は、前記押出成形品に向かって前記斜め方向に繰り出すように構成されていることが好ましい。この手段によれば、上記の切断位置のずれ、切断面の傾斜、押出成形品の損傷などをさらに低減できる。
【0012】
本発明において、前記駆動手段には、前記切断刃を前記押出成形品に向けて押し出すように構成されているとともに、前記切断刃を押し出す期間以外には前記切断刃に対して実質的に干渉しないように構成された押出部材と、前記切断刃を前記押出成形品側から退避させる方向に付勢する退避手段とが設けられていることが好ましい。この手段によれば、押出部材によって切断刃を押出成形品によって押し出すことによって切断刃を繰り出すことができるとともに、押し出し期間以外には押出部材が切断刃に対して実質的に干渉しないので、切断刃を退避させる方向に付勢する退避手段によって切断刃は押出成形品から退避するため、切断刃をソレノイド、流体圧シリンダ等によって直接駆動する場合に比べると、切断刃が繰り出し動作を終了した後、退避動作を始めるまでの時間を短縮することができるから、切断刃をより迅速に出没させることができ、切断動作中における連続的な成形品の押出量に起因する切断位置のずれ、切断面の傾斜、押出成形品の損傷などを低減することができる。
【0013】
次に、本発明の別の押出成形品の切断機構は、押出成形によって押出される押出成形品を切断するための押出成形品の切断機構において、前記押出成形品の押出方向に伸びる成形品案内路と、前記成形品案内路に沿って進行する前記押出成形品を切断するための切断刃と、該切断刃を駆動する駆動手段とを有し、前記駆動手段には、前記切断刃を前記押出成形品に向けて押し出すように構成されているとともに、前記切断刃を押し出す期間以外には前記切断刃に対して実質的に干渉しないように構成された押出部材と、前記切断刃を前記押出成形品側から退避させる方向に付勢する退避手段とが設けられていることを特徴とする。
【0014】
この場合には、押出部材によって切断刃を押出成形品に向けて押し出し、その後は退避手段の付勢力によって切断刃を復帰させるようにしているので、切断刃の動作速度を高速化することができるとともに、切断刃の繰り出し動作の終了時点と、復帰動作の開始時点との時間間隔を短縮できるので、切断機構を固定した場合であっても押出成形を中断することなく、切断位置のずれ、切断面の傾斜、押出成形品の損傷などを低減することができる。
【0015】
本発明において、前記押出部材は前記切断刃が駆動する方向と交差する方向に往復動作するように構成され、前記押出部材の往路動作と復路動作のいずれか一方の動作途中において前記押出部材により前記切断刃が前記押出成形品に向けて押し出されるように構成されていることが好ましい。この場合、押出部材における動作途中において切断刃を押出成形品に向けて押し出すように構成されているので、押出部材の加減速特性に影響されることなく、切断刃を高速に動作させることができる。
【0016】
本発明において、前記切断刃と前記押出部材の少なくとも一方には、前記往路動作と前記復路動作のいずれか一方の動作途中において相手方に当接して前記切断刃を前記押出成形品に向けて押し出すための、前記押出部材の往復動作方向と前記切断刃の出没方向との間の中間方向に向いた傾斜面を備え、前記押出部材は、前記往路動作と前記復路動作のいずれか他方において前記切断刃に対する回避動作を行うように構成されていることが好ましい。
【0017】
本発明において、前記押出部材は、前記往路動作と前記復路動作のいずれか他方の動作途中において前記切断刃に当接したときに前記切断刃を回避する向きに回動するように構成され、この回動の向きとは逆向きに、前記押出部材を付勢する姿勢復帰手段を備えていることが好ましい。
【0018】
本発明において、前記押出部材と前記切断刃は、前記往路動作と前記復路動作のいずれか他方の動作途中において、前記切断刃の出没方向にほぼ直交する方向に相互に当接する当接面を備えていることが好ましい。
【0019】
本発明において、前記切断刃による切断位置より上流側の隣接位置に前記押出成形品を前記成形品案内路に押し付けるための押圧部材を備えていることが好ましい。
【0020】
また、本発明の押出成形装置は、上記いずれかの押出成形品の切断機構を備えたものである。
【0021】
【発明の実施の形態】
次に、添付図面を参照して本発明に係る押出成形品の切断機構及び押出成形装置の実施形態について詳細に説明する。図1は本実施形態の切断機構の全体構成を示す概略側面図である。本実施形態の押出成形装置においては、押出成形機10の出口に配置された切断機構20を備えている。この切断機構20には、押出成形品3の押し出し方向に沿って伸びるように形成された成形品案内路21と、成形品案内路21の途中の上流側に配置された成形速度検出部22と、成形速度検出部22の下流側に配置された成形品切断部23とを備えている。
【0022】
成形品案内路21は、押出成形機10の内部に設けられた内部案内路11に対して案内経路が連続するように接続されており、押出成形品3を案内する案内面を備え、上記の成形速度検出部22及び成形品切断部23を通過した先において終端を有する。成形品案内路21の終端部の下方には分割された成形品を受け取り、図示しない収容部に成形品を排出するための排出シュート24が配置されている。
【0023】
成形速度検出部22は、上記成形品案内路21上を進む長尺の押出成形品3に上方から当接する検出ローラ22aと、この検出ローラ22aを所定の圧力で押出成形品3に対して押し付けるためのコイルバネなどの弾性体22bとを有する。そして、押出成形品3に押し付けられた検出ローラ22aが押出成形品3の進行とともに回転するとき、検出ローラ22aの回転量をエンコーダ等の検出器により検出することによって、押出成形品3の進行速度(押出速度)を測定するように構成されている。
【0024】
また、成形品切断部23は、成形品案内路21上を進む押出成形品3を上方から押さえ付ける押圧ローラ231と、この押圧ローラ231の下流側に隣接した位置において押出成形品3を上方から切断する切断刃(カッタ)232とを備えている。切断刃232の下流側斜め上方には吸引ノズル25が配置され、この吸引ノズル25は図示しない排気装置に接続されており、切断刃232によって押出成形品3を切断する際に発生する切り屑を吸引するようになっている。切断刃232によって所定長さに切断された成形品3aは、押出成形品3の進行によってやがて成形品案内路21上から上記の排出シュート上へ落下し、排出される。
【0025】
図2は、上記成形品切断部23の側面図であり、図3は成形品切断部23の正面図(成形品案内路21の下流側から見える面を正面とする。)である。成形品切断部23には、成形品案内路21の上方に固定された板状の固定部材233が成形品案内路21を跨ぐように設けられている。この固定部材233には、板状の支持部材234が固定部材233の板面に沿って昇降可能に取り付けられている。支持部材234にはネジ軸235の下端が固定され、このネジ軸235は固定部材233に対して間接的に螺合し、このネジ軸235を回転させることによって、支持部材234を固定部材233に対して上下に移動させることができるようになっている。
【0026】
支持部材234には、プランジャー型の電磁ソレノイドなどからなる駆動源2381が固定され、この駆動源2381の駆動軸2382は、接続部材2383を介して従動部材2384に固定されている。従動部材2384は、支持部材234に対してリニアガイド234aによって水平方向に案内されている。従動部材2384には、押出部材2385が回動可能に取り付けられている。押出部材2385は、従動部材2384に設けられたストッパ2384aによって、図3における反時計周りには図示の状態から回動することのないように回動範囲が制限されている。ただし、押出部材2385は図示の状態から図示時計周りには回動可能に構成されている。また、押出部材2385の図示上端寄りの部位には、従動部材2384に一端が固定されたコイルバネ等の弾性部材2386の他端が接続されている。この弾性部材2386によって、押出部材2385は常に図示反時計周りの回転方向に付勢されている。
【0027】
上記押出部材2385の下端部には、図3における図示左側斜め下方に向いた傾斜面2385aが形成されているとともに、図示右側に向いた垂直面2385bが形成されている。
【0028】
従動部材2384の下方には、支持部材234に対して昇降可能に取り付けられた切断支持体2388が配置され、この切断支持体2388の上部には上記押出部材2385の下方に突出する被動部材2387が固定されている。また、切断支持体2388には上記の切断刃232が固定されている。切断支持体2388には、支持部材234に一端が取り付けられたコイルバネ等からなる弾性部材2389の他端が接続され、弾性部材2389によって切断支持体2388は常に上方に付勢されている。
【0029】
被動部材2387の上端部には、図3における図示右側斜め上方に向いた傾斜面2387aが形成されているとともに、図示左側に向いた垂直面2387bが形成されている。
【0030】
切断刃232の刃先232aは、図4(a)にも示すように、押出成形品3の断面形状、すなわち、円弧状断面に対応した凸の円弧状に形成されている。また、切断刃232の刃先232aは、図4(b)に示すように、成形品案内路21の下流側に傾斜刃面232bが形成されていることによって先端に向けて徐々に薄肉化されている。
【0031】
一方、成形品案内路21は、図3に示すように、フレーム210上に防振ゴム等の振動吸収体215を介して固定された基体211の上面に断面V字状のV溝が形成され、このV溝内に嵌合するように支持案内部材212が収容されている。この支持案内部材212は基体211に取り付けられた保持枠213によって基体上に保持されている。支持案内部材212には、上記切断刃232の刃先232aが損傷しない程度の軟質材からなる案内部材214が固定されている。本実施形態では押出成形品3が円弧状断面を有する樋形状に形成されているので、案内部材214の表面には、押出成形品3の形状である樋形状に対応した円弧状断面を備えた案内溝214aが形成されている。そして、上記押出成形品3は、この案内溝214a内に押し出されてくるようになっている。
【0032】
また、上記基体211の両側部には取付支持部材216が取付固定され、この取付支持部材216の上端部に対してアーム部材236が回動自在に取り付けられている。さらに、このアーム部材236の先端には上記押圧ローラ231が回転自在に軸支されている。アーム部材236の上流側の端部には、コイルバネ等の弾性部材を含む弾性支持部237が接続されている。ここで、アーム部材236に軸材が固定され、この軸材は弾性部材によって常に上方へ付勢されているので、アーム部材236は常に押圧ローラ231を所定の圧力で下方へ押し付けるように作用する。
【0033】
本実施形態においては、上記の成形速度検出部22において検出ローラ22aの回転によって押出成形品3の押出速度が検出され、この押出速度に応じて、図示しない制御装置(例えばプログラマブルコントローラやマイクロプロセッサユニットなど)が成形品切断部23を動作させ、押出成形品3を切断する。すなわち、押出速度が増大すれば成形品切断部23による切断動作の間隔を短くし、押出速度が小さくなれば切断動作の間隔を長くする。例えば、押出成形品3を一定長さに切断する場合には、押出速度が一定であれば、一定の時間間隔で切断動作を実施し、押出速度が増大若しくは減少すれば切断動作の時間間隔を短縮若しくは延長する。
【0034】
また、上記の成形品切断部23による切断動作を制御する方法としては、図1に示すように成形品案内路21の終端部近傍に光センサ等からなる検出装置26を配置し、この検出装置26によって押出成形品3の先端部が検出されたときに上記制御装置によって成形品切断部23を動作させ、切断するようにしてもよい。この場合、上記成形速度検出部22は押出成形品3の押出速度の監視のために用いられる。
【0035】
成形品切断部23においては、上記の制御装置からの制御信号に基づき、まず図3に示す駆動源2381が稼動して駆動軸2382が引き込まれ、これに従って接続部材2383を介して従動部材2384が図示左側に移動する。従動部材2384の移動に伴って押出部材2385も図示左側へ移動し、押出部材2385の傾斜面2385aが被動部材2387の傾斜面2387aに衝突する。このとき、押出部材2385はストッパ2386によって図示反時計周りの回動が妨げられているので、傾斜面2385aはそのまま傾斜面2387aを押しのけるため、被動部材2387は切断支持体2388とともに下降する。そして、切断支持体2388に取り付けられた切断刃232もまた下降するので、切断刃232は下方の押出成形品3を切断する。
【0036】
押出部材2385が被動部材2387を下方へ押しやって、被動部材2387の上方を通過し、図示左側へ移動する(図示一点鎖線で示す。)と、切断支持体2388及び切断刃232は押出部材2385からの応力から解放され、弾性部材2389の弾性力によって上方へ復帰し始める。
【0037】
次に、駆動源2381は、上記動作とは逆に駆動軸2382を突出させ、これに伴って従動部材2384とともに押出部材2385も図示右側に戻り始める。このとき、被動部材2387は既に上昇しているか、或いは、上昇途上にあるので、戻り始めた押出部材2385の先端の垂直面2385bは被動部材2387の先端の垂直面2387bに衝突する。このとき、押出部材2385から被動部材2387に及ぼされる衝撃は水平方向に加わるので、被動部材2387並びにこれと一体化されている切断支持体2388及び切断刃232の上昇動作、或いは、上下位置には影響をほとんど与えないようになっている。また、押出部材2385は従動部材2384に対して図示時計周りには回動可能に取り付けられているので、垂直面2385bが垂直面2387bに衝突すると、その反動で押出部材2385は図示二点鎖線に示すように時計周りに回動し、被動部材2387を回避するようにして被動部材2387の上方を通過する。そして、最終的に押出部材2385は図示右側の初期位置に戻るとともに、弾性部材2386の弾性力によって上記の回動方向とは逆方向に回動して初期姿勢に復帰し、図示実線で示すようになる。
【0038】
ここで、上記駆動源2381には、例えば、通電期間において駆動軸2382が引き込まれ、通電が解除されると駆動軸2382が弾性力等によって復帰するように構成された電磁ソレノイドを用いることができる。この場合、その通電時間は約1秒程度である。このように通電時間(或いは通電サイクル)が長くても、或いは、駆動軸2382の動作の応答速度(動作開始時点)が遅くても、上記のような機構によって、切断刃232の降下速度及び上昇速度は駆動軸2382の引き込み速度及び弾性部材2389の弾性力で決定されるので、切断刃の動作を駆動源2381の動作特性にあまり影響されることなく高速化することができる。
【0039】
本実施形態では、図4(b)に示すように、例えば図示右側から図示左側へ所定速度で押出成形品3が進んでいるとき、切断刃232が上方から降下し、図示一点鎖線で示すように、刃先232aが押出成形品3の表面に接触してから、さらに降下して押出成形品3の厚さ分だけ下降すると、押出成形品3は完全に切断される。そして、その後、切断刃232は再び上昇し、押出成形品3から離反する。
【0040】
このとき、切断刃232が押出成形品3を切断している間にも、押出成形品3は図示左側へ向けて移動しているので、切断期間(切断刃3が実際に押出成形品3を切り進んでいる期間)においても徐々に図示左側へ移動する。したがって、厳密には、切断刃232は上流側の押出成形品3によって図示左側へ僅かではあっても押し曲げられ、同時に、上流側の押出成形品3は切断刃232によって図示右側へ押し戻される。このとき、切断刃232は下流側、すなわち図示左側の刃面にのみ、刃先232aを形成するための傾斜刃面232bが形成されており、上流側、すなわち図示右側の刃面はほぼ垂直に形成されているので、傾斜面が上流側の刃面にも形成されている場合や、上流側の刃面にのみ形成されている場合に比べて、切断刃232が下流側へ押し曲げられる量、及び、上流側の押出成形品3が上流側へ押し戻される量を共に低減することができるから、押出成形品3の切断位置をより正確にすることができ、また、切断面をより垂直に形成することができ、しかも、押出成形品3に与える損傷をより低減することができる。
【0041】
なお、押出成形品3を切断した後、切断刃232が上昇し始める際に、上述の理由によって切断刃232と上流側の押出成形品3とは相互に押し付けられているため、切断場232の上昇に従って上流側の押出成形品3の切断端部が上方へ引き上げられ(捲られ)ようとする。このとき、上記の押圧ローラ231が切断刃232の上流側において押出成形品3を上方から所定圧力で押圧しているので、押出成形品3が切断刃の上昇によって引き上げられることを防止することができる。
【0042】
上記の効果をさらに高めるためには、図4(b)に二点鎖線で示すように、切断刃232自体を押出成形品3に向けて下流側へやや傾斜させて設置し、その傾斜方向に降下させることが好ましい。このようにすると、図示左側へ進む押出成形品3に対して上流側から切り込み、斜め下流側へ切り進むことになるので、上記の切断期間において、押出成形品3の移動量を切断刃232の斜めに切り進む量によって減殺することができ、その結果、押出成形品3の切断面を垂直面にさらに近い面に形成することができる。また、上記と同様に、押出成形品3に与える損傷をさらに低減することができる。
【0043】
ここで、切断刃232の傾斜角度θは、本実施形態の切断機構の構成においては、1〜5度の範囲内であることが好ましく、特に、2〜3度であることが望ましい。これらの範囲を下回ると上記の効果を得ることができず、これらの範囲を上回ると切断不良を生ずる恐れがある。
【0044】
本実施形態では、駆動源2381の動作によって押出部材2385を水平方向に移動させ、その往路動作の途中において押出部材2385を被動部材2387に衝突させて切断刃232を下降させ、その後、切断刃232が弾性部材2389の弾性力によって上昇するとともに、押出部材2385の復路動作は切断刃232の上昇を妨げないようになっているので、押出部材2385の往復動作における加減速特性の影響を受けることなく、切断刃232をきわめて迅速に昇降させることができるとともに、切断刃232の下降動作の終了時点と、上昇動作の開始時点との間のタイムラグを低減することができる。
【0045】
図5(a)には本実施形態の切断刃232の昇降動作を示すグラフを示し、図5(b)には電磁ソレノイド(駆動源2381と同じもの)の垂直姿勢に設置された上下駆動軸に切断刃を固定して構成した切断機構を設けた場合の切断刃の昇降動作を示すグラフを示す。これらのグラフからわかるように、本実施形態では、特に、切断刃の下降動作の終了時点と、上昇動作の開始時点との間の時間がきわめて小さくなっているので、切断動作期間(切断刃が押出成形品に接触している期間)S1は従来の切断動作期間S2より大幅に短縮されている。また、切断刃の昇降動作期間(切断刃が下降を開始した時点から上昇が完了した時点までの期間)T1もまた、従来の昇降動作期間T2よりも短縮されている。本実施形態では、切断刃の昇降速度自体も、駆動源に直接接続された切断刃の動作速度よりも高速化されるため、通常の切断機構の場合よりも大幅に切断動作期間S1を短縮することが可能となっている。
【0046】
尚、本発明の押出成形品の切断機構及び押出成形装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0047】
【発明の効果】
以上、説明したように本発明によれば、切断中における押出成形品の押出量に起因する切断刃と上流側の押出成形品との間相互の押し付け度合を低減することができ、また、切断刃を高速に動作させることができるので、切断機構を固定した場合であっても押出成形を中断することなく、切断位置のずれ、切断面の傾斜、押出成形品の損傷などを低減することができる。
【図面の簡単な説明】
【図1】本発明に係る押出成形品の切断機構及び押出成形装置の実施形態の全体構成を示す概略構成図である。
【図2】同実施形態における成形品切断部の側面図である。
【図3】同実施形態における成形品切断部の正面図である。
【図4】同実施形態における切断刃の近傍を正面側から見た状態を示す拡大正面断面図(a)及び側面側から見た拡大側面断面図(b)である。
【図5】同実施形態における切断刃の昇降動作を示すグラフ(a)及び電磁ソレノイドによってダイレクトに駆動する場合の切断刃の昇降動作を示すグラフ(b)である。
【符号の説明】
10 押出成形機
20 切断機構
21 成形品案内路
22 成形速度検出部
23 成形品切断部
231 押圧ローラ
232 切断刃
232a 刃先
232b 傾斜刃面
2381 駆動源
2385 押出部材
2385a 傾斜面
2385b 垂直面
2386,2389 弾性部材
2387 被動部材
2387a 傾斜面
2387b 垂直面
2388 切断支持体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an extrusion-molded product cutting mechanism and an extrusion-molding apparatus, and more particularly to a structure for cutting an extrusion-molded product in an extrusion-molding apparatus that performs molding while continuously extruding a molded product.
[0002]
[Prior art]
In general, in an extrusion molding apparatus, a molding material is continuously molded by extruding it through a die having a predetermined shape. As a molded article using this extrusion molding apparatus, for example, there is a magnet formed by extruding a magnetic powder kneaded with a resin binder such as nylon (trademark) and curing the resin binder. The extrusion apparatus is usually provided with a cutting mechanism for cutting an extruded product extruded through a die into a predetermined length.
[0003]
As a cutting mechanism of a conventional extrusion molding apparatus, a plurality of disk-shaped diamond blades arranged in the extrusion direction of the extruded product are mounted at the exit of the extruder main body, and the whole reciprocates in the extrusion direction of the extrusion molded product. Some are configured to be operable. When the extruded product is extruded to some extent, the cutting mechanism performs cutting at a plurality of locations simultaneously with a diamond blade while moving at the same speed as the extrusion speed of the extruded product in the extrusion direction. The operation of returning to the position is repeated.
[0004]
Moreover, as a cutting method generally used, there are various methods using vibration, heat (cutting by laser light, etc.), water flow, etc., and there is also a method of separating an extrusion-molded product by folding instead of cutting. . Furthermore, a mechanism is also used in which the extrusion of the extruder is temporarily stopped when the extruded product is cut, and the extruded product is cut during the stop period.
[0005]
[Problems to be solved by the invention]
However, in the cutting mechanism of the conventional extrusion molding apparatus, the work efficiency is improved by using a plurality of diamond blades at the same time, but there is a variation in thickness between the blades due to the wear state and dimensional variation of the diamond blades. In addition, since the blade spacing varies depending on the mounting accuracy of each diamond blade, the dimensional variation tends to occur in the length of each molded product separated by cutting. Therefore, in order to reduce the dimensional error of each molded product, it is necessary to adjust the mounting position of the diamond blade with a spacer or the like, and the mechanism is complicated, and it is also necessary to reciprocate the whole in the traveling direction of the extruded product. Therefore, it is difficult to improve the shape accuracy of the molded product, for example, there is a limit to the operation accuracy, and the management of the mechanism is difficult and cumbersome. Moreover, a long cutting time is required, so the productivity is low. There is a problem.
[0006]
In addition, all of the cutting methods using vibration, heat, and water flow have a large apparatus structure and are expensive, and there is a problem in terms of cutting accuracy. In addition, the separation method by folding (breaking) has a problem that the length of the separable molded product is restricted or there is a variation in the shape of the fractured surface.
[0007]
Furthermore, when the extrusion operation of the extruder is temporarily stopped at the time of cutting, there is a problem in that a node is formed in a portion corresponding to the stop period in the extruded product.
[0008]
Therefore, the present invention solves the above-mentioned problems, and the problem is that the cutting mechanism that cuts the extruded product that is continuously extruded can be cut even during the continuous extrusion operation of the molded product. An object of the present invention is to provide a mechanism capable of ensuring the dimensional accuracy of a molded product with a simple structure and capable of quickly cutting an extruded product.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the cutting mechanism of the extrusion molded product of the present invention is a molding mechanism that extends in the extrusion direction of the extruded product in the cutting mechanism of the extruded product for cutting the extruded product extruded by extrusion molding. An article guide path, a cutting blade for cutting the extrusion molded article that travels along the molded article guide path, and a drive means for driving the cutting blade, and facing the extrusion direction of the cutting blade. An inclined blade surface is formed only on the surface that has been formed.
[0010]
According to this invention, the cutting blade is provided with the inclined blade surface for forming the blade edge only on the surface facing the extrusion direction, so that the surface facing the upstream side of the molded article guide path has the inclined blade. Because the surface is not formed, compared to the case where the inclined blade surface is also formed on the upstream surface or only on the upstream surface, it is caused by the extrusion amount of the extruded product during cutting. The degree of mutual pressing between the cutting blade and the upstream extrusion product can be reduced. Therefore, even when the cutting mechanism is fixed, it is possible to reduce the shift of the cutting position, the inclination of the cut surface, the damage of the extruded product, etc. without interrupting the extrusion molding.
[0011]
In this invention, it is preferable that the said cutting blade is comprised so that it may pay | feed out to the said diagonal direction toward the said extrusion molded product. According to this means, it is possible to further reduce the deviation of the cutting position, the inclination of the cut surface, the damage of the extruded product, and the like.
[0012]
In the present invention, the drive means is configured to extrude the cutting blade toward the extrusion-molded product, and does not substantially interfere with the cutting blade except during a period of extruding the cutting blade. It is preferable that an extruding member configured as described above and an evacuating means for urging the cutting blade in a direction to evacuate the cutting blade from the extrudate side. According to this means, the cutting blade can be fed out by extruding the extruded blade with the extruded member, and the extruded member does not substantially interfere with the cutting blade except during the extrusion period. Since the cutting blade is retracted from the extruded product by the retracting means that urges the cutting blade in the retracting direction, compared with the case where the cutting blade is directly driven by a solenoid, a hydraulic cylinder, etc. Since it is possible to shorten the time until the evacuation operation is started, the cutting blade can be moved up and down more quickly, and the displacement of the cutting position due to the continuous extrusion amount of the molded product during the cutting operation can be reduced. Inclination, damage to extruded products, etc. can be reduced.
[0013]
Next, another extrusion molded product cutting mechanism of the present invention is an extruded product cutting mechanism for cutting an extruded product extruded by extrusion molding, and a molded product guide extending in the extrusion direction of the extruded molded product. A cutting blade for cutting the extruded product that travels along the molded product guide path, and a driving means for driving the cutting blade. The driving means includes the cutting blade An extrusion member that is configured to extrude toward the extruded product and that does not substantially interfere with the cutting blade except for a period during which the cutting blade is extruded, and the cutting blade is extruded. Retracting means for biasing in the direction of retreating from the molded product side is provided.
[0014]
In this case, the cutting blade is pushed out toward the extruded product by the pushing member, and thereafter the cutting blade is returned by the urging force of the retracting means, so that the operating speed of the cutting blade can be increased. At the same time, the time interval between the end of the feeding operation of the cutting blade and the start of the return operation can be shortened, so that even if the cutting mechanism is fixed, the cutting position shifts and cuts without interrupting extrusion molding. It is possible to reduce the inclination of the surface and the damage of the extruded product.
[0015]
In the present invention, the push-out member is configured to reciprocate in a direction intersecting a direction in which the cutting blade is driven, and the push-out member moves the push-out member in the middle of either the forward path operation or the return path operation. It is preferable that the cutting blade is configured to be extruded toward the extruded product. In this case, since the cutting blade is configured to be extruded toward the extruded product during the operation of the extrusion member, the cutting blade can be operated at high speed without being affected by the acceleration / deceleration characteristics of the extrusion member. .
[0016]
In the present invention, at least one of the cutting blade and the pushing member is brought into contact with the other party in the middle of either the forward path operation or the backward path operation to push the cutting blade toward the extruded product. An inclined surface facing an intermediate direction between the reciprocating direction of the push-out member and the protruding and retracting direction of the cutting blade, and the push-out member is the cutting blade in one of the forward pass operation and the return pass operation It is preferable that the apparatus is configured to perform an avoidance operation for the above.
[0017]
In the present invention, the pusher member is configured to rotate in a direction to avoid the cutting blade when contacting the cutting blade during the other operation of the forward path operation and the backward path operation. It is preferable that posture returning means for urging the pushing member in a direction opposite to the direction of rotation is provided.
[0018]
In the present invention, the push-out member and the cutting blade include contact surfaces that contact each other in a direction substantially perpendicular to the protruding and retracting direction of the cutting blade during the operation of either the forward path operation or the backward path operation. It is preferable.
[0019]
In this invention, it is preferable to provide the pressing member for pressing the said extrusion molded product to the said molded product guide path in the adjacent position upstream from the cutting position by the said cutting blade.
[0020]
Moreover, the extrusion molding apparatus of this invention is equipped with the cutting mechanism of one of the said extrusion molded products.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of an extrusion molded product cutting mechanism and an extrusion molding apparatus according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic side view showing the overall configuration of the cutting mechanism of the present embodiment. In the extrusion molding apparatus of this embodiment, the cutting mechanism 20 arrange | positioned at the exit of the extrusion molding machine 10 is provided. The cutting mechanism 20 includes a molded product guide path 21 formed so as to extend along the extrusion direction of the extrusion molded product 3, and a molding speed detection unit 22 disposed on the upstream side of the molded product guide path 21. And a molded product cutting part 23 arranged on the downstream side of the molding speed detecting part 22.
[0022]
The molded product guide path 21 is connected to the internal guide path 11 provided inside the extrusion molding machine 10 so that the guide path is continuous, and includes a guide surface for guiding the extruded product 3. It has a terminal end after passing through the molding speed detection unit 22 and the molded product cutting unit 23. A discharge chute 24 for receiving the divided molded product and discharging the molded product in a housing (not shown) is disposed below the end portion of the molded product guide path 21.
[0023]
The molding speed detection unit 22 detects a detection roller 22a that comes into contact with the long extrusion molded product 3 traveling on the molded product guide path 21 from above, and presses the detection roller 22a against the extrusion molded product 3 with a predetermined pressure. And an elastic body 22b such as a coil spring. Then, when the detection roller 22a pressed against the extruded product 3 rotates with the progress of the extruded product 3, the amount of rotation of the detection roller 22a is detected by a detector such as an encoder, whereby the traveling speed of the extruded product 3 It is configured to measure (extrusion speed).
[0024]
Further, the molded product cutting unit 23 presses the extruded molded product 3 traveling on the molded product guide path 21 from above, and presses the extruded molded product 3 from above at a position adjacent to the downstream side of the pressed roller 231. A cutting blade (cutter) 232 for cutting. The suction nozzle 25 is disposed obliquely above the downstream side of the cutting blade 232, and this suction nozzle 25 is connected to an exhaust device (not shown), and chips generated when the extruded product 3 is cut by the cutting blade 232 are removed. It comes to suck. The molded product 3a cut to a predetermined length by the cutting blade 232 eventually falls onto the discharge chute from the molded product guide path 21 as the extruded product 3 advances, and is discharged.
[0025]
FIG. 2 is a side view of the molded product cutting portion 23, and FIG. 3 is a front view of the molded product cutting portion 23 (a surface seen from the downstream side of the molded product guide path 21 is a front surface). The molded product cutting part 23 is provided with a plate-like fixing member 233 fixed above the molded product guide path 21 so as to straddle the molded product guide path 21. A plate-like support member 234 is attached to the fixing member 233 so as to be movable up and down along the plate surface of the fixing member 233. The lower end of the screw shaft 235 is fixed to the support member 234. The screw shaft 235 is indirectly screwed to the fixing member 233, and the screw shaft 235 is rotated, so that the support member 234 is fixed to the fixing member 233. On the other hand, it can be moved up and down.
[0026]
A driving source 2381 composed of a plunger type electromagnetic solenoid or the like is fixed to the support member 234, and a driving shaft 2382 of the driving source 2381 is fixed to the driven member 2384 via a connecting member 2383. The driven member 2384 is guided in the horizontal direction with respect to the support member 234 by a linear guide 234a. An extrusion member 2385 is rotatably attached to the driven member 2384. The push-out member 2385 has a rotation range limited by a stopper 2384a provided on the driven member 2384 so that the push-out member 2385 does not turn counterclockwise in FIG. However, the pushing member 2385 is configured to be rotatable clockwise from the illustrated state. Further, the other end of an elastic member 2386 such as a coil spring whose one end is fixed to the driven member 2384 is connected to a portion of the pushing member 2385 near the upper end in the drawing. By this elastic member 2386, the pushing member 2385 is always urged in the counterclockwise direction of rotation shown in the drawing.
[0027]
At the lower end portion of the pushing member 2385, an inclined surface 2385a facing obliquely downward on the left side in FIG. 3 is formed, and a vertical surface 2385b facing rightward in the drawing is formed.
[0028]
Below the driven member 2384 is disposed a cutting support 2388 attached to the support member 234 so as to be movable up and down. A driven member 2387 protruding below the push-out member 2385 is disposed above the cutting support 2388. It is fixed. Further, the cutting blade 232 is fixed to the cutting support 2388. The cutting support 2388 is connected to the other end of an elastic member 2389 made of a coil spring or the like with one end attached to the support member 234, and the cutting support 2388 is always urged upward by the elastic member 2389.
[0029]
At the upper end of the driven member 2387, an inclined surface 2387a is formed, which is directed obliquely upward to the right in the drawing in FIG. 3, and a vertical surface 2387b is formed that is directed to the left in the drawing.
[0030]
4A, the cutting edge 232a of the cutting blade 232 is formed in a convex arc shape corresponding to the cross-sectional shape of the extruded product 3, that is, the arc-shaped cross section. Further, as shown in FIG. 4B, the cutting edge 232a of the cutting blade 232 is gradually thinned toward the tip by forming the inclined blade surface 232b on the downstream side of the molded article guide path 21. Yes.
[0031]
On the other hand, as shown in FIG. 3, the molded product guide path 21 has a V-shaped V-shaped cross section formed on the upper surface of the base body 211 fixed on the frame 210 via a vibration absorber 215 such as an anti-vibration rubber. The support guide member 212 is accommodated so as to fit in the V groove. The support guide member 212 is held on the base by a holding frame 213 attached to the base 211. A guide member 214 made of a soft material is fixed to the support guide member 212 to such an extent that the cutting edge 232a of the cutting blade 232 is not damaged. In this embodiment, since the extruded product 3 is formed in a bowl shape having an arc-shaped cross section, the surface of the guide member 214 is provided with an arc-shaped cross section corresponding to the bowl shape that is the shape of the extrusion molded product 3. A guide groove 214a is formed. The extruded product 3 is pushed into the guide groove 214a.
[0032]
Further, attachment support members 216 are attached and fixed to both side portions of the base body 211, and an arm member 236 is rotatably attached to the upper end portion of the attachment support member 216. Further, the pressing roller 231 is rotatably supported at the tip of the arm member 236. An elastic support portion 237 including an elastic member such as a coil spring is connected to the upstream end portion of the arm member 236. Here, since the shaft member is fixed to the arm member 236, and this shaft member is always biased upward by the elastic member, the arm member 236 always acts to press the pressing roller 231 downward with a predetermined pressure. .
[0033]
In the present embodiment, the extrusion speed of the extrusion-molded product 3 is detected by the rotation of the detection roller 22a in the molding speed detector 22, and a control device (not shown) (for example, a programmable controller or a microprocessor unit) is detected according to the extrusion speed. Etc.) operate the molded product cutting section 23 to cut the extruded molded product 3. That is, if the extrusion speed increases, the interval of the cutting operation by the molded product cutting unit 23 is shortened, and if the extrusion speed decreases, the interval of the cutting operation is increased. For example, when the extruded product 3 is cut to a certain length, if the extrusion speed is constant, the cutting operation is performed at a constant time interval, and if the extrusion speed increases or decreases, the time interval of the cutting operation is increased. Shorten or extend.
[0034]
Further, as a method for controlling the cutting operation by the molded product cutting unit 23, a detection device 26 including an optical sensor is disposed in the vicinity of the end portion of the molded product guide path 21 as shown in FIG. When the front end portion of the extrusion molded product 3 is detected by H.26, the molded product cutting unit 23 may be operated by the control device to be cut. In this case, the molding speed detection unit 22 is used for monitoring the extrusion speed of the extruded product 3.
[0035]
In the molded product cutting unit 23, based on the control signal from the above-described control device, first, the drive source 2381 shown in FIG. 3 is operated and the drive shaft 2382 is drawn, and the driven member 2384 is connected via the connection member 2383 accordingly. Move to the left side of the figure. As the driven member 2384 moves, the pushing member 2385 also moves to the left in the figure, and the inclined surface 2385a of the pushing member 2385 collides with the inclined surface 2387a of the driven member 2387. At this time, since the pushing member 2385 is prevented from rotating counterclockwise by the stopper 2386, the inclined surface 2385a pushes the inclined surface 2387a as it is, so that the driven member 2387 is lowered together with the cutting support 2388. Then, the cutting blade 232 attached to the cutting support 2388 is also lowered, so that the cutting blade 232 cuts the lower extruded product 3.
[0036]
When the pushing member 2385 pushes the driven member 2387 downward, passes over the driven member 2387, and moves to the left side in the figure (shown by a dashed line in the figure), the cutting support 2388 and the cutting blade 232 are removed from the pushing member 2385. It is released from the stress and starts to return upward by the elastic force of the elastic member 2389.
[0037]
Next, the drive source 2381 causes the drive shaft 2382 to protrude in the opposite manner to the above operation, and along with this, the pushing member 2385 starts to return to the right side in the drawing. At this time, since the driven member 2387 has already risen or is in the process of rising, the vertical surface 2385b of the tip of the pushing member 2385 that has started to return collides with the vertical surface 2387b of the tip of the driven member 2387. At this time, the impact applied to the driven member 2387 from the pushing member 2385 is applied in the horizontal direction, so that the driven member 2387 and the cutting support 2388 and the cutting blade 232 integrated with the driven member 2387 are moved upward or downward. It is designed to have little effect. Further, since the pushing member 2385 is attached to the driven member 2384 so as to be rotatable in the clockwise direction in the drawing, when the vertical surface 2385b collides with the vertical surface 2387b, the pushing member 2385 is moved to the two-dot chain line in the drawing by the reaction. As shown, it rotates clockwise and passes over the driven member 2387 so as to avoid the driven member 2387. Finally, the pushing member 2385 returns to the initial position on the right side of the figure, and is rotated in the direction opposite to the above rotation direction by the elastic force of the elastic member 2386 to return to the initial position, as shown by the solid line in the figure. become.
[0038]
Here, for example, an electromagnetic solenoid configured such that the drive shaft 2382 is pulled in during the energization period and the drive shaft 2382 is restored by an elastic force or the like when the energization is released can be used as the drive source 2381. . In this case, the energization time is about 1 second. Thus, even if the energization time (or energization cycle) is long or the response speed (operation start point) of the operation of the drive shaft 2382 is slow, the lowering speed and ascent of the cutting blade 232 are increased by the mechanism described above. Since the speed is determined by the pull-in speed of the drive shaft 2382 and the elastic force of the elastic member 2389, the operation of the cutting blade can be speeded up without being significantly affected by the operation characteristics of the drive source 2381.
[0039]
In the present embodiment, as shown in FIG. 4B, for example, when the extruded product 3 is moving at a predetermined speed from the right side to the left side in the drawing, the cutting blade 232 descends from above and is indicated by a one-dot chain line in the drawing. Further, when the blade edge 232a comes into contact with the surface of the extruded product 3 and further descends by the thickness of the extruded product 3, the extruded product 3 is completely cut. Thereafter, the cutting blade 232 moves up again and separates from the extruded product 3.
[0040]
At this time, while the cutting blade 232 is cutting the extruded product 3, the extruded product 3 is moving toward the left side in the drawing, so that the cutting period (the cutting blade 3 actually moves the extruded product 3). The period gradually moves to the left side in the figure as well. Therefore, strictly speaking, the cutting blade 232 is pushed and bent to the left in the drawing by the upstream extrusion 3, and at the same time, the upstream extrusion 3 is pushed back to the right by the cutting blade 232. At this time, the cutting blade 232 is formed with an inclined blade surface 232b for forming the blade edge 232a only on the downstream side, that is, on the left side in the figure, and the upstream side, that is, the right side in the figure is formed almost vertically. Therefore, when the inclined surface is also formed on the upstream blade surface, or compared to the case where only the upstream blade surface is formed, the amount by which the cutting blade 232 is bent to the downstream side, And since the amount by which the upstream extrusion product 3 is pushed back to the upstream side can be reduced, the cutting position of the extrusion product 3 can be made more accurate, and the cut surface is formed more vertically. In addition, damage to the extruded product 3 can be further reduced.
[0041]
When the cutting blade 232 starts to rise after cutting the extruded product 3, the cutting blade 232 and the upstream extruded product 3 are pressed against each other for the above-described reason. As it rises, the cut end of the upstream extruded product 3 tends to be pulled upward. At this time, since the pressing roller 231 presses the extruded product 3 from above with a predetermined pressure on the upstream side of the cutting blade 232, it is possible to prevent the extruded product 3 from being pulled up by the rising of the cutting blade. it can.
[0042]
In order to further enhance the above effect, as shown by a two-dot chain line in FIG. 4 (b), the cutting blade 232 itself is installed slightly inclined toward the downstream side toward the extruded product 3, and in the inclination direction. It is preferable to lower. If it does in this way, since it cuts from the upstream side with respect to the extrusion molded product 3 progressing to the left side in the figure and proceeds to the oblique downstream side, the movement amount of the extrusion molded product 3 is set to the cutting blade 232 during the above-mentioned cutting period. The amount of cutting can be reduced by the amount of cutting, and as a result, the cut surface of the extruded product 3 can be formed closer to the vertical surface. Moreover, the damage given to the extrusion molded product 3 can further be reduced similarly to the above.
[0043]
Here, in the configuration of the cutting mechanism of the present embodiment, the inclination angle θ of the cutting blade 232 is preferably within a range of 1 to 5 degrees, and particularly preferably 2 to 3 degrees. If it falls below these ranges, the above-mentioned effect cannot be obtained, and if it exceeds these ranges, cutting failure may occur.
[0044]
In this embodiment, the pushing member 2385 is moved in the horizontal direction by the operation of the drive source 2381, the pushing member 2385 is collided with the driven member 2387 in the middle of the forward movement, and the cutting blade 232 is lowered, and then the cutting blade 232 is moved. Is increased by the elastic force of the elastic member 2389, and the return path operation of the pushing member 2385 does not hinder the raising of the cutting blade 232, so that it is not affected by the acceleration / deceleration characteristics in the reciprocating operation of the pushing member 2385. The cutting blade 232 can be moved up and down very quickly, and the time lag between the end time of the lowering operation of the cutting blade 232 and the start time of the ascending operation can be reduced.
[0045]
FIG. 5 (a) shows a graph showing the lifting / lowering operation of the cutting blade 232 of this embodiment, and FIG. 5 (b) shows a vertical drive shaft installed in a vertical posture of an electromagnetic solenoid (the same as the drive source 2381). The graph which shows the raising / lowering operation | movement of a cutting blade at the time of providing the cutting mechanism comprised by fixing a cutting blade to is shown. As can be seen from these graphs, in the present embodiment, the time between the end of the lowering operation of the cutting blade and the start of the ascent operation is extremely small. The period in which the extruded product is in contact (S1) is significantly shorter than the conventional cutting operation period S2. Also, the lifting / lowering operation period of the cutting blade (the period from the time when the cutting blade starts to descend to the time when the lifting is completed) T1 is also shorter than the conventional lifting / lowering operation period T2. In this embodiment, since the raising / lowering speed of the cutting blade itself is also higher than the operation speed of the cutting blade directly connected to the drive source, the cutting operation period S1 is significantly shortened compared to the case of a normal cutting mechanism. It is possible.
[0046]
In addition, the cutting mechanism and the extrusion molding apparatus of the extrusion molded product of the present invention are not limited to the illustrated examples described above, and it is needless to say that various modifications can be made without departing from the gist of the present invention. .
[0047]
【The invention's effect】
As described above, according to the present invention, it is possible to reduce the degree of mutual pressing between the cutting blade and the upstream extrusion product due to the extrusion amount of the extrusion product during cutting. Since the blade can be operated at high speed, even if the cutting mechanism is fixed, it is possible to reduce misalignment of the cutting position, inclination of the cut surface, damage to the extruded product, etc. without interrupting extrusion molding. it can.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing the overall configuration of an embodiment of an extrusion molded product cutting mechanism and an extrusion molding apparatus according to the present invention.
FIG. 2 is a side view of a molded product cutting part according to the embodiment.
FIG. 3 is a front view of a molded product cutting portion according to the embodiment.
FIG. 4 is an enlarged front sectional view (a) showing a state in which the vicinity of the cutting blade in the embodiment is viewed from the front side and an enlarged side sectional view (b) viewed from the side surface side.
FIG. 5 is a graph (a) showing the lifting / lowering operation of the cutting blade in the same embodiment and a graph (b) showing the lifting / lowering operation of the cutting blade when directly driven by an electromagnetic solenoid.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Extruder 20 Cutting mechanism 21 Molded article guide path 22 Molded speed detection part 23 Molded article cutting part 231 Press roller 232 Cutting blade 232a Cutting edge 232b Inclined blade surface 2381 Drive source 2385 Extruding member 2385a Inclined surface 2385b Vertical surface 2386, 2389 Elasticity Member 2387 Driven member 2387a Inclined surface 2387b Vertical surface 2388 Cutting support

Claims (3)

押出成形によって押出される押出成形品を切断するための押出成形品の切断機構において、
前記押出成形品の押出方向に伸びる成形品案内路と、前記成形品案内路に沿って進行する前記押出成形品を切断するための切断刃と、該切断刃を駆動する駆動手段とを有し、
前記駆動手段には、前記切断刃を前記押出成形品に向けて押し出すように構成されているとともに、前記切断刃を押し出す期間以外には前記切断刃に対して実質的に干渉しないように構成された押出部材と、前記切断刃を前記押出成形品側から退避させる方向に付勢する退避手段とが設けられ、
前記押出部材は、前記往路動作と前記復路動作のいずれか他方の動作途中において前記切断刃に当接したときに前記切断刃を回避する向きに回動するように構成され、この回動の向きとは逆向きに、前記押出部材を付勢する姿勢復帰手段を備えていることを特徴とする押出成形品の切断機構。
In the cutting mechanism of the extruded product for cutting the extruded product extruded by extrusion molding,
A molded product guide path extending in the extrusion direction of the extruded molded product, a cutting blade for cutting the extruded molded product traveling along the molded product guide path, and a driving means for driving the cutting blade ,
The drive means is configured to push the cutting blade toward the extrusion-molded product, and is configured not to substantially interfere with the cutting blade except for a period during which the cutting blade is pushed out. And a retracting means for biasing the cutting blade in a direction for retracting the cutting blade from the extruded product side,
The pusher member is configured to rotate in a direction to avoid the cutting blade when contacting the cutting blade during the other operation of the forward path operation and the backward path operation. A cutting mechanism for an extrusion-molded product, comprising posture returning means for urging the push-out member in the opposite direction.
請求項1において、前記押出部材と前記切断刃は、前記往路動作と前記復路動作のいずれか他方の動作途中において、前記切断刃の出没方向にほぼ直交する方向に相互に当接する当接面を備えていることを特徴とする押出成形品の切断機構。  The pressing member and the cutting blade according to claim 1, wherein the abutting surfaces that abut each other in a direction substantially perpendicular to a protruding and retracting direction of the cutting blade during the operation of the other of the forward path operation and the backward path operation. A cutting mechanism for an extrusion-molded product, comprising: 請求項1乃至請求項2のいずれか1項において、前記切断刃による切断位置より上流側の隣接位置に前記押出成形品を前記成形品案内路に押し付けるための押圧部材を備えていることを特徴とする押出成形品の切断機構。  3. The pressing member according to claim 1, further comprising a pressing member that presses the extruded product against the molded product guide path at an adjacent position upstream of a cutting position by the cutting blade. The cutting mechanism of the extruded product.
JP2000063518A 2000-03-08 2000-03-08 Extrusion product cutting mechanism Expired - Fee Related JP3982141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000063518A JP3982141B2 (en) 2000-03-08 2000-03-08 Extrusion product cutting mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000063518A JP3982141B2 (en) 2000-03-08 2000-03-08 Extrusion product cutting mechanism

Publications (2)

Publication Number Publication Date
JP2001252962A JP2001252962A (en) 2001-09-18
JP3982141B2 true JP3982141B2 (en) 2007-09-26

Family

ID=18583370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000063518A Expired - Fee Related JP3982141B2 (en) 2000-03-08 2000-03-08 Extrusion product cutting mechanism

Country Status (1)

Country Link
JP (1) JP3982141B2 (en)

Also Published As

Publication number Publication date
JP2001252962A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
EP3015238A1 (en) Wire monitoring system
JP3867466B2 (en) Extrusion product cutting mechanism and extrusion molding apparatus
JP3982141B2 (en) Extrusion product cutting mechanism
CN109747196B (en) Pressure device
JP3423479B2 (en) Method and apparatus for removing fastener element in space of slide fastener chain
CN1162959C (en) Method and apparatus for manufacturing electronic components
JP2943970B2 (en) Discard cutting method and apparatus for extrusion press
EP0572210B1 (en) An apparatus for dividing bread dough or the like
NL1031065C2 (en) Apparatus and process for casting with reduced cup formation.
CN216860448U (en) Automatic water gap cutting structure in mold
JPH0740096A (en) Undercut shape molding method of powder molded goods and its molding device
JP2894538B2 (en) Die holding device for extrusion press
JP2003220439A (en) Heading machine
JP7488597B2 (en) Food dough forming device and food dough forming method
JP3000506B2 (en) Punching machine
CN111114917B (en) Automatic cutter head arranging device
CN211495855U (en) Cutter head conveying and screening device
US3821347A (en) Process for producing a structural concrete block
KR200229025Y1 (en) Auto-cutting device for metal bar
CN117920840B (en) Continuous conveying system for producing waist iron
JP3285943B2 (en) Control method of press machine
JP5461820B2 (en) Injection molding machine
KR100425790B1 (en) Auto-cutting device for metal bar
KR0167458B1 (en) Cutting/bending apparatus having guide rail for supplying lead frame strip
CN114210811A (en) Die with guide device and operation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees