JP3981789B2 - 2-axis seismic isolation rubber testing machine - Google Patents

2-axis seismic isolation rubber testing machine Download PDF

Info

Publication number
JP3981789B2
JP3981789B2 JP21952999A JP21952999A JP3981789B2 JP 3981789 B2 JP3981789 B2 JP 3981789B2 JP 21952999 A JP21952999 A JP 21952999A JP 21952999 A JP21952999 A JP 21952999A JP 3981789 B2 JP3981789 B2 JP 3981789B2
Authority
JP
Japan
Prior art keywords
load
seismic isolation
isolation rubber
vertical
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21952999A
Other languages
Japanese (ja)
Other versions
JP2001041870A (en
Inventor
正和 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP21952999A priority Critical patent/JP3981789B2/en
Publication of JP2001041870A publication Critical patent/JP2001041870A/en
Application granted granted Critical
Publication of JP3981789B2 publication Critical patent/JP3981789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は免震ゴムのバネ特性の調査等に用いられる2軸免震ゴム試験機に関する。
【0002】
【従来の技術】
免震ゴムのバネ特性を調査ないしは評価するための試験機として、2軸免震ゴム試験機が知られている。2軸免震ゴム試験機は、一般に、それぞれサーボ弁を用いた油圧サーボ機構によって駆動制御される鉛直負荷用シリンダおよび水平負荷用シリンダを備えるとともに、鉛直方向に可動の上圧盤と、水平方向に可動の下圧盤を備え、上圧盤と下圧盤の間に供試免震ゴムを挟み込んだ状態で、鉛直負荷用シリンダによって上圧盤を介して免震ゴムに一定の圧縮負荷を加えつつ、水平負荷用シリンダによって下圧盤を介して免震ゴムの下面に繰り返し荷重を加え、図3に例示するような水平荷重−水平変位特性を測定し、免震ゴムの水平方向へのバネ特性を調査する。
【0003】
【発明が解決しようとする課題】
ところで、近年、免震ゴムの高速度でのバネ特性の試験要求が増加する傾向にあるが、以上のような2軸免震ゴム試験機においては、水平負荷の繰り返し速度を速くしたとき、サーボ機構により鉛直負荷が一定となるように鉛直負荷用シリンダを制御しているにも係わらず、水平負荷の周期に対応して鉛直負荷が変動してしまうという問題がある。
【0004】
すなわち、図4に模式的に示すように、免震ゴムWを上圧盤41と下圧盤42の間に挟み込んだ状態で、上圧盤41を介して一定の圧縮荷重を加え、かつ、下圧盤42に対して水平方向への荷重を加えると、免震ゴムWの高さがδVだけ低くなる。この免震ゴムWの高さの変化に起因して、鉛直方向への圧縮荷重が変動する。このとき、鉛直方向への圧縮負荷を加えるための鉛直負荷用シリンダを駆動制御する油圧サーボ機構は、この荷重の変動を抑制すべくサーボ弁の弁開度を調整するように動作する。水平方向への負荷の繰り返し速度が遅い場合には、図5(A)にグラフを示すように鉛直荷重は一定に保たれるのであるが、水平負荷の繰り返し速度がサーボ弁の応答速度を越えていたり、あるいはサーボ弁の容量が上記の荷重変動に対処するには不足している場合には、鉛直負荷用シリンダに必要な圧油が供給されず、図5(B)に例示するように、鉛直方向への圧縮負荷が水平方向への繰り返し負荷に同期して変動してしまう。
【0005】
この問題を解決するためには、鉛直負荷用シリンダを駆動するサーボ弁の高応答化並びに大容量化が必要となり、コスト上昇の原因となるばかりでなく、それにも限度があって、水平方向への繰り返し負荷速度をより高速度化すれば、鉛直方向への圧縮荷重を一定に保つことが困難となる。
【0006】
本発明はこのような実情に鑑みてなされたもので、鉛直負荷用シリンダを駆動するサーボ弁を高応答化並びに大容量化することなく、水平方向負荷の繰り返し速度を高速度化しても、鉛直方向への圧縮負荷を一定に保つことのできる2軸免震ゴム試験機の提供を目的としている。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明の2軸免震ゴム試験機は、それぞれ油圧サーボ機構により駆動制御される鉛直負荷用シリンダおよび水平負荷用シリンダを備え、その各シリンダを駆動制御することにより、供試免震ゴムに対して鉛直方向への一定の圧縮負荷を加えつつ、水平方向への繰り返し負荷を加えて、免震ゴムの水平バネ特性を調査する2軸免震ゴム試験機において、上記鉛直負荷用シリンダの圧縮側ポートに、電磁弁を介して選択的にアキュムレータを接続し得るように構成されていることによって特徴づけられる。
【0008】
本発明は、鉛直負荷用シリンダの圧縮側ポートに、試験時においてアキュムレータを接続することにより、水平方向への繰り返し負荷による免震ゴムの高さの変化分に対応する圧油をの供給を、サーボ弁を介することなくアキュムレータから鉛直負荷用シリンダに供給することによって、所期の目的を達成しようとするものである。
【0009】
すなわち、免震ゴムに対して鉛直方向に一定の圧縮負荷を加えた状態で、水平方向に繰り返し負荷を加えることにより、免震ゴムの高さがその繰り返し周期に同期して変化したとき、高さが減少する際には鉛直負荷用シリンダのピストンはそれにつれて下方に移動する。このとき、サーボ弁の応答が遅れて圧油の供給がなければ従来のように鉛直方向への圧縮荷重が減少するのであるが、本発明においては、鉛直負荷用シリンダの圧縮側ポートに接続されているアキュムレータに蓄圧されているため、鉛直負荷用シリンダのピストンの下方への移動時に、サーボ弁を介して圧油が供給されなくてもアキュムレータから鉛直負荷用シリンダに圧油が供給される結果、アキュムレータの容量を適切に選定してさえいれば、鉛直方向への圧縮負荷は殆ど変動することがない。
【0010】
【発明の実施の形態】
以下、図面を参照しつつ本発明の好適な実施の形態について説明する。
図1は本発明の実施の形態の機械的構成を示す正面図である。
全体としてロ字形をしたフレーム1に、複数の鉛直リニアガイドベアリング2を介して上圧盤3が摺動自在に支持されており、その下方には、複数の水平リニアガイドベアリング4を介して下圧盤5が摺動自在に支持されている。上圧盤3には、フレーム1の上部に取付けれらた鉛直負荷用シリンダ6によって鉛直方向への負荷が付与される一方、下圧盤5には、フレーム1の側部に取り付けられた水平負荷用シリンダ7によって水平方向への負荷が付与される。
【0011】
免震ゴムWは上圧盤3と下圧盤5の間に挟み込まれた状態で試験に供され、この免震ゴムWに作用する鉛直方向および水平方向への各荷重は、それぞれ鉛直ロードセル8および水平ロードセル9によって検出され、また、免震ゴムWの鉛直方向および水平方向への変位(変形)は、鉛直負荷用シリンダ6および水平負荷用シリンダ7にそれぞれ内蔵されているストローク検出器によってそれぞれ検出される。
【0012】
鉛直負荷用シリンダ6および水平負荷用シリンダ7は、それぞれに対応して設けられた油圧サーボ機構によって制御される。すなわち、鉛直負荷用シリンダ6および水平負荷用シリンダ7には、それぞれに専用のサーボ弁を介して油圧源からの圧油が供給され、その各サーボ弁は、鉛直負荷用シリンダ6については鉛直ロードセル8の出力を検出値とし、水平負荷用シリンダ7については内蔵のストローク検出器もしくは水平ロードセル9の出力を検出値として、その各検出値があらかじめ設定されている各目標値に一致するように、それぞれの弁開度が制御される。水平バネ特性の調査に当たっては、鉛直負荷用シリンダ6は供試免震ゴムWに対して鉛直方向への一定の圧縮荷重が作用するように駆動制御され、また、水平負荷用シリンダ7は、供試免震ゴムWに対して水平方向への繰り返し負荷が加えられるように駆動制御される。
【0013】
さて、この実施の形態の特徴は、鉛直負荷用シリンダ6を駆動するための油圧回路にあり、図2にその油圧回路図を示す。
鉛直負荷用シリンダ6は、前記したようにサーボ弁10を介して油圧源から圧力ライン14aを通じて供給される圧油によって動作するのであるが、この鉛直負荷用シリンダ6の圧縮側ポート6aとサーボ弁10の間に、電磁方向制御弁11を介してアキュムレータ12が接続されている。また、鉛直負荷用シリンダ6の引張側ポート6bとサーボ弁10との間にも電磁方向制御弁13が挿入されており、これらの電磁方向制御弁11および13は互いに同期して駆動制御され、試験開始前の免震ゴムWの取付け時等においては、図2に示されるように各ソレノイドがOFFの状態とされ、試験時には各ソレノイドがONの状態とされる。
【0014】
以上の回路構成において、各電磁方向制御弁11,13が図2に示す状態にあるとき、アキュムレータ12は鉛直負荷用シリンダ6の圧縮側ポート6aに対して遮断され、かつ、戻りライン14bに接続された状態となり、また、引張側ポート6bがサーボ弁10に直結された状態となる。この状態では、サーボ弁10の動作によって鉛直負荷用シリンダ6が直接的に動き、供免震ゴムWの取付け等は従来と同様の操作で行うことができる。
【0015】
図2の状態から各電磁方向制御弁11,13のソレノイドをONにすると、鉛直負荷用シリンダ6の圧縮側ポート6aとサーボ弁10との間にアキュムレータ10が接続された状態となるとともに、引張側ポート6bはサーボ弁10を迂回して戻りライン14bに接続された状態となる。この状態でサーボ弁10を駆動して鉛直負荷用シリンダ6の圧縮側ポート6aに圧力ライン14aを接続すると、鉛直負荷用シリンダ6は供試免震ゴムWに対して圧縮負荷を加えるように動作すると同時に、圧油はアキュムレータ12にも圧油が供給されて蓄圧される。サーボ機構の動作により、サーボ弁10の弁開度を制御し、供試免震ゴムWに鉛直方向への一定の圧縮負荷を加えた状態で、水平負荷用シリンダ7を駆動して水平方向への繰り返し負荷を加えると、その繰り返し周期に同期して免震ゴムWが変形し、前記したようにその高さが変化して鉛直負荷用シリンダ6のピストンが変位する。このとき、アキュムレータ12に所要圧力下で蓄えられている圧油が鉛直負荷用シリンダ6の圧縮側ポート6aに供給されるため、鉛直負荷用シリンダ6は、供試免震ゴムWの変形に伴ってそのピストンが変位しても、その内部圧力は殆ど変化せず、供試免震ゴムWに作用する鉛直方向への圧縮荷重は略一定に保たれる。
【0016】
従って、水平方向への繰り返し負荷の速度が速く、サーボ弁10の応答速度を越えていたり、あるいはサーボ弁10の容量不足に起因して、サーボ弁10を介して鉛直負荷用シリンダ6に所要量の圧油が供給されなかっても、免震ゴムWの鉛直方向への圧縮荷重が水平方向への繰り返し負荷に同期して大きく変動せず、略一定の鉛直方向荷重を維持することができる。
【0017】
【発明の効果】
本発明によれば、鉛直負荷用シリンダの圧縮側ポートに電磁弁を介してアキュムレータを選択的に接続できるように構成しているから、免震ゴムに鉛直方向への一定の圧縮荷重を加えつつ、水平方向に繰り返し負荷を加えるバネ特性試験を行う際、水平方向への負荷の繰り返し速度を速くして、鉛直負荷用シリンダを駆動するサーボ弁の応答速度や容量がそれに対処できない場合でも、鉛直方向への圧縮荷重の変動を抑制することができ、低コストで高性能の2軸免震ゴム試験機が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態の機械的構成を示す正面図である。
【図2】本発明の実施の形態の鉛直負荷用シリンダ6の駆動用の油圧回路図である。
【図3】2軸免震ゴム試験機により得られる免震ゴムの水平荷重−水平変位特性の例の説明図である。
【図4】免震ゴムに鉛直方向への一定の圧縮負荷を加えつつ水平方向への繰り返し負荷を加えたときに、鉛直方向への圧縮荷重が変動する原因の説明図である。
【図5】従来の2軸免震ゴム試験機による鉛直方向への圧縮負荷と水平方向への繰り返し負荷の関係の説明図で、(A)は水平方向への負荷の繰り返し速度が遅い場合の、また、(B)はその速度が速い場合の例をそれぞれ示すグラフである。
【符号の説明】
1 フレーム1
2 鉛直リニアガイドベアリング
3 上圧盤
4 水平リニアガイドベアリング
5 下圧盤
6 鉛直負荷用シリンダ
6a 圧縮側ポート
6b 引張側ポート
7 水平負荷用シリンダ
8 鉛直ロードセル
9 水平ロードセル
10 サーボ弁
11,13 電磁方向制御弁
12 アキュムレータ
14a 圧力ライン
14b 戻りライン
W 免震ゴム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biaxial seismic isolation rubber testing machine used for investigation of spring characteristics of seismic isolation rubber.
[0002]
[Prior art]
A biaxial seismic isolation rubber testing machine is known as a testing machine for investigating or evaluating the spring characteristics of seismic isolation rubber. In general, a biaxial seismic isolation rubber testing machine includes a vertical load cylinder and a horizontal load cylinder that are driven and controlled by a hydraulic servomechanism using a servo valve. With a movable lower platen, with the test seismic isolation rubber sandwiched between the upper platen and the lower platen, a vertical load cylinder applies a certain compressive load to the base isolation rubber via the upper platen while applying a horizontal load. A load is repeatedly applied to the lower surface of the base isolation rubber through the lower pressure plate by the cylinder for measuring, and the horizontal load-horizontal displacement characteristics as illustrated in FIG. 3 are measured, and the spring characteristics in the horizontal direction of the base isolation rubber are investigated.
[0003]
[Problems to be solved by the invention]
By the way, in recent years, there has been a tendency to increase the demand for testing the spring characteristics at high speeds of the seismic isolation rubber. Although the vertical load cylinder is controlled so that the vertical load is constant by the mechanism, there is a problem that the vertical load fluctuates in accordance with the period of the horizontal load.
[0004]
That is, as schematically shown in FIG. 4, with the seismic isolation rubber W sandwiched between the upper platen 41 and the lower platen 42, a certain compressive load is applied via the upper platen 41, and the lower platen 42 If a load is applied in the horizontal direction, the height of the seismic isolation rubber W decreases by δV. Due to the change in the height of the seismic isolation rubber W, the compressive load in the vertical direction varies. At this time, the hydraulic servomechanism for driving and controlling the vertical load cylinder for applying the compressive load in the vertical direction operates to adjust the valve opening of the servo valve so as to suppress the fluctuation of the load. When the repetition rate of the load in the horizontal direction is slow, the vertical load is kept constant as shown in the graph of FIG. 5A, but the repetition rate of the horizontal load exceeds the response speed of the servo valve. If the servo valve capacity is insufficient to cope with the above load fluctuation, the required pressure oil is not supplied to the vertical load cylinder, as illustrated in FIG. 5B. The compression load in the vertical direction fluctuates in synchronization with the repeated load in the horizontal direction.
[0005]
In order to solve this problem, it is necessary to increase the response and capacity of the servo valve that drives the cylinder for the vertical load, which not only causes an increase in cost, but also has a limit in the horizontal direction. If the repeated load speed is further increased, it becomes difficult to keep the compressive load in the vertical direction constant.
[0006]
The present invention has been made in view of such circumstances, and even if the repetition rate of the horizontal load is increased without increasing the response and capacity of the servo valve that drives the vertical load cylinder, The purpose is to provide a two-axis seismic isolation rubber testing machine that can maintain a constant compressive load.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a biaxial seismic isolation rubber testing machine according to the present invention includes a vertical load cylinder and a horizontal load cylinder, each of which is driven and controlled by a hydraulic servomechanism. In the biaxial seismic isolation rubber testing machine, which applies a constant compression load in the vertical direction to the test isolation rubber, and repeatedly applies a horizontal load to investigate the horizontal spring characteristics of the isolation rubber, It is characterized by being configured so that an accumulator can be selectively connected to a compression side port of the vertical load cylinder via an electromagnetic valve.
[0008]
By connecting an accumulator to the compression side port of the vertical load cylinder at the time of the test, the present invention supplies pressure oil corresponding to the change in the height of the seismic isolation rubber due to repeated load in the horizontal direction. By supplying the cylinder from the accumulator to the vertical load cylinder without going through the servo valve, the intended purpose is achieved.
[0009]
That is, when a constant compression load is applied to the seismic isolation rubber in a vertical direction and a horizontal load is repeatedly applied, the height of the seismic isolation rubber changes in synchronization with the repetition cycle. When the pressure decreases, the piston of the vertical load cylinder moves downward. At this time, if the response of the servo valve is delayed and pressure oil is not supplied, the compression load in the vertical direction is reduced as in the conventional case. In the present invention, however, it is connected to the compression side port of the vertical load cylinder. As a result, the pressure oil is supplied from the accumulator to the vertical load cylinder even if the pressure oil is not supplied via the servo valve when the piston of the vertical load cylinder moves downward. As long as the capacity of the accumulator is appropriately selected, the compression load in the vertical direction hardly fluctuates.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a front view showing a mechanical configuration of an embodiment of the present invention.
An upper platen 3 is slidably supported on a frame 1 having a generally rectangular shape via a plurality of vertical linear guide bearings 2, and a lower platen is provided below the plurality of horizontal linear guide bearings 4. 5 is slidably supported. A load in the vertical direction is applied to the upper platen 3 by a vertical load cylinder 6 attached to the upper portion of the frame 1, while a horizontal load attached to the side of the frame 1 is applied to the lower platen 5. A load in the horizontal direction is applied by the cylinder 7.
[0011]
The seismic isolation rubber W is used for the test in a state of being sandwiched between the upper platen 3 and the lower platen 5, and the vertical and horizontal loads acting on the seismic isolation rubber W are respectively applied to the vertical load cell 8 and the horizontal load. The displacement (deformation) in the vertical direction and the horizontal direction of the seismic isolation rubber W is detected by the load cell 9 and is detected by the stroke detector built in each of the vertical load cylinder 6 and the horizontal load cylinder 7. The
[0012]
The vertical load cylinder 6 and the horizontal load cylinder 7 are controlled by a hydraulic servo mechanism provided corresponding to each. That is, the vertical load cylinder 6 and the horizontal load cylinder 7 are respectively supplied with pressure oil from a hydraulic power source via a dedicated servo valve, and each servo valve in the vertical load cylinder 6 is a vertical load cell. With the output of 8 as the detection value and the horizontal load cylinder 7 with the output of the built-in stroke detector or horizontal load cell 9 as the detection value, each detection value matches each preset target value. Each valve opening is controlled. In examining the horizontal spring characteristics, the vertical load cylinder 6 is driven and controlled so that a constant compressive load in the vertical direction acts on the test seismic isolation rubber W, and the horizontal load cylinder 7 is The drive control is performed so that a horizontal load is repeatedly applied to the trial seismic isolation rubber W.
[0013]
The feature of this embodiment lies in a hydraulic circuit for driving the vertical load cylinder 6, and FIG. 2 shows a hydraulic circuit diagram thereof.
The vertical load cylinder 6 is operated by the pressure oil supplied from the hydraulic pressure source through the pressure line 14a via the servo valve 10 as described above. The compression side port 6a of the vertical load cylinder 6 and the servo valve are operated. 10, an accumulator 12 is connected via an electromagnetic direction control valve 11. An electromagnetic direction control valve 13 is also inserted between the pulling side port 6b of the vertical load cylinder 6 and the servo valve 10, and these electromagnetic direction control valves 11 and 13 are driven and controlled in synchronization with each other. When the seismic isolation rubber W is attached before the test is started, the solenoids are turned off as shown in FIG. 2, and the solenoids are turned on at the time of the test.
[0014]
In the above circuit configuration, when the electromagnetic directional control valves 11 and 13 are in the state shown in FIG. 2, the accumulator 12 is disconnected from the compression side port 6a of the vertical load cylinder 6 and connected to the return line 14b. In addition, the tension side port 6b is directly connected to the servo valve 10. In this state, the vertical load cylinder 6 is directly moved by the operation of the servo valve 10, and the seismic isolation rubber W can be attached by the same operation as in the prior art.
[0015]
When the solenoids of the electromagnetic control valves 11 and 13 are turned on from the state shown in FIG. 2, the accumulator 10 is connected between the compression side port 6a of the vertical load cylinder 6 and the servo valve 10, and the tension is applied. The side port 6b bypasses the servo valve 10 and is connected to the return line 14b. When the servo valve 10 is driven in this state and the pressure line 14a is connected to the compression side port 6a of the vertical load cylinder 6, the vertical load cylinder 6 operates to apply a compression load to the test seismic isolation rubber W. At the same time, the pressure oil is supplied to the accumulator 12 and accumulated. The valve opening of the servo valve 10 is controlled by the operation of the servo mechanism, and the horizontal load cylinder 7 is driven in the horizontal direction while a constant compression load in the vertical direction is applied to the test seismic isolation rubber W. When the load is repeatedly applied, the seismic isolation rubber W is deformed in synchronism with the repetition period, and the height thereof is changed as described above, and the piston of the vertical load cylinder 6 is displaced. At this time, since the pressure oil stored in the accumulator 12 under the required pressure is supplied to the compression-side port 6a of the vertical load cylinder 6, the vertical load cylinder 6 moves along with the deformation of the test seismic isolation rubber W. Even if the piston is displaced, the internal pressure hardly changes, and the vertical compressive load acting on the test seismic isolation rubber W is kept substantially constant.
[0016]
Accordingly, the speed of the repeated load in the horizontal direction is high and exceeds the response speed of the servo valve 10 or due to the capacity of the servo valve 10 being insufficient, the required amount is applied to the vertical load cylinder 6 via the servo valve 10. Even if the pressure oil is not supplied, the compressive load in the vertical direction of the seismic isolation rubber W does not vary greatly in synchronization with the repeated load in the horizontal direction, and a substantially constant vertical load can be maintained.
[0017]
【The invention's effect】
According to the present invention, the accumulator can be selectively connected to the compression side port of the vertical load cylinder via the solenoid valve, so that a constant compressive load in the vertical direction is applied to the seismic isolation rubber. When performing a spring characteristic test that repeatedly applies a load in the horizontal direction, even if the response speed and capacity of the servo valve that drives the vertical load cylinder cannot cope with it by increasing the horizontal load repetition rate, The fluctuation of the compressive load in the direction can be suppressed, and a low-cost and high-performance biaxial seismic isolation rubber testing machine can be obtained.
[Brief description of the drawings]
FIG. 1 is a front view showing a mechanical configuration of an embodiment of the present invention.
FIG. 2 is a hydraulic circuit diagram for driving the vertical load cylinder 6 according to the embodiment of the present invention.
FIG. 3 is an explanatory diagram of an example of horizontal load-horizontal displacement characteristics of a seismic isolation rubber obtained by a biaxial seismic isolation rubber testing machine.
FIG. 4 is an explanatory diagram of the cause of fluctuations in the vertical compressive load when a horizontal load is repeatedly applied to the seismic isolation rubber while a constant compressive load is applied in the vertical direction.
FIG. 5 is an explanatory diagram of the relationship between a vertical compression load and a horizontal repeat load by a conventional two-axis seismic isolation tester, and (A) shows a case where the horizontal load repeat rate is slow. (B) are graphs showing examples of cases where the speed is high.
[Explanation of symbols]
1 frame 1
2 Vertical linear guide bearing 3 Upper pressure plate 4 Horizontal linear guide bearing 5 Lower pressure plate 6 Vertical load cylinder 6a Compression side port 6b Pull side port 7 Horizontal load cylinder 8 Vertical load cell 9 Horizontal load cell 10 Servo valves 11, 13 Electromagnetic direction control valve 12 Accumulator 14a Pressure line 14b Return line W Seismic isolation rubber

Claims (1)

それぞれ油圧サーボ機構により駆動制御される鉛直負荷用シリンダおよび水平負荷用シリンダを備え、その各シリンダを駆動制御することにより、供試免震ゴムに対して鉛直方向への一定の圧縮負荷を加えつつ、水平方向への繰り返し負荷を加えて、免震ゴムの水平バネ特性を調査する2軸免震ゴム試験機において、上記鉛直負荷用シリンダの圧縮側ポートに、電磁弁を介して選択的にアキュムレータを接続し得るように構成されていることを特徴とする2軸免震ゴム試験機。Each cylinder is equipped with a vertical load cylinder and a horizontal load cylinder that are driven and controlled by a hydraulic servomechanism. By controlling the drive of each cylinder, a constant compression load in the vertical direction is applied to the test seismic isolation rubber. In a biaxial seismic isolation rubber testing machine that investigates horizontal spring characteristics of seismic isolation rubber by applying repeated horizontal loads, an accumulator is selectively connected to the compression side port of the vertical load cylinder via a solenoid valve. A two-axis seismic isolation rubber testing machine characterized by being configured to be able to connect.
JP21952999A 1999-08-03 1999-08-03 2-axis seismic isolation rubber testing machine Expired - Lifetime JP3981789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21952999A JP3981789B2 (en) 1999-08-03 1999-08-03 2-axis seismic isolation rubber testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21952999A JP3981789B2 (en) 1999-08-03 1999-08-03 2-axis seismic isolation rubber testing machine

Publications (2)

Publication Number Publication Date
JP2001041870A JP2001041870A (en) 2001-02-16
JP3981789B2 true JP3981789B2 (en) 2007-09-26

Family

ID=16736916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21952999A Expired - Lifetime JP3981789B2 (en) 1999-08-03 1999-08-03 2-axis seismic isolation rubber testing machine

Country Status (1)

Country Link
JP (1) JP3981789B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928017B1 (en) * 2008-01-11 2009-11-24 평화산업주식회사 Jig for testing dustproof rubber in two directions

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581972B2 (en) * 2005-11-16 2010-11-17 トヨタ自動車株式会社 Load displacement calculation device and load displacement calculation method
CN107621421B (en) * 2017-10-25 2024-04-12 北京富力通达科技有限公司 Pressure shear testing machine for lateral guide rail and vertical loading oil cylinder
KR101933895B1 (en) * 2018-08-10 2019-04-05 주식회사 스탠더드시험연구소 Test Apparatus and Test Method of Characteristics of Isolation Part Installed at the Structure and Equipment of Nuclear Power Plants
JP7053035B2 (en) * 2018-11-07 2022-04-12 株式会社松田製作所 2-axis tester
CN109682693A (en) * 2019-02-27 2019-04-26 沈阳众和检测有限公司 Architectural vibration-insulation rubber tube tangential displacement test device
CN114166101B (en) * 2021-12-03 2023-05-26 兴宇伟业(天津)科技有限公司 Automatic acquisition device for rubber product production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928017B1 (en) * 2008-01-11 2009-11-24 평화산업주식회사 Jig for testing dustproof rubber in two directions

Also Published As

Publication number Publication date
JP2001041870A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
US7406851B2 (en) Die cushion controlling apparatus and die cushion controlling method
RU2389589C2 (en) Method to control equalising cylinder unit, in particular for welding device, and equalising cylinder unit
US8468866B2 (en) Die cushion device
US10286438B2 (en) Die cushion-cum-slide cushion device and method of controlling the same
JP3981789B2 (en) 2-axis seismic isolation rubber testing machine
RU2683992C2 (en) Hydraulic forging press and method of controlling such press
CN102036766B (en) Die cushion device
CN107923418B (en) Pneumatic valve drive
CN106925653A (en) The method of die cushion and the control die cushion
KR960003846A (en) Compressor with multiple buffer cylinders, each with two seals with adjustable differential pressure to control blank gripping force
JP2010501846A (en) Adjustment method for material testing equipment
US20220008979A1 (en) Variable pulsating, gap control, auto-learning press cushion device
CN101389421A (en) Cushion load control device and press machine having cushion load control device
DE102005029234A1 (en) System for damping and / or compensating bearing of an assembly and method for damping and / or compensating bearings
US20070000302A1 (en) Method for testing the function of a hydraulic valve and a test bench for carrying out said method
CN104416846B (en) For the method for the closed cell for running forming machine
JP2727954B2 (en) Press equipment
JP5129731B2 (en) Die cushion equipped with NC drive and hydraulic pad
US20240173765A1 (en) Hydraulic forming machine for pressing workpieces, in particular forging hammer, and method for operating a hydraulic forming machine, in particular a forging hammer
JP2002195925A (en) Method for testing durability and machine for durable and frictional test
CN104512016A (en) A die assembly unit of a forming machine and a method for operating a die assembly unit
JP3076743B2 (en) Follow-up operation control device for hydraulic equipment
JP2003524763A (en) Load assembly with flexible actuator
JPH08270605A (en) Positioning device for air cylinder
JP2825055B2 (en) Biaxial loading test equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3981789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

EXPY Cancellation because of completion of term