JP3981542B2 - Recycling method of glass - Google Patents

Recycling method of glass Download PDF

Info

Publication number
JP3981542B2
JP3981542B2 JP2001334377A JP2001334377A JP3981542B2 JP 3981542 B2 JP3981542 B2 JP 3981542B2 JP 2001334377 A JP2001334377 A JP 2001334377A JP 2001334377 A JP2001334377 A JP 2001334377A JP 3981542 B2 JP3981542 B2 JP 3981542B2
Authority
JP
Japan
Prior art keywords
glass
slag
furnace
molten
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001334377A
Other languages
Japanese (ja)
Other versions
JP2003138309A (en
Inventor
一雄 大貫
忠司 真鍋
安幸 中尾
隆史 辻
武 森田
渉 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001334377A priority Critical patent/JP3981542B2/en
Publication of JP2003138309A publication Critical patent/JP2003138309A/en
Application granted granted Critical
Publication of JP3981542B2 publication Critical patent/JP3981542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、ガラスの再資源化処理方法に関するものであり、特に、産業廃棄物となる廃ガラスを製鋼スラグに転換して有効利用するとともに製鋼スラグの特性も向上せしめる方法に関するものである。
【0002】
【従来の技術】
自動車用のガラスは強化ガラス化あるいは熱線ヒーター埋め込み等の観点から、ガラス原料としてリサイクル使用し難く、現状ではシュレッダーダストの一部となり埋め立て処理されているのが現状である。
【0003】
一方、TVガラスに代表される鉛含有ガラスは、リサイクル使用時に混合されると一般的な利用用途のガラスの品質が劣化するために、通常は廃棄物として廃棄されている。
【0004】
このような問題のある鉛含有ガラスを溶融状態の製鋼スラグに投入して、さらに熱源を加え溶融させ、製鋼スラグを改質する方法が、特開平10−330823号公報に記載されている。この方法では、電気炉内に存在する溶融した製鋼スラグ内に鉛含有ガラスを投入して製鋼スラグを改質し、ある時間を経過させた後に、炉外へ改質後の製鋼スラグを排出して、通常の製鋼スラグと同様に路盤材として使用できることが開示されている。さらに、改質された製鋼スラグは環境溶出試験において、問題のないレベルであることも確認されている。
【0005】
一般に、鉛は高温場で蒸発しやすいが、上記公報の手法では、鉛含有ガラスが炉内の高温場で溶融し、鉛が蒸発して、製鋼スラグ内に鉛は存在しない処理となっているのか、製鋼スラグ内に鉛が安定化して存在せしめている処理なのか判別できない。すなわち、鉛の行方について何ら記載がなく、広い観点から見て、環境上の課題が解決されていない。
【0006】
また、ガラスを溶融状態の製鋼スラグに投入して、さらに熱源を加え溶融させ、製鋼スラグを改質する方法が、特開平9−100145号公報あるいは特開平9−165614号公報に記載されている。
【0007】
上記、2つの引用文献とも、炉内で熱源を加えて製鋼スラグを改質するため、エネルギーを新たに炉内へ加えるとともに製鋼時間を延長する必要があり、処理費用ならびに炉の生産性を悪化せしめている。
【0008】
【発明が解決しようとする課題】
従来の方法ではガラスを処理するための費用増や生産性低下が問題である。かつ鉛含有ガラスを処理した場合の工業的な規模での鉛回収方法が求められている。
【0009】
上記のような状況に鑑み、発明は、ガラスを経済性の観点で有利に再資源化処理できる方法ならびに鉛含有ガラスを処理した場合でも問題なく工業的な規模で鉛回収できる方法を提供することを課題とするものである。
【0010】
【課題を解決するための手段】
本発明の要旨は以下の通りである。
〔1〕炉内からスラグ受け容器へ放流排出され流動している溶融スラグに、鉛含有ガラスを投入し、さらに前記スラグ受け容器中で酸素富化空気あるいは酸素をスラグ内に吹き込み加熱攪拌して、前記溶融スラグに前記ガラスを添加するガラスの再資源化処理方法。
〔2〕溶融スラグが製鋼用転炉、または、冷鉄源溶解炉、または電気炉内に存在する溶融スラグであることを特徴とする、上記〔1〕に記載のガラスの再資源化処理方法。
〕ガラス投入中に発生するダストを集塵処理することを特徴とする、上記〔1〕又は〔2〕に記載のガラスの再資源化処理方法。
〕ガラスの大きさが50mm以下であることを特徴とする、上記〔1〕〜〔〕に記載のガラスの再資源化処理方法。
〕ガラス投入量が混合する対象の溶融スラグの5質量%以下であることを特徴とする、上記〔1〕〜〔〕に記載のガラスの再資源化処理方法。
【0011】
【発明の実施の形態】
本発明の実施の形態の一例を示すプロセスフローを図1に示す。
転炉を改造した冷鉄源溶解炉1の中に溶融鉄3および溶融スラグ2が存在している。溶解時には酸素上吹きランスから酸素が、底吹きノズルから石炭が吹き込まれる。溶解後は炉内の溶融鉄の一部を取鍋4に排出し、その後に炉内の溶融スラグの一部も炉下に配置されたスラグ受け容器5に放流排出される。
【0012】
本発明者らは、上記の図1に示す冷鉄源溶解炉を用いて、溶解炉から排出する溶融スラグを受ける容器へガラス6を投入した。特に、溶解炉から放流排出する高温の溶融スラグの顕熱および落下エネルギーを用いれば、ガラスを溶融するに足る条件を満足できものと考え、ガラスの投入条件を変化させて、スラグ受け容器に回収されたスラグの特性やガラスの溶解状況等を調査した。さらに、発生するダストを別に回収して、その成分や量を調査した(Case1)。また、比較のために、冷鉄源溶解炉の炉内にガラスを投入した場合(Case2)、ならびに、予めスラグ受け容器である滓スラグ受け容器にガラスを入れ置きした場合(Case3)も試験した。
【0013】
上記の3種類のガラス添加方法の特徴を比較した結果を表1に示す。
【0014】
【表1】

Figure 0003981542
【0015】
本発明の方法(以下「本法」ともいう)では、炉から排出され流動している溶融スラグにガラスを添加する。具体的な操作としては、溶融スラグ排出中にスラグ受け容器の上方空間からガラスを投入すればよい。ガラスは、炉からスラグ受け容器に流れ落ちる途中の溶融スラグに添加されてもよいし、スラグ受け容器中で流動する溶融スラグに添加されてもよい。
【0016】
スラグ受け中の炉内に投入することに比べて、投入するガラスの寸法制約は少なく、ガラスの事前処理負荷が小さい。
【0017】
また、本法では炉外でガラス溶融処理を実施できるので、炉の生産性を阻害することがない。
【0018】
さらに、本法では、揮発性の高い鉛を含有するガラスを使用した場合、処理中に発生するダストを集塵することにより、効率よく高濃度の鉛を回収することができる。これは、炉内投入の場合には鉄ダストの発生する環境下で鉛のダストが共存するため、回収されたダスト中の鉛濃度は低くなること、スラグ受け容器入れ置きの場合にはガラスの溶融が不十分であり、鉛自体の揮発が進行せず、鉛回収量が少なくなること、などが理由として考えられる。ダストの集塵方法は、製鋼業等で一般に行われる方法によって行うことができる。
【0019】
一方、スラグ受け容器内のスラグに酸素や酸素富化空気などを吹き込み、スラグ中の鉄分などと酸化反応を起こさせて発熱させスラグを撹拌することにより、ガラスの溶融をより促進することができる。
【0020】
また、ガラスの大きさを変更して試験したところ、好ましくは、50mm以下の大きさにすれば、容易に溶解することを見出した。すなわち、炉内に直接ガラスを投与する場合よりも、本法の場合のほうが形状自由度が大きい。放出されている溶融スラグに添加するのではなく、炉内に直接投入する方法の場合には、ホッパー等から落下させる方式を採用するため、通常20mm前後に整粒する必要があり、ガラスの形状自由度が低い。
【0021】
ガラス投入量の目安としては、混合するスラグに対するガラス投入量を換え実験した。ガラスの溶融状態を確保するには、スラグ重量に対して5質量%以下のガラス添加量にすることが望ましい。ただし、前述のスラグ受け容器内のスラグに酸素や酸素負荷空気などを吹き込む場合には、この制約の範囲以上に添加可能である。
【0022】
本発明の実施の形態として、転炉を改造した冷鉄源溶解炉を例に説明したが、溶融スラグを排出する転炉、電気炉でも可能である。さらに高炉から排出される溶融スラグの場合にも、同様の作用で本発明の目的を達成できる。
【0023】
本法によりガラスが添加されたスラグは、例えば路盤材など、スラグの用途として通常用いられる用途に適用でき、ガラスの再資源化が図られる。
【0025】
参考例
冷鉄源溶解炉の溶解操業を終えた段階で、炉内に約1400℃の溶融鉄約100トンおよび溶融スラグ20トンが存在している。炉内の溶融鉄100トンを取鍋に排出し、その後に炉内の溶融スラグ約10トンを炉下に配置されたスラグ受け容器に放流排出した。この時に、約50mm大以下の大きさに破砕した自動車用ガラスを400kg投入した。ガラスは、冷鉄源溶解炉からスラグ受け容器の間の放流中の溶融スラグに投入し、溶融スラグと共にスラグ受け容器に投入するようにした。また、この時に発生するダストのみを別系統で集塵した。スラグは冷却したのちに断面調査、成分分析等を行った。
【0026】
スラグの破砕断面にはガラス片の溶け残りは見られなかった。
【0027】
炉内スラグおよびガラス溶融後のスラグ主成分組成を表2に示す。
【0028】
【表2】
Figure 0003981542
【0029】
上記以外の成分として、T.Fe、MnO、Na2Oなどの不可避成分が含まれる。炉内スラグの組成では崩壊が一部に発生したが、ガラス添加後のスラグは崩壊は現れなかった。
【0030】
【実施例】
以下、実施例により本発明をより詳細に説明するが、本発明は下記実施例に限定されるものではない。
〔実施例2〕
冷鉄源溶解炉の溶解操業を終えた段階で、炉内に約1400℃の溶融鉄約100トンおよび溶融スラグ20トンが存在していた。炉内の溶融鉄100トンを取鍋に排出し、その後に炉内の溶融スラグ約10トンを炉下に配置されたスラグ受け容器に排出した。この時、スラグ受け容器内で流動している溶融スラグに対し、鉛入りのTVガラスを1000kg投入するとともに、溶融スラグ中に空気を50Nm/hrの流量で吹き込んだ。また、この時に発生するダストのみを別系統で集塵した。スラグは冷却したのちに断面調査、成分分析等を行った。
【0031】
スラグの破砕断面にはガラス片の溶け残りは見られなかった。
【0032】
炉内スラグおよびガラス溶融後のスラグ主成分組成を表3に示す。
【0033】
【表3】
Figure 0003981542
【0034】
上記以外の成分として、T.Fe、MnO、Na2Oなどの不可避成分が含まれる。炉内スラグの組成では崩壊が一部に発生したが、ガラス添加後のスラグは崩壊は現れなかった。また、回収したダスト中には鉛が60%含有されていた。
【0035】
〔比較例1〕
比較のために、冷鉄源溶解炉の炉内に鉛含有のTVガラス(ガラス寸法15〜20mm)を1000kg投入した。
【0036】
炉内の撹拌および熱付与のためにガラスは溶融したものの、スラグの塩基度が低下し、耐火物を保護する目的で付着させるスラグ厚みが低下した。また、回収したダストは炉内で発生する鉄ダストと混合されるため鉛濃度も1%弱と低かった。さらに、溶解炉の生産性も、ガラス添加しない場合を100とする指標で表すと、約97に低下した。
【0037】
〔比較例2〕
また、比較のために、予めスラグ受け容器である滓スラグ受け容器に、自動車のフロントガラスをそのまま400kg入れ置きした場合も試験した。
【0038】
この場合、スラグと接したガラス側の約10mm程度が溶融したのみであり、溶け残りが発生した。
【0039】
以上の実施例2及び比較例1、2を対比した結果を以下の表にまとめる。
【0040】
【表4】
Figure 0003981542
【0041】
【発明の効果】
本発明によれば、ガラスを再資源化処理するための費用も安く、炉の生産性も維持でき、揮発性元素も効率よく回収でき、ガラスの形状制約も少ないために事前処理負荷も軽く、工業的に有益な方法を提供できる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す。
【符号の説明】
1 冷鉄源溶解炉
2 溶融スラグ
3 溶融鉄
4 取鍋
5 スラグ受け容器
6 ガラス片[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recycling glass, and more particularly to a method for effectively converting waste glass, which is industrial waste, into steelmaking slag and improving the characteristics of steelmaking slag.
[0002]
[Prior art]
Glass for automobiles is difficult to recycle as a glass raw material from the viewpoint of tempering vitrification or embedding a heat ray heater, and is currently being landfilled as part of shredder dust.
[0003]
On the other hand, lead-containing glass typified by TV glass is usually discarded as waste because it deteriorates the quality of glass for general use when mixed during recycling.
[0004]
Japanese Patent Application Laid-Open No. 10-330823 discloses a method of introducing such problematic lead-containing glass into molten steelmaking slag, further melting it by adding a heat source, and modifying the steelmaking slag. In this method, lead-containing glass is introduced into molten steelmaking slag existing in an electric furnace to reform the steelmaking slag, and after a certain period of time, the modified steelmaking slag is discharged out of the furnace. It is disclosed that it can be used as a roadbed material in the same manner as ordinary steelmaking slag. Furthermore, it has been confirmed that the modified steelmaking slag is at a problem-free level in the environmental dissolution test.
[0005]
In general, lead is likely to evaporate in a high-temperature field, but in the method described in the above publication, lead-containing glass is melted in a high-temperature field in the furnace, lead is evaporated, and lead is not present in the steelmaking slag. However, it cannot be determined whether the lead is stabilized and present in the steelmaking slag. That is, there is no description of whereabouts of lead, and environmental issues have not been solved from a wide viewpoint.
[0006]
Further, a method of introducing glass into molten steelmaking slag, further melting it by adding a heat source, and modifying the steelmaking slag is described in JP-A-9-100135 or JP-A-9-165614. .
[0007]
In both of the above two references, a heat source is added in the furnace to reform the steelmaking slag, so it is necessary to add energy to the furnace and extend the steelmaking time, which deteriorates the processing cost and the productivity of the furnace. I'm coughing.
[0008]
[Problems to be solved by the invention]
In the conventional method, there is a problem of cost increase and productivity decrease for processing glass. In addition, there is a demand for a lead recovery method on an industrial scale when processing lead-containing glass.
[0009]
In view of the circumstances as described above, the present invention provides a method that can advantageously recycle glass from the viewpoint of economy and a method that can recover lead on an industrial scale without problems even when lead-containing glass is treated. Is an issue.
[0010]
[Means for Solving the Problems]
The gist of the present invention is as follows.
[1] Lead-containing glass is put into the molten slag that is discharged and discharged from the furnace into the slag receiving vessel, and oxygen-enriched air or oxygen is blown into the slag and heated and stirred in the slag receiving vessel. A glass recycling method for adding the glass to the molten slag.
[2] The glass recycling method according to [1] above, wherein the molten slag is a steelmaking converter, a cold iron source melting furnace, or a molten slag present in an electric furnace. .
[ 3 ] The method for recycling glass according to [1] or [2] , wherein dust generated during the charging of the glass is collected.
[ 4 ] The glass recycling method according to any one of [1] to [ 3 ] above, wherein the glass has a size of 50 mm or less.
[ 5 ] The glass recycling method according to any one of [1] to [ 4 ] above, wherein the glass input amount is 5% by mass or less of the molten slag to be mixed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A process flow showing an example of an embodiment of the present invention is shown in FIG.
Molten iron 3 and molten slag 2 exist in a cold iron source melting furnace 1 in which a converter is modified. At the time of melting, oxygen is blown from an oxygen top blowing lance and coal is blown from a bottom blowing nozzle. After melting, a part of the molten iron in the furnace is discharged to the pan 4 and then a part of the molten slag in the furnace is also discharged and discharged into the slag receiving container 5 disposed under the furnace.
[0012]
The inventors used the cold iron source melting furnace shown in FIG. 1 to put the glass 6 into a container that receives the molten slag discharged from the melting furnace. In particular, if the sensible heat and drop energy of the high-temperature molten slag discharged from the melting furnace is used, it is considered that the conditions sufficient to melt the glass can be satisfied, and the glass input conditions are changed and recovered in the slag receiving container. The characteristics of the slag and the melting situation of the glass were investigated. Furthermore, the dust which generate | occur | produces was collect | recovered separately, and the component and quantity were investigated (Case 1). In addition, for comparison, a case where glass was put into a furnace of a cold iron source melting furnace (Case 2) and a case where glass was previously placed in a slag receiving container which was a slag receiving container (Case 3) were also tested. .
[0013]
Table 1 shows the results of comparing the characteristics of the above three types of glass addition methods.
[0014]
[Table 1]
Figure 0003981542
[0015]
In the method of the present invention (hereinafter also referred to as “the present method”), glass is added to the molten slag discharged from the furnace and flowing. As a specific operation, glass may be introduced from the upper space of the slag receiving container during the discharge of the molten slag. The glass may be added to the molten slag flowing down from the furnace to the slag receiving container, or may be added to the molten slag flowing in the slag receiving container.
[0016]
Compared with the case where the slag is placed in the furnace, there are few dimensional constraints on the glass to be introduced, and the glass pretreatment load is small.
[0017]
Further, in this method, since the glass melting treatment can be performed outside the furnace, the productivity of the furnace is not hindered.
[0018]
Furthermore, in this method, when glass containing lead with high volatility is used, high concentration lead can be efficiently recovered by collecting dust generated during processing. This is because lead dust coexists in an environment where iron dust is generated when it is put into the furnace, so the concentration of lead in the collected dust is low. It is considered that the melting is insufficient, the volatilization of lead itself does not proceed, and the amount of recovered lead is reduced. The dust collection method can be performed by a method generally used in the steel industry or the like.
[0019]
On the other hand, melting of glass can be further promoted by blowing oxygen or oxygen-enriched air into the slag in the slag receiving container, causing an oxidation reaction with iron in the slag to generate heat and stirring the slag. .
[0020]
Moreover, when it tested by changing the magnitude | size of glass, Preferably, if it made it the magnitude | size of 50 mm or less, it discovered that it melt | dissolved easily. That is, the degree of freedom in shape is greater in the case of this method than in the case of directly administering glass into the furnace. In the case of a method in which the molten slag is not added to the discharged molten slag but directly into the furnace, a method of dropping from a hopper or the like is adopted, so it is usually necessary to adjust the size to about 20 mm, and the shape of the glass The degree of freedom is low.
[0021]
As an indication of the amount of glass input, an experiment was performed by changing the amount of glass input to the slag to be mixed. In order to ensure the molten state of the glass, it is desirable that the glass addition amount is 5 mass % or less with respect to the slag weight. However, when oxygen, oxygen-loaded air or the like is blown into the slag in the slag receiving container described above, it can be added beyond the range of this restriction.
[0022]
As an embodiment of the present invention, a cold iron source melting furnace with a modified converter has been described as an example, but a converter and an electric furnace that discharge molten slag are also possible. Further, in the case of molten slag discharged from a blast furnace, the object of the present invention can be achieved by the same action.
[0023]
The slag to which glass is added by this method can be applied to applications that are usually used as slag applications, such as roadbed materials, and the glass can be recycled.
[0025]
[ Reference example ]
When the melting operation of the cold iron source melting furnace is completed, about 100 tons of molten iron at about 1400 ° C. and 20 tons of molten slag exist in the furnace. 100 tons of molten iron in the furnace was discharged into a ladle, and then about 10 tons of molten slag in the furnace was discharged and discharged into a slag receiving container placed under the furnace. At this time, 400 kg of automobile glass crushed to a size of about 50 mm or less was introduced. The glass was put into the molten slag being discharged between the cold iron source melting furnace and the slag receiving container, and was put into the slag receiving container together with the molten slag. In addition, only dust generated at this time was collected by another system. After cooling the slag, cross-sectional investigation and component analysis were conducted.
[0026]
No unmelted glass fragments were observed on the slag cross section.
[0027]
Table 2 shows the slag main component composition after melting in the furnace and glass.
[0028]
[Table 2]
Figure 0003981542
[0029]
Components other than the above include inevitable components such as T.Fe, MnO, and Na 2 O. In the composition of the slag in the furnace, collapse occurred in part, but the slag after the addition of glass did not show collapse.
[0030]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to the following Example.
[Example 2]
When the melting operation of the cold iron source melting furnace was completed, about 100 tons of molten iron at about 1400 ° C. and 20 tons of molten slag were present in the furnace. 100 tons of molten iron in the furnace was discharged into a ladle, and then about 10 tons of molten slag in the furnace was discharged into a slag receiving container placed under the furnace. At this time, 1000 kg of lead-containing TV glass was introduced into the molten slag flowing in the slag receiving container, and air was blown into the molten slag at a flow rate of 50 Nm 3 / hr. In addition, only dust generated at this time was collected by another system. After cooling the slag, cross-sectional investigation and component analysis were conducted.
[0031]
No unmelted glass fragments were observed on the slag cross section.
[0032]
Table 3 shows the slag main component composition after melting in the furnace and glass.
[0033]
[Table 3]
Figure 0003981542
[0034]
Components other than the above include inevitable components such as T.Fe, MnO, and Na 2 O. In the composition of the slag in the furnace, collapse occurred in part, but the slag after the addition of glass did not show collapse. The recovered dust contained 60% lead.
[0035]
[Comparative Example 1]
For comparison, 1000 kg of lead-containing TV glass (glass size 15 to 20 mm) was put into the furnace of the cold iron source melting furnace.
[0036]
Although the glass melted due to stirring and heat application in the furnace, the basicity of the slag was lowered, and the thickness of the slag deposited for the purpose of protecting the refractory was lowered. The collected dust was mixed with iron dust generated in the furnace, so the lead concentration was as low as 1%. Further, the productivity of the melting furnace was reduced to about 97 when expressed as an index of 100 when no glass was added.
[0037]
[Comparative Example 2]
For comparison, a test was also conducted in the case where 400 kg of the windshield of an automobile was previously placed in a straw slag receiving container, which is a slag receiving container.
[0038]
In this case, only about 10 mm on the glass side in contact with the slag was melted, and unmelted residue was generated.
[0039]
The results of comparing Example 2 and Comparative Examples 1 and 2 are summarized in the following table.
[0040]
[Table 4]
Figure 0003981542
[0041]
【The invention's effect】
According to the present invention, the cost for recycling the glass is low, the productivity of the furnace can be maintained, the volatile elements can be efficiently recovered, and the preconditioning load is light because there are few glass shape constraints, An industrially useful method can be provided.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cold iron source melting furnace 2 Molten slag 3 Molten iron 4 Ladle 5 Slag receptacle 6 Glass piece

Claims (5)

炉内からスラグ受け容器へ放流排出され流動している溶融スラグに、鉛含有ガラスを投入し、さらに前記スラグ受け容器中で酸素富化空気あるいは酸素をスラグ内に吹き込み加熱攪拌して、前記溶融スラグに前記ガラスを添加するガラスの再資源化処理方法。Lead-containing glass is introduced into the molten slag that is discharged and discharged from the furnace into the slag receiving vessel, and oxygen-enriched air or oxygen is blown into the slag in the slag receiving vessel and heated and stirred to melt the molten slag. A glass recycling method for adding the glass to slag. 溶融スラグが製鋼用転炉、または、冷鉄源溶解炉、または電気炉内に存在する溶融スラグであることを特徴とする請求項1に記載のガラスの再資源化処理方法。The method for recycling glass according to claim 1, wherein the molten slag is a molten slag present in a converter for steelmaking, a cold iron source melting furnace, or an electric furnace. ガラス投入中に発生するダストを集塵処理することを特徴とする請求項1または2に記載のガラスの再資源化処理方法。The method for recycling glass according to claim 1 or 2 , wherein dust generated during glass charging is collected. ガラスの大きさが50mm以下であることを特徴とする請求項1から3のいずれか1つに記載のガラスの再資源化処理方法。The glass recycling method according to any one of claims 1 to 3, wherein the glass has a size of 50 mm or less. ガラス投入量が混合する対象の溶融スラグの5質量%以下であることを特徴とする請求項1から4のいずれか1つに記載のガラスの再資源化処理方法。The glass recycling method according to any one of claims 1 to 4, wherein a glass input amount is 5% by mass or less of a molten slag to be mixed.
JP2001334377A 2001-10-31 2001-10-31 Recycling method of glass Expired - Fee Related JP3981542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334377A JP3981542B2 (en) 2001-10-31 2001-10-31 Recycling method of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334377A JP3981542B2 (en) 2001-10-31 2001-10-31 Recycling method of glass

Publications (2)

Publication Number Publication Date
JP2003138309A JP2003138309A (en) 2003-05-14
JP3981542B2 true JP3981542B2 (en) 2007-09-26

Family

ID=19149517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334377A Expired - Fee Related JP3981542B2 (en) 2001-10-31 2001-10-31 Recycling method of glass

Country Status (1)

Country Link
JP (1) JP3981542B2 (en)

Also Published As

Publication number Publication date
JP2003138309A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
US6438154B2 (en) Method and apparatus for recovering metal values from liquid slag an baghouse dust of an electric arc furnace
US20080156144A1 (en) Method for reducing to metallic chromium the chromium oxide in slag from stainless steel processing
CA2148923A1 (en) The method of manufacturing alloy by using aluminum residuum
CN105063266B (en) A kind of converter steel making method
RU2372407C2 (en) Receiving of iron and steel
JP2001073021A (en) Flux for refining metal and production thereof
JP3981542B2 (en) Recycling method of glass
CA2244600C (en) Production of titanium slag
CN101545042A (en) Method for producing microalloy ferro-silicon by using a ferrous metasilicate electric stove integral deoxidation and reduction
KR100226897B1 (en) Agglomerate method of pre-reduction fine ore for molten pig iron
JP3317137B2 (en) Recovery device for zinc oxide from steelmaking dust
JP5058768B2 (en) Utilization of iron source recovered from steelmaking slag
JPH09316512A (en) Method for melting steel using iron oxide briquette as auxiliary raw material
JP2007009240A (en) Method for reusing converter dust
CN101545044B (en) Method for producing ferro-silicon by using a ferrous metasilicate electric stove integral deoxidation and reduction
KR102633903B1 (en) Method for recovering iron and valuable metal from electric arc furnace dust
JPH1025507A (en) Method for refining stainless steel
KR20060072793A (en) Method for manufacturing something replacing steel scraps using slag of steel-making process
JPH10265827A (en) Regenerating/utilizing method of refined slag in chromium-containing steel and regenerating/utilizing method of metallic component contained in the slag
JPH11131127A (en) Refining method with electric furnace slag
US20030164062A1 (en) Method relating to manufacturing of steel
JPH10273347A (en) Reduction of pb in slag
Passant et al. UK fine particulate emissions from industrial processes
Schneeberger et al. Characterization and Reduction of FIlter Dusts in the liquid Phase
JP3709043B2 (en) Reduction method of steelmaking dust

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R151 Written notification of patent or utility model registration

Ref document number: 3981542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees