JP3980496B2 - Production method and use of (meth) acrylic acid water-soluble polymer - Google Patents

Production method and use of (meth) acrylic acid water-soluble polymer Download PDF

Info

Publication number
JP3980496B2
JP3980496B2 JP2003045167A JP2003045167A JP3980496B2 JP 3980496 B2 JP3980496 B2 JP 3980496B2 JP 2003045167 A JP2003045167 A JP 2003045167A JP 2003045167 A JP2003045167 A JP 2003045167A JP 3980496 B2 JP3980496 B2 JP 3980496B2
Authority
JP
Japan
Prior art keywords
meth
acrylic acid
acid
water
soluble polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003045167A
Other languages
Japanese (ja)
Other versions
JP2003277409A (en
Inventor
尚武 塩路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2003045167A priority Critical patent/JP3980496B2/en
Publication of JP2003277409A publication Critical patent/JP2003277409A/en
Application granted granted Critical
Publication of JP3980496B2 publication Critical patent/JP3980496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、(メタ)アクリル酸系水溶性重合体の製造方法並びに該製造方法で得られた(メタ)アクリル酸系水溶性重合体の用途に関する。
【0002】
【従来の技術】
(メタ)アクリル酸系水溶性重合体の製造方法としては従来より多数提案されている。次亜リン酸(塩)存在下での(メタ)アクリル酸系水溶性重合体の製造方法についても多数提案されている。例えばUS2,789,099号(特許文献1)、特開昭50−15881号(特許文献2)、特開昭55−127413号(特許文献3)に製法が開示されている。また、次亜リン酸(塩)存在下で得られた(メタ)アクリル酸系水溶性重合体の用途についても多数提案されている。
【0003】
例えば、特開昭51−76184号(特許文献4)、特開昭55−11092号(特許文献5)、特開昭55−14900号(特許文献6)、特開昭59−193909号(特許文献7)、特開昭60−174793号(特許文献8)、特開昭61−220794号(特許文献9)、特開昭61−293599号(特許文献10)、特開昭62−207888号(特許文献11)、特開昭62−214186号(特許文献12)等にスケール防止剤又は腐蝕抑制剤としての用途が開示されている。しかし、上記した従来の製法では次亜リン酸(塩)および/またはその変性物が製品中に多量残留するため、低純度の水溶性重合体しか得られなかった。
【0004】
また、重合触媒として銅を併用する製法は、銅が最終製品中に残留するため、毒性面から不安の残るものであった。
【0005】
また、これら従来の製法は、次亜リン酸(塩)の効率が悪く、高価な次亜リン酸(塩)を多量用いる必要があるため、低コスト水溶性重合体の製造には限界があった。
【0006】
更には、従来の製法は比較的低濃度で重合を行うため、高濃度の水溶性重合体溶液を得るためには、溶媒を蒸発させる必要があるため、低コスト水溶性重合体は得られなかった。また、これら従来の製法で得られた水溶性重合体のスケール防止能及び腐蝕抑制能も充分でなく、改良が望まれていた。
【0007】
【特許文献1】
米国特許第2,789,099号明細書
【0008】
【特許文献2】
特開昭50−15881号公報
【0009】
【特許文献3】
特開昭55−127413号公報
【0010】
【特許文献4】
特開昭51−76184号公報
【0011】
【特許文献5】
特開昭55−11092号公報
【0012】
【特許文献6】
特開昭55−14900号公報
【0013】
【特許文献7】
特開昭59−193909号公報
【0014】
【特許文献8】
特開昭60−174793号公報
【0015】
【特許文献9】
特開昭61−220794号公報
【0016】
【特許文献10】
特開昭61−293599号公報
【0017】
【特許文献11】
特開昭62−207888号公報
【0018】
【特許文献12】
特開昭62−214186号公報
【0019】
【発明が解決しようとする課題】
本発明は、次亜リン酸(塩)存在下で(メタ)アクリル酸系水溶性重合体を得るに際し、従来の製法が有していた上記問題点を解消するものである。更には次亜リン酸(塩)存在下で得られた従来の(メタ)アクリル酸系水溶重合体の性能不充分を解消するものである。
【0020】
【課題を解決するための手段】
本発明の((メタ)アクリル酸系水溶性重合体の製造方法は、上記の課題を解決するために、(メタ)アクリル酸系水溶性単量体を水溶液重合して(メタ)アクリル酸系重合体を製造するに際し、重合後の反応液中の重合体の単量体換算濃度が38〜72重量%となるのに必要な(メタ)アクリル酸系水溶性単量体、重合開始剤及び次亜リン酸(塩)を水性媒体中に逐次導入して重合した後、中和することを特徴としている。
【0021】
また、上記中和は、水酸化ナトリウムを用いて行うことが好ましい。
【0022】
また、次亜リン酸(塩)は、(メタ)アクリル酸系水溶性単量体1モル当り0.001〜0.5モル量用いることが好ましい。
【0023】
また、上記重合開始剤は、過硫酸塩であることが好ましく、該重合開始剤の量は、(メタ)アクリル酸系水溶性単量体1モル当り、0.001〜0.1モル量用いることが好ましい。
【0024】
上記の製造方法で得られる(メタ)アクリル酸系水溶性重合体は、無機顔料分散剤として使用することができる。
【0025】
【発明の実施の形態】
本発明は、水性媒体中に、重合後液中の重合体の単量体換算濃度が38〜72重量%となるのに必要な(メタ)アクリル酸系単量体、重合開始剤及び次亜リン酸(塩)を逐次導入して重合することを特徴とする(メタ)アクリル酸系水溶性重合体の製造方法並びに該製造方法により得られた(メタ)アクリル酸系水溶性重合体の無機顔料分散剤、スケール防止剤及び金属の腐蝕抑制剤としての用途に関する。
【0026】
本発明では、(メタ)アクリル酸系単量体、重合開始剤及び次亜リン酸(塩)(以下添加成分と称す。)を水性媒体中に逐次導入する。
【0027】
添加成分のいずれか一つの成分あるいは全ての成分を全量初期仕込みとした場合、本願発明のような(メタ)アクリル酸系水溶性重合体は得られないものである。
【0028】
添加成分はそれぞれ独立にあるいは混合して水性媒体中に導入される。添加成分が固体である場合、固体状のまま導入するもできまた水あるいはアルコール、ケトンなどの有機溶媒に溶解して導入することができる。
【0029】
逐次導入の方法としては添加成分を連続的に導入することもあるいは分割的に導入することもまた可能である。
【0030】
本発明で用いられる(メタ)アクリル酸系単量体とはアクリル酸、メタクリル酸、アクリル酸塩及びメタクリル酸塩を50wt%以上、好ましくは70wt%以上含有する重合性単量体を意味する。(メタ)アクリル酸塩としては、(メタ)アクリル酸のナトリウム、カリウム、リチウムなどのアルカリ金属塩;アンモニア、モノメチルアミン、ジメチルアミン、トリメチルアミン、ジエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアルカリ性物質を用いて中和して得られた無機あるいは有機のアンモニウム塩などを挙げることができる。中でもアクリル酸の使用が特に好ましい。重合開始剤としては特に制限がなく、多種類の触媒が使用できる。例えば、過硫酸ナトリウム、過硫酸カリウムなどの過硫酸塩;過酸化水素、2,2′−アゾビス(2−アミジノプロパン)塩酸塩、4,4′−アゾビス−4−シアノバレリン酸等の水溶性アゾ化合物;過酸化ベンゾイル、過酸化ラウロイル、過酢酸等の有機過酸化物;アゾビスイソブチロニトリル、2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等の油溶性アゾ化合物などが用いられるが、中でも安価で開始剤効率が高い過硫酸塩が特に好ましい。これら重合開始剤は(メタ)アクリル酸系水溶性単量体1モル当り、0.001〜0.1モル量用いるのが好ましい。
【0031】
次亜リン酸(塩)としては、次亜リン酸、次亜リン酸のナトリウム、カリウム、リチウムなどのアルカリ金属塩;アンモニア、モノメチルアミン、ジメチルアミン、トリメチルアミン、ジエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアルカリ性物質を用いて中和して得られた無機あるいは有機のアンモニウム塩などを挙げることができる。中でも安価で工業的に入手しやすい次亜リン酸ナトリウムが特に好ましい。これら次亜リン酸(塩)は(メタ)アクリル酸系水溶性系単量体1モル当り0.01〜0.5モル量用いるのが好ましい。本発明では、水性媒体中に前記添加成分を逐次導入して重合される。水性媒体とは水あるいは水と水に溶解可能な無機又は有機溶媒との混合溶媒を意味する。無機又は有機の溶媒使用は分子量調節に役立つが、最終製品とするためには、これら溶媒を除去する必要があるため、特殊な場合を除いては使用しない方が好ましい。
【0032】
本発明では、重合後液中の重合体の単量体換算濃度が38〜72重量%とすることが必要である。好ましくは40〜60重量%である。38重量%未満の低い単量体換算濃度で反応しても、本願発明のように高純度、低コスト且つ安全性の高い(メタ)アクリル酸系水溶性重合体は得られないものである。
【0033】
又、38重量%未満の低い単量体換算濃度で反応しても、本願発明品のように無機顔料分散剤、スケール防止剤及び金属腐蝕抑制剤として格段に優れた効果を奏する(メタ)アクリル酸系水溶性重合体は得られないものである。72重量%を超える高い単量体換算濃度での製造は、重合系の粘度が著しく高くなり、実質上製造は困難となる。尚、本発明における重合後液中の重合体単量体換算濃度とは実質上重合が完結した時点における液中の重合した(メタ)アクリル酸系水溶性単量体分を重量%で表記したものである。また、発明の効果を損わない範囲で(メタ)アクリル酸系水溶性単量体、重合開始剤及び次亜リン酸(塩)のうち少くとも1つあるいはすべての成分の少量を初期仕込として重合することは勿論可能である。
【0034】
その他の製造条件については特に制限はなく通常の重合条件が適用される。例えば、重合温度は20〜150℃好ましくは70〜110℃とすることができる。また、重合時の系のpHについて0.5〜13.5好ましくは1〜12の範囲とすることができる。また、重合時にL−アスコルビル酸(塩)、(重)亜硫酸(塩)、鉄などの還元剤の存在下に製造することも勿論可能である。
【0035】
本発明では、発明の効果を損わない範囲で(メタ)アクリル酸系水溶性単量体以外の他の単量体を(メタ)アクリル酸系水溶性単量体と共に使用することは勿論可能である。このような単量体としては、例えば(メタ)アクリルアミド、t−ブチル(メタ)アクリルアミドなどのアミド系単量体;(メタ)アクリル酸エステル、スチレン、2−メチルスチレン、酢酸ビニルなどの疎水性単量体;ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸、スルホエチル(メタ)アクリレート、スルホプロピル(メタ)アクリレート、2−ヒドロキシスルホプロピル(メタ)アクリレート、スルホエチルマレイミドあるいはそれ等の1価金属、2価金属、アンモニア、有機アミンによる部分中和物や完全中和物などの不飽和スルホン酸系単量体;3−メチル−3−ブテン−1−オール(イソブレノール)、3−メチル−2−ブテン−1−オール(ブレノール)、2−メチル−3−ブテン−2−オール(イソプレンアルコール)、2−ヒドロキシエチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノイソプレノールエーテル、ポリプロピレングルコールモノイソプレノールエーテル、ポリエチレングリコールモノアリルエーテル、ポリプロピレングリコールモノアリルエーテル、グリセロールモノアリルエーテル、α−ヒドロキシアクリル酸、N−メチロール(メタ)アクリルアミド、グリセロールモノ(メタ)アクリレート、ビニルアルコールなどの水酸基含有不飽和単量体;ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミドなどのカチオン性単量体;(メタ)アクリロニトリルなどのニトリル系単量体;(メタ)アクリルアミドメタンスルホン酸、(メタ)アクリルアミドメタンスルホン酸メチルエステル、2−(メタ)アクリルアミド−2−メチルプロパンホスホン酸などの含リン単量体;イタコン酸、マレイン酸、シトラコン酸、フマール酸などのジカルボン酸系単量体;クロトン酸などを挙げることができる。
【0036】
これら共重合可能な単量体の使用量は全単量体に対して30モル%未満とするのが好ましい。
【0037】
本発明の製法及び該製法で得られた製品が格段に優れた効果を奏するかは明確でないが次のように推察されている。
【0038】
即ち、本発明の製法は、従来の製法より高濃度かつ特定の方法で重合を行うために次亜リン酸(塩)が効率的に作用する結果、少い次亜リン酸(塩)の使用並びに次亜リン酸(塩)および/またはその変性物含量の少く高純度な製品の製造を可能とならしめるものと考えられる。
【0039】
また、本発明の製品は高純度のため、例えばスケール防止剤、金属の腐蝕抑制剤として使用した場合、次亜リン酸(塩)および/またはその変性物に基づく、初期スケール核形成が著しく抑制されるためであろうと推察される。また本発明の(メタ)アクリル酸系水溶性重合体は無機顔料分散剤としても優れた効果を発揮する。このような無機顔料としては、カオリン、クレー、炭酸カルシウム、サチンホワイト、二酸化チタン、水酸化アルミニウムなどの塗工紙用顔料;ベンガラ、水酸化マグネシウム、磁性粉、消石灰、セメント、シリカ、硫酸カルシウムなどの工業材料の分散剤として好適に使用される。
【0040】
【実施例】
以下、実施例により、本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。尚、例中の部および%は重量部及び重量%を示す。
【0041】
参考例1
容量5lのSUS316製セパラブルフラスコにイオン交換水321.9部を仕込み、100℃に昇温し、窒素置換後、80%アクリル酸水溶液587.5部、15%過硫酸ナトリウム水溶液68.7部(0.0066モル/アクリル酸1モル)及び30%次亜リン酸ナトリウム水溶液21.9部(0.0095モル/アクリル酸1モル)を各々、別々の滴下口より2時間かけて滴下した。この間、系の温度は終始系の沸点を維持した。更に同温度で10分間の熟成を行い重合を完結し、重合後の液中のアクリル酸換算の濃度が47%である(メタ)アクリル酸系水溶性重合体(1)を得た。(メタ)アクリル酸系水溶性重合体(1)を48%水酸化ナトリウム水溶液を用いて中和(pH=8)し、該して得た中和物の性能を以下のようにして評価した。
【0042】
無機顔料分散能容量1l(材質SUS304、内径90mm、高さ160mm)のビーカーに分散剤としての上記(メタ)アクリル酸系水溶性重合体(1)の中和物を0.2部及び水を加えて全量を100部とした。ディゾルバー攪拌羽根(50mmφ)にて低速で攪拌下、カオリン(ジークライト工業社製、MC用ジーク)100部を3分間で添加した。次いで、3000rpmで10分間分散した。
【0043】
該して得られたカオリン50%スラリーの粘度をB形粘度計で測定し、その結果を第1表および第2表に示した。
【0044】
スケール防止能容量225mlのガラスびんに水170部を入れ、塩化カルシウム2水塩1.56%水溶液10部及び(メタ)アクリル酸系水溶性重合体(1)の中和物の0.02%水溶液1部(得られる炭酸カルシウム過飽和水溶液に対して1ppm)混合し、さらに重炭酸ナトリウム3%水溶液10部を加えて混合して得られた炭酸カルシウム530ppmの過飽和溶液を密栓して、70℃で3時間加熱処理した。次いで冷却した後、沈殿物を0.2μメングランフィルターで濾過し、濾液をJISK0101に従って分析し、次式に従ってスケール抑制率(%)を算出した。
【0045】
【数1】

Figure 0003980496
【0046】
A:加熱処理前のCaCO3 濃度(=530ppm)
B:無添加試験後の濾液中のCaCO3 濃度(=195ppm)
C:試験後の濾液中のCaCO3 濃度得られた結果を第1表および第2表に示した。
【0047】
金属の腐蝕抑制能容量500ccのSUS316製セパラブルフラスコに第5表に示した性状の合成水(姫路市水4倍濃縮に相当)445mlをとり、そこへ腐蝕抑制剤として(メタ)アクリル酸系水溶性重合体(1)の中和物を合成水に対して固形分換算で60ppm添加し、水酸化ナトリウムを用いてpHを8.5に調整したのち、脱イオン水を加えて全量を450mlとし、試験液を調製した。次いで、得られた試験液中に25mm×40mm×1mmのSS−41製テストピース2枚を吊し、試験液上部に25ml/分の空気を流しながら、40℃で40時間熱処理した。熱処理終了後、テストピース上の腐蝕生成物を除きテストピースの減量を測定した。結果は2枚のテストピースの減量の平均値をMDD(mg/dm2 /day)換算し、第1表および第2表に示した。
【0048】
参考例2
参考例1において、初期仕込のイオン交換水321.9部の代りにイオン交換水558.7部を用いた他は参考例1と同様にしてアクリル酸換算濃度が38%である(メタ)アクリル酸系水溶性重合体(2)を得た。(メタ)アクリル酸系水溶性重合体(2)を参考例1と同様にして中和し、該して得た中和物の性能を参考例1と全く同様にして評価した。得られた結果を第1表および第2表に示した。
【0049】
参考例3
参考例1において、初期仕込のイオン交換水321.9部の代りにイオン交換水84.3部、80%アクリル酸水溶性587.5部の代りに100%アクリル酸470部、30%次亜リン酸ナトリウム水溶液21.9部の代りに30%次亜リン酸水溶液68.2部をそれぞれ用いた他は参考例1と同様にしてアクリル酸換算濃度が68%である(メタ)アクリル酸系水溶性重合体(3)を得た。(メタ)アクリル酸系水溶性重合体(3)を参考例1と同様に中和し、該して得た中和物の性能を参考例1と全く同様にして評価した。得られた結果を第1表および第2表に示した。
【0050】
参考例4
参考例1において80%アクリル酸水溶液587.5部の代りに80%メタクリル酸水溶液587.5部を用いた他は参考例1と同様にしてメタクリル酸換算濃度が47%である(メタ)アクリル酸系水溶性重合体(4)を得た。(メタ)アクリル酸系重合体(4)を参考例1と同様に中和し、該して得た中和物の性能を参考例1と全く同様にして評価した。得られた結果を第1表および第2表に示した。
【0051】
参考例5
参考例1で用いたのと同じ重合容器にイオン交換水35.1部を仕込み、100℃に昇温し、窒素置換後、48%アクリル酸水溶液979.2部、48%水酸化ナトリウム水溶液543.9部、30%過硫酸ナトリウム水溶液34.4部(0.0066モル/アクリル酸ナトリウム1モル)及び30%次亜リン酸ナトリウム水溶液21.9部(0.0095モル/アクリル酸ナトリウム1モル)を2時間かけて滴下した。尚48%アクリル酸水溶液と48%水酸化ナトリウム水溶液の滴下は、滴下口直前で混合しアクリル酸ナトリウム水溶液として重合系に導入した。他は各々、別々の滴下口より重合系に導入した。この間、系の温度は終始沸点を維持した。更に同温度で10分間の熟成を行い重合を完結し、重合後の液中のアクリル酸ナトリウム換算の濃度が38%である(メタ)アクリル酸系水溶性重合体(5)を得た。(メタ)アクリル酸系水溶性重合体(5)の性能を参考例1と全く同様にして評価した。得られた結果を第1表および第2表に示した。
【0052】
参考例6
参考例1において、80%アクリル酸水溶液587.5部、15%過硫酸ナトリウム水溶液68.7部及び30%次亜リン酸ナトリウム水溶液21.9部を5分毎に各々1/24量ずつ分割的に重合系に導して反応した。参考例1と同様の熟成を行い、アクリル酸換算濃度が47%である(メタ)アクリル酸系水溶性重合体(6)を得た。(メタ)アクリル酸系水溶性重合体(6)を参考例1と同様に中和し、該して得た中和物の性能を参考例1と同様に評価した。得られた結果を第1表および第2表に示した。
【0053】
実施例1
参考例1で用いたのと同じ重合容器にイオン交換水285部を仕込み、100℃に昇温し、窒素置換後、80%アクリル酸水溶液587.5部、37%アクリル酸ナトリウム水溶液236.9部、50%3−アリロキシ−2−ヒドロキシプロパンスルホン酸ナトリウム(HAPS)水溶液813部、15%過硫酸ナトリウム水溶液97.6部(0.0066モル/単量体1モル)及び30%次亜リン酸ナトリウム水溶液31.3部(0.0095モル/単量体1モル)を各々、別々の滴下口より2時間かけて滴下した。参考例1と同様の熟成を行い重合後の単量体換算の濃度が47%である(メタ)アクリル酸系水溶性重合体(7)を得た。(メタ)アクリル酸系水溶性重合体(7)を参考例1と同様に中和し、該して得た中和物の性能を参考例1と全く同様にして評価した。得られた結果を第1表および第2表に示した。
【0054】
比較例1
参考例1において、30%次亜リン酸ナトリウム水溶液21.9部を初期仕込とした他は参考例1と同様にしてアクリル酸換算濃度が47%である比較用(メタ)アクリル酸系水溶性重合体(1)を得た。比較用(メタ)アクリル酸系水溶性重合体(1)を参考例1と同様にして中和し、該して得た中和物の性能を参考例1と全く同様にして評価した。得られた結果を第3表および第4表に示した。
【0055】
比較例2
参考例1において、初期仕込のイオン交換水321.9部の代りにイオン交換水1671.9部を用い且つ80%アクリル酸水溶液587.5部、15%過硫酸ナトリウム水溶液68.7部及び30%次亜リン酸ナトリウム21.9部を全量初期仕込とし70℃で反応した他は参考例1と同様にして重合して、アクリル酸換算濃度が20%である比較用(メタ)アクリル酸系水溶性重合体(2)を得た。比較用(メタ)アクリル酸系重合体(2)を参考例1と同様にして中和し、該して得た中和物の性能を参考例1と全く同様にして評価した。得られた結果を第3表および第4表に示した。
【0056】
比較例3
参考例1において、初期仕込のイオン交換水321.9部の代りにイオン交換水664.7部を用いた他は参考例1と同様にしてアクリル酸換算濃度が35%である比較用(メタ)アクリル酸系水溶性重合体(3)を得た。比較用(メタ)アクリル酸系水溶性重合体(3)を参考例1と同様にして中和し、該して得た中和物の性能を参考例1と全く同様にして評価した。得られた結果を第3表および第4表に示した。
【0057】
比較例4
参考例3において、初期仕込のイオン交換水84.3部の代りにイオン交換水19.8部を用いた他は、参考例3と同様にしてアクリル酸換算濃度が75%である比較用(メタ)アクリル酸系水溶性重合体(4)を得た。比較用(メタ)アクリル酸系水溶性重合体(4)を参考例3と同様に中和し、該して得た中和物の性能を参考例3と全く同様にして評価した。得られた結果を第3表および第4表に示した。
【0058】
比較例5
実施例1において、初期仕込のイオン交換水285部の代りにイオン交換水1155.2部を用いた他は実施例1と同様にして単量体換算濃度が33%である比較用(メタ)アクリル酸系水溶性重合体(5)を得た。比較用(メタ)アクリル酸系水溶性重合体(5)を実施例1と同様に中和し、該して得た中和物の性能を実施例1と全く同様にして評価した。得られた結果を第3表および第4表に示した。
【0059】
尚、(メタ)アクリル酸系水溶性重合体(1)〜(7)及び比較用(メタ)アクリル酸系水溶性重合体(1)〜(5)の分子量はいずれも2〜6万の範囲内にあり、ほぼ同等の分子量と見なせるものであった。
【0060】
【表1】
Figure 0003980496
【0061】
【表2】
Figure 0003980496
【0062】
【表3】
Figure 0003980496
【0063】
【表4】
Figure 0003980496
【0064】
【表5】
Figure 0003980496
【0065】
【発明の効果】
本発明にかかる(メタ)アクリル酸系水溶性重合体の製造方法によれば、高純度で低コスト且つ安全性が高い(メタ)アクリル酸系水溶性重合体が工業的に容易に製造可能となる。更には、意外にも、スケール防止剤、腐蝕防止剤などのいわゆる水処理剤並びに無機顔料分散剤として使用した場合、従来品より格段に機能が優れるものである。
【0066】
このように本発明は工業的利用価値が極めて高いものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a (meth) acrylic acid-based water-soluble polymer and uses of the (meth) acrylic acid-based water-soluble polymer obtained by the production method.
[0002]
[Prior art]
Many methods for producing a (meth) acrylic acid-based water-soluble polymer have been proposed. Many methods for producing a (meth) acrylic acid-based water-soluble polymer in the presence of hypophosphorous acid (salt) have also been proposed. For example, US 2,789,099 (Patent Document 1), Japanese Patent Application Laid-Open No. 50-15881 (Patent Document 2), and Japanese Patent Application Laid-Open No. 55-127413 (Patent Document 3) are disclosed. Many proposals have also been made regarding the use of (meth) acrylic acid-based water-soluble polymers obtained in the presence of hypophosphorous acid (salt).
[0003]
For example, JP-A-51-76184 (Patent Document 4), JP-A-55-11092 (Patent Document 5), JP-A-55-14900 (Patent Document 6), JP-A-59-193909 (Patent Document) Document 7), Japanese Patent Application Laid-Open No. 60-174793 (Patent Document 8), Japanese Patent Application Laid-Open No. 61-220794 (Patent Document 9), Japanese Patent Application Laid-Open No. 61-293599 (Patent Document 10), Japanese Patent Application Laid-Open No. 62-207888. (Patent Document 11), Japanese Patent Application Laid-Open No. 62-214186 (Patent Document 12), etc. disclose uses as a scale inhibitor or a corrosion inhibitor. However, in the conventional production method described above, hypophosphorous acid (salt) and / or a modified product thereof remains in the product in a large amount, so that only a low-purity water-soluble polymer can be obtained.
[0004]
In addition, the production method using copper as a polymerization catalyst is uneasy from the viewpoint of toxicity because copper remains in the final product.
[0005]
In addition, these conventional production methods have low efficiency of hypophosphorous acid (salt), and it is necessary to use a large amount of expensive hypophosphorous acid (salt), so there is a limit to the production of low-cost water-soluble polymers. It was.
[0006]
Furthermore, since the conventional production method performs polymerization at a relatively low concentration, it is necessary to evaporate the solvent in order to obtain a high-concentration water-soluble polymer solution, so a low-cost water-soluble polymer cannot be obtained. It was. In addition, the water-soluble polymers obtained by these conventional production methods are not sufficient in scale prevention ability and corrosion inhibition ability, and improvement has been desired.
[0007]
[Patent Document 1]
US Pat. No. 2,789,099 specification
[Patent Document 2]
Japanese Patent Laid-Open No. 50-15881
[Patent Document 3]
JP-A-55-127413 [0010]
[Patent Document 4]
Japanese Patent Laid-Open No. 51-76184
[Patent Document 5]
Japanese Patent Laid-Open No. 55-11092
[Patent Document 6]
Japanese Patent Laid-Open No. 55-14900
[Patent Document 7]
JP 59-193909 A
[Patent Document 8]
JP-A-60-174793 [0015]
[Patent Document 9]
Japanese Patent Laid-Open No. 61-220794
[Patent Document 10]
Japanese Patent Laid-Open No. 61-293599 [0017]
[Patent Document 11]
Japanese Patent Laid-Open No. 62-207888
[Patent Document 12]
Japanese Patent Laid-Open No. 62-214186
[Problems to be solved by the invention]
The present invention solves the above-described problems of conventional production methods when obtaining a (meth) acrylic acid-based water-soluble polymer in the presence of hypophosphorous acid (salt). Furthermore, the insufficient performance of the conventional (meth) acrylic acid-based water-soluble polymer obtained in the presence of hypophosphorous acid (salt) is eliminated.
[0020]
[Means for Solving the Problems]
In order to solve the above problems, the method for producing a ((meth) acrylic acid-based water-soluble polymer of the present invention is a (meth) acrylic acid-based polymer obtained by subjecting a (meth) acrylic acid-based water-soluble monomer to aqueous solution polymerization. In producing the polymer, a (meth) acrylic acid-based water-soluble monomer, a polymerization initiator, and a polymerization initiator, which are necessary for the monomer equivalent concentration of the polymer in the reaction solution after polymerization to be 38 to 72% by weight, It is characterized in that hypophosphorous acid (salt) is successively introduced into an aqueous medium and polymerized and then neutralized.
[0021]
The neutralization is preferably performed using sodium hydroxide.
[0022]
Hypophosphorous acid (salt) is preferably used in an amount of 0.001 to 0.5 mol per mol of (meth) acrylic acid water-soluble monomer.
[0023]
The polymerization initiator is preferably a persulfate, and the polymerization initiator is used in an amount of 0.001 to 0.1 mol per mol of (meth) acrylic acid water-soluble monomer. It is preferable.
[0024]
The (meth) acrylic acid-based water-soluble polymer obtained by the above production method can be used as an inorganic pigment dispersant.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a (meth) acrylic acid-based monomer, a polymerization initiator, and a hypochlorous acid, which are necessary for the monomer equivalent concentration of the polymer in the liquid after polymerization to be 38 to 72% by weight in an aqueous medium. A method for producing a (meth) acrylic acid-based water-soluble polymer, characterized by sequentially introducing phosphoric acid (salt) and polymerizing, and an inorganic (meth) acrylic acid-based water-soluble polymer obtained by the production method The present invention relates to uses as a pigment dispersant, a scale inhibitor, and a metal corrosion inhibitor.
[0026]
In the present invention, a (meth) acrylic acid monomer, a polymerization initiator, and hypophosphorous acid (salt) (hereinafter referred to as an additive component) are sequentially introduced into an aqueous medium.
[0027]
When any one or all of the additive components are initially charged, a (meth) acrylic acid-based water-soluble polymer as in the present invention cannot be obtained.
[0028]
The additive components are introduced into the aqueous medium independently or as a mixture. When the additive component is solid, it can be introduced as it is, or it can be dissolved in water or an organic solvent such as alcohol or ketone.
[0029]
As a sequential introduction method, the additive component can be introduced continuously or dividedly.
[0030]
The (meth) acrylic acid monomer used in the present invention means a polymerizable monomer containing 50 wt% or more, preferably 70 wt% or more of acrylic acid, methacrylic acid, acrylate and methacrylate. (Meth) acrylic acid salts include alkali metal salts such as sodium, potassium and lithium of (meth) acrylic acid; alkaline such as ammonia, monomethylamine, dimethylamine, trimethylamine, diethylamine, monoethanolamine, diethanolamine and triethanolamine Examples thereof include inorganic or organic ammonium salts obtained by neutralization with a substance. Of these, the use of acrylic acid is particularly preferred. There is no restriction | limiting in particular as a polymerization initiator, Many types of catalysts can be used. For example, persulfates such as sodium persulfate and potassium persulfate; water-soluble azo such as hydrogen peroxide, 2,2'-azobis (2-amidinopropane) hydrochloride, 4,4'-azobis-4-cyanovaleric acid Compound: Organic peroxide such as benzoyl peroxide, lauroyl peroxide, peracetic acid; oil-soluble azo such as azobisisobutyronitrile, 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) A compound or the like is used, and among them, a persulfate that is inexpensive and has high initiator efficiency is particularly preferable. These polymerization initiators are preferably used in an amount of 0.001 to 0.1 mol per mol of (meth) acrylic acid water-soluble monomer.
[0031]
Hypophosphorous acid (salt) includes alkali metal salts such as hypophosphorous acid, sodium, potassium and lithium of hypophosphorous acid; ammonia, monomethylamine, dimethylamine, trimethylamine, diethylamine, monoethanolamine, diethanolamine, Examples thereof include inorganic or organic ammonium salts obtained by neutralization with an alkaline substance such as ethanolamine. Of these, sodium hypophosphite, which is inexpensive and easily available industrially, is particularly preferable. These hypophosphorous acids (salts) are preferably used in an amount of 0.01 to 0.5 mol per mol of (meth) acrylic acid water-soluble monomer. In the present invention, polymerization is carried out by sequentially introducing the additive components into an aqueous medium. The aqueous medium means water or a mixed solvent of water and an inorganic or organic solvent that can be dissolved in water. The use of an inorganic or organic solvent is useful for adjusting the molecular weight. However, in order to obtain a final product, it is necessary to remove these solvents, so it is preferable not to use them except in special cases.
[0032]
In the present invention, the monomer equivalent concentration of the polymer in the post-polymerization solution needs to be 38 to 72% by weight. Preferably it is 40 to 60% by weight. Even if the reaction is performed at a low monomer equivalent concentration of less than 38% by weight, a (meth) acrylic acid-based water-soluble polymer with high purity, low cost and high safety cannot be obtained as in the present invention.
[0033]
In addition, even if the reaction is performed at a low monomer equivalent concentration of less than 38% by weight, (meth) acrylic is highly effective as an inorganic pigment dispersant, a scale inhibitor and a metal corrosion inhibitor as in the present invention product. An acid-based water-soluble polymer cannot be obtained. Production at a high monomer equivalent concentration exceeding 72% by weight significantly increases the viscosity of the polymerization system, making production substantially difficult. In addition, the polymer monomer equivalent concentration in the liquid after polymerization in the present invention is expressed by weight% of the polymerized (meth) acrylic acid-based water-soluble monomer content in the liquid when the polymerization is substantially completed. Is. In addition, a small amount of at least one or all of the (meth) acrylic acid-based water-soluble monomer, polymerization initiator and hypophosphorous acid (salt) is used as an initial charge within a range not impairing the effects of the invention. It is of course possible to polymerize.
[0034]
Other production conditions are not particularly limited, and normal polymerization conditions are applied. For example, the polymerization temperature can be 20 to 150 ° C., preferably 70 to 110 ° C. Further, the pH of the system during the polymerization can be in the range of 0.5 to 13.5, preferably 1 to 12. Of course, it can also be produced in the presence of a reducing agent such as L-ascorbic acid (salt), (bi) sulfurous acid (salt), and iron during polymerization.
[0035]
In the present invention, it is of course possible to use a monomer other than the (meth) acrylic acid-based water-soluble monomer together with the (meth) acrylic acid-based water-soluble monomer as long as the effects of the invention are not impaired. It is. Examples of such monomers include amide monomers such as (meth) acrylamide and t-butyl (meth) acrylamide; hydrophobic properties such as (meth) acrylic acid ester, styrene, 2-methylstyrene, and vinyl acetate. Monomer: vinyl sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, 3-allyloxy-2-hydroxypropane sulfonic acid, sulfoethyl (meth) acrylate, sulfone Unsaturated sulfones such as partially or completely neutralized products of propyl (meth) acrylate, 2-hydroxysulfopropyl (meth) acrylate, sulfoethylmaleimide or monovalent metal such as divalent metal, ammonia, organic amine Acid monomer; 3-methyl-3-butene-1-o (Isobrenol), 3-methyl-2-buten-1-ol (brenol), 2-methyl-3-buten-2-ol (isoprene alcohol), 2-hydroxyethyl (meth) acrylate, polyethylene glycol mono (meth) Acrylate, polypropylene glycol mono (meth) acrylate, polyethylene glycol monoisoprenol ether, polypropylene glycol monoisoprenol ether, polyethylene glycol monoallyl ether, polypropylene glycol monoallyl ether, glycerol monoallyl ether, α-hydroxyacrylic acid, N- Hydroxyl-containing unsaturated monomers such as methylol (meth) acrylamide, glycerol mono (meth) acrylate, vinyl alcohol; dimethylaminoethyl (meth) Cationic monomers such as acrylate and dimethylaminopropyl (meth) acrylamide; nitrile monomers such as (meth) acrylonitrile; (meth) acrylamide methanesulfonic acid, (meth) acrylamide methanesulfonic acid methyl ester, 2- ( Examples thereof include phosphorus-containing monomers such as (meth) acrylamide-2-methylpropanephosphonic acid; dicarboxylic acid-based monomers such as itaconic acid, maleic acid, citraconic acid and fumaric acid; crotonic acid and the like.
[0036]
The amount of these copolymerizable monomers used is preferably less than 30 mol% with respect to the total monomers.
[0037]
It is not clear whether the production method of the present invention and the product obtained by the production method have outstanding effects, but it is presumed as follows.
[0038]
That is, in the production method of the present invention, hypophosphorous acid (salt) acts efficiently in order to carry out polymerization in a specific method at a higher concentration than the conventional production method, and as a result, less hypophosphorous acid (salt) is used. In addition, it is considered that it is possible to produce a high-purity product having a low content of hypophosphorous acid (salt) and / or a modified product thereof.
[0039]
In addition, since the product of the present invention has high purity, when used as, for example, a scale inhibitor or a metal corrosion inhibitor, initial scale nucleation based on hypophosphorous acid (salt) and / or a modified product thereof is remarkably suppressed. It is inferred that it will be. The (meth) acrylic acid-based water-soluble polymer of the present invention exhibits an excellent effect as an inorganic pigment dispersant. Examples of such inorganic pigments include pigments for coated paper such as kaolin, clay, calcium carbonate, satin white, titanium dioxide, aluminum hydroxide; bengara, magnesium hydroxide, magnetic powder, slaked lime, cement, silica, calcium sulfate, etc. It is suitably used as a dispersant for industrial materials.
[0040]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples. In addition, the part and% in an example show a weight part and weight%.
[0041]
Reference example 1
A 5L SUS316 separable flask was charged with 321.9 parts of ion-exchanged water, heated to 100 ° C., purged with nitrogen, 587.5 parts of 80% aqueous acrylic acid solution, and 68.7 parts of 15% aqueous sodium persulfate (0.0066 mol / acrylic acid 1 mol) and 21.9 parts of a 30% aqueous sodium hypophosphite solution (0.0095 mol / acrylic acid 1 mol) were respectively added dropwise from separate dropping ports over 2 hours. During this time, the temperature of the system maintained the boiling point of the system throughout. Further, aging was carried out at the same temperature for 10 minutes to complete the polymerization, and a (meth) acrylic acid-based water-soluble polymer (1) having a concentration in terms of acrylic acid in the liquid after polymerization of 47% was obtained. The (meth) acrylic acid water-soluble polymer (1) was neutralized (pH = 8) using a 48% aqueous sodium hydroxide solution, and the performance of the neutralized product thus obtained was evaluated as follows. .
[0042]
Into a beaker having an inorganic pigment dispersibility capacity of 1 l (material SUS304, inner diameter 90 mm, height 160 mm), 0.2 parts of the neutralized product of the (meth) acrylic acid-based water-soluble polymer (1) as a dispersant and water. In addition, the total amount was 100 parts. While stirring at a low speed with a dissolver stirring blade (50 mmφ), 100 parts of kaolin (manufactured by Siegrite Industrial Co., Ltd., Sieg for MC) was added over 3 minutes. Subsequently, it was dispersed at 3000 rpm for 10 minutes.
[0043]
The viscosity of the kaolin 50% slurry thus obtained was measured with a B-type viscometer, and the results are shown in Tables 1 and 2.
[0044]
Into a glass bottle with a scale prevention capacity of 225 ml, 170 parts of water was added, 10 parts of a 1.56% aqueous solution of calcium chloride dihydrate and 0.02% of the neutralized product of the (meth) acrylic acid water-soluble polymer (1) 1 part of an aqueous solution (1 ppm with respect to the resulting calcium carbonate supersaturated aqueous solution) was mixed, and further 10 parts of sodium bicarbonate 3% aqueous solution was added and mixed, and the supersaturated solution of 530 ppm calcium carbonate was sealed and sealed at 70 ° C. Heat-treated for 3 hours. After cooling, the precipitate was filtered through a 0.2 μm membrane filter, and the filtrate was analyzed according to JISK0101, and the scale inhibition rate (%) was calculated according to the following formula.
[0045]
[Expression 1]
Figure 0003980496
[0046]
A: CaCO 3 concentration before heat treatment (= 530 ppm)
B: CaCO 3 concentration in the filtrate after the additive-free test (= 195 ppm)
C: CaCO 3 concentration in the filtrate after the test The results obtained are shown in Tables 1 and 2.
[0047]
Into a SUS316 separable flask with a capacity of 500 cc for corrosion inhibition of metal, 445 ml of synthetic water having the characteristics shown in Table 5 (equivalent to 4 times concentration in Himeji city water) is taken, and (meth) acrylic acid is used as a corrosion inhibitor. A neutralized product of the water-soluble polymer (1) is added to synthetic water in an amount of 60 ppm in terms of solid content, pH is adjusted to 8.5 using sodium hydroxide, and then deionized water is added to make a total volume of 450 ml. A test solution was prepared. Next, two SS-41 test pieces of 25 mm × 40 mm × 1 mm were suspended in the obtained test solution, and heat-treated at 40 ° C. for 40 hours while flowing 25 ml / min of air over the test solution. After the heat treatment, the weight loss of the test piece was measured except for the corrosion products on the test piece. The results are shown in Tables 1 and 2 by converting the average value of weight loss of two test pieces into MDD (mg / dm 2 / day).
[0048]
Reference example 2
In Reference Example 1 , (meth) acrylic having an acrylic acid equivalent concentration of 38% is the same as Reference Example 1 except that 558.7 parts of ion-exchanged water is used instead of 321.9 parts of initially charged ion-exchanged water. An acid-based water-soluble polymer (2) was obtained. The (meth) acrylic acid water-soluble polymer (2) was neutralized in the same manner as in Reference Example 1, and the performance of the neutralized product thus obtained was evaluated in the same manner as in Reference Example 1 . The obtained results are shown in Tables 1 and 2.
[0049]
Reference example 3
In Reference Example 1 , in place of 321.9 parts of initially charged ion exchange water, 84.3 parts of ion exchange water, 470 parts of 100% acrylic acid instead of 587.5 parts of 80% aqueous solution of 80% acrylic acid, 30% hypochlorous acid A (meth) acrylic acid-based solution having an acrylic acid equivalent concentration of 68% in the same manner as in Reference Example 1 , except that 68.2 parts of a 30% aqueous hypophosphorous acid solution was used instead of 21.9 parts of the sodium phosphate aqueous solution, respectively. A water-soluble polymer (3) was obtained. The (meth) acrylic acid water-soluble polymer (3) was neutralized in the same manner as in Reference Example 1, and the performance of the neutralized product thus obtained was evaluated in the same manner as in Reference Example 1 . The obtained results are shown in Tables 1 and 2.
[0050]
Reference example 4
Except for using 80% 587.5 parts of methacrylic acid solution instead of 80% 587.5 parts of aqueous solution of acrylic acid is 47% methacrylic acid concentration in terms in the same manner as in Reference Example 1 Reference Example 1 (meth) acrylic An acid-based water-soluble polymer (4) was obtained. The (meth) acrylic acid polymer (4) was neutralized in the same manner as in Reference Example 1, and the performance of the neutralized product thus obtained was evaluated in the same manner as in Reference Example 1 . The obtained results are shown in Tables 1 and 2.
[0051]
Reference Example 5
In the same polymerization vessel as used in Reference Example 1 , 35.1 parts of ion-exchanged water was charged, the temperature was raised to 100 ° C., and after nitrogen substitution, 979.2 parts of a 48% aqueous acrylic acid solution and a 48% aqueous sodium hydroxide solution 543 were obtained. .9 parts, 34.4 parts of 30% aqueous sodium persulfate solution (0.0066 mol / mol 1 sodium acrylate) and 21.9 parts of 30% aqueous sodium hypophosphite solution (0.0095 mol / mol 1 sodium acrylate) ) Was added dropwise over 2 hours. The 48% acrylic acid aqueous solution and 48% sodium hydroxide aqueous solution were added dropwise immediately before the dropping port and introduced into the polymerization system as a sodium acrylate aqueous solution. Each of the others was introduced into the polymerization system through a separate dropping port. During this time, the temperature of the system maintained the boiling point throughout. Further, aging was carried out at the same temperature for 10 minutes to complete the polymerization, and a (meth) acrylic acid-based water-soluble polymer (5) having a sodium acrylate equivalent concentration of 38% in the liquid after polymerization was obtained. The performance of the (meth) acrylic acid water-soluble polymer (5) was evaluated in the same manner as in Reference Example 1 . The obtained results are shown in Tables 1 and 2.
[0052]
Reference Example 6
In Reference Example 1 , 587.5 parts of 80% aqueous acrylic acid solution, 68.7 parts of 15% aqueous sodium persulfate aqueous solution and 21.9 parts of 30% aqueous sodium hypophosphite aqueous solution were divided into 1/24 parts each every 5 minutes. The reaction was led to the polymerization system. Aging was conducted in the same manner as in Reference Example 1 to obtain a (meth) acrylic acid-based water-soluble polymer (6) having an acrylic acid equivalent concentration of 47%. The (meth) acrylic acid-based water-soluble polymer (6) was neutralized in the same manner as in Reference Example 1, and the performance of the neutralized product thus obtained was evaluated in the same manner as in Reference Example 1 . The obtained results are shown in Tables 1 and 2.
[0053]
Example 1
In the same polymerization vessel as used in Reference Example 1 , 285 parts of ion-exchanged water was charged, the temperature was raised to 100 ° C., and after nitrogen substitution, 587.5 parts of an 80% aqueous acrylic acid solution and an aqueous 23% sodium acrylate solution 236.9. Part, 813 parts of 50% aqueous 3-allyloxy-2-hydroxypropanesulfonate (HAPS) solution, 97.6 parts of 15% aqueous sodium persulfate solution (0.0066 mol / monomer of 1 mol) and 30% hypophosphorous acid 31.3 parts of sodium acid aqueous solution (0.0095 mol / monomer of 1 mol) was added dropwise from a separate dropping port over 2 hours. Aging was carried out in the same manner as in Reference Example 1 to obtain a (meth) acrylic acid-based water-soluble polymer (7) having a monomer equivalent concentration after polymerization of 47%. The (meth) acrylic acid water-soluble polymer (7) was neutralized in the same manner as in Reference Example 1, and the performance of the neutralized product thus obtained was evaluated in the same manner as in Reference Example 1 . The obtained results are shown in Tables 1 and 2.
[0054]
Comparative Example 1
In Reference Example 1 , a comparative (meth) acrylic acid-based water-soluble solution having an acrylic acid equivalent concentration of 47% as in Reference Example 1 except that 21.9 parts of a 30% sodium hypophosphite aqueous solution was initially charged. A polymer (1) was obtained. The comparative (meth) acrylic acid-based water-soluble polymer (1) was neutralized in the same manner as in Reference Example 1, and the performance of the neutralized product thus obtained was evaluated in the same manner as in Reference Example 1 . The obtained results are shown in Tables 3 and 4.
[0055]
Comparative Example 2
In Reference Example 1 , 1671.9 parts of ion-exchanged water was used instead of 321.9 parts of initially charged ion-exchanged water, and 587.5 parts of 80% acrylic acid aqueous solution, 68.7 parts of 15% sodium persulfate aqueous solution, and 30 A comparative (meth) acrylic acid type polymerized in the same manner as in Reference Example 1 except that 21.9 parts of% sodium hypophosphite was initially charged and reacted at 70 ° C., and the acrylic acid equivalent concentration was 20%. A water-soluble polymer (2) was obtained. The comparative (meth) acrylic acid polymer (2) was neutralized in the same manner as in Reference Example 1, and the performance of the neutralized product thus obtained was evaluated in the same manner as in Reference Example 1 . The obtained results are shown in Tables 3 and 4.
[0056]
Comparative Example 3
In Reference Example 1 , a comparative example (methacrylic acid equivalent concentration of 35%) was used in the same manner as in Reference Example 1 except that 664.7 parts of ion-exchanged water was used instead of 321.9 parts of initially charged ion-exchanged water. ) Acrylic acid-based water-soluble polymer (3) was obtained. The comparative (meth) acrylic acid-based water-soluble polymer (3) was neutralized in the same manner as in Reference Example 1, and the performance of the neutralized product thus obtained was evaluated in the same manner as in Reference Example 1 . The obtained results are shown in Tables 3 and 4.
[0057]
Comparative Example 4
In Reference Example 3 , except that 19.8 parts of ion-exchanged water was used instead of 84.3 parts of initially charged ion-exchanged water, the same as in Reference Example 3 , the acrylic acid equivalent concentration was 75% (for comparison) A (meth) acrylic acid-based water-soluble polymer (4) was obtained. The comparative (meth) acrylic acid water-soluble polymer (4) was neutralized in the same manner as in Reference Example 3, and the performance of the neutralized product thus obtained was evaluated in the same manner as in Reference Example 3 . The obtained results are shown in Tables 3 and 4.
[0058]
Comparative Example 5
In Example 1 , except that 1155.2 parts of ion-exchanged water was used in place of 285 parts of initially charged ion-exchanged water, the monomer equivalent concentration was 33% for comparison (meta) as in Example 1. An acrylic acid-based water-soluble polymer (5) was obtained. The comparative (meth) acrylic acid-based water-soluble polymer (5) was neutralized in the same manner as in Example 1, and the performance of the neutralized product thus obtained was evaluated in the same manner as in Example 1 . The obtained results are shown in Tables 3 and 4.
[0059]
The molecular weights of the (meth) acrylic acid-based water-soluble polymers (1) to (7) and the comparative (meth) acrylic acid-based water-soluble polymers (1) to (5) are all in the range of 20,000 to 60,000. The molecular weight was almost the same.
[0060]
[Table 1]
Figure 0003980496
[0061]
[Table 2]
Figure 0003980496
[0062]
[Table 3]
Figure 0003980496
[0063]
[Table 4]
Figure 0003980496
[0064]
[Table 5]
Figure 0003980496
[0065]
【The invention's effect】
According to the method for producing a (meth) acrylic acid-based water-soluble polymer according to the present invention, a (meth) acrylic acid-based water-soluble polymer having high purity, low cost and high safety can be easily produced industrially. Become. Furthermore, surprisingly, when used as so-called water treatment agents such as scale inhibitors and corrosion inhibitors and inorganic pigment dispersants, the functions are far superior to conventional products.
[0066]
Thus, the present invention has extremely high industrial utility value.

Claims (7)

単量体として、少なくとも(メタ)アクリル酸系水溶性単量体を水溶液重合して(メタ)アクリル酸系重合体を製造するに際し、
上記(メタ)アクリル酸系水溶性単量体として、アクリル酸またはメタクリル酸を含有する重合性単量体を用い、
重合後の反応液中の重合体の単量体換算濃度が38〜72重量%となるのに必要な(メタ)アクリル酸系水溶性単量体、および、全単量体に対して30モル%未満(0モル%を除く)である不飽和スルホン酸系単量体、触媒として、銅(塩)を用いずに、重合開始剤及び次亜リン酸(塩)を水性媒体中に逐次導入して重合した後、中和することを特徴とする(メタ)アクリル酸系水溶性重合体の製造方法。
When producing a (meth) acrylic acid polymer by polymerizing an aqueous solution of at least a (meth) acrylic acid water-soluble monomer as a monomer,
As the (meth) acrylic acid-based water-soluble monomer, a polymerizable monomer containing acrylic acid or methacrylic acid is used,
30 moles of the (meth) acrylic acid-based water-soluble monomer and the total monomer required for the monomer equivalent concentration of the polymer in the reaction solution after polymerization to be 38 to 72% by weight % (Excluding 0 mol%) of unsaturated sulfonic acid monomer, catalyst, and polymerization initiator and hypophosphorous acid (salt) are sequentially introduced into the aqueous medium without using copper (salt) Then, after the polymerization, neutralization is carried out, and a method for producing a (meth) acrylic acid-based water-soluble polymer.
上記重合反応は、L−アスコルビル酸、亜硫酸、または鉄の存在下で行うことを特徴とする請求項1に記載の(メタ)アクリル酸系水溶性重合体の製造方法。  The method for producing a (meth) acrylic acid-based water-soluble polymer according to claim 1, wherein the polymerization reaction is performed in the presence of L-ascorbic acid, sulfurous acid, or iron. 上記逐次導入の方法は、(メタ)アクリル酸系水溶性単量体、重合開始剤及び次亜リン酸(塩)を水性媒体中に連続的に導入する方法か、または分割的に導入する方法であることを特徴とする請求項1または2に記載の(メタ)アクリル酸系水溶性重合体の製造方法。  The sequential introduction method is a method of continuously introducing a (meth) acrylic acid-based water-soluble monomer, a polymerization initiator and hypophosphorous acid (salt) into an aqueous medium, or a method of introducing them in a divided manner. The method for producing a (meth) acrylic acid-based water-soluble polymer according to claim 1 or 2, wherein: 上記中和は、水酸化ナトリウムを用いてpH8になるように行うことを特徴とする請求項1〜3の何れか1項に記載の(メタ)アクリル酸系水溶性重合体の製造方法。  The said neutralization is performed so that it may become pH 8 using sodium hydroxide, The manufacturing method of the (meth) acrylic-acid type water-soluble polymer of any one of Claims 1-3 characterized by the above-mentioned. 次亜リン酸(塩)は、(メタ)アクリル酸系水溶性単量体1モル当り0.001〜0.5モル量用いることを特徴とする請求項1〜4の何れか1項に記載の(メタ)アクリル酸系水溶性重合体の製造方法。  5. The hypophosphorous acid (salt) is used in an amount of 0.001 to 0.5 mol per mol of (meth) acrylic acid-based water-soluble monomer. 5. Of (meth) acrylic acid water-soluble polymer. 上記重合開始剤は、過硫酸塩であることを特徴とする請求項1〜5の何れか1項に記載の(メタ)アクリル酸系水溶性重合体の製造方法。  The method for producing a (meth) acrylic acid-based water-soluble polymer according to any one of claims 1 to 5, wherein the polymerization initiator is a persulfate. 上記重合開始剤の量は、(メタ)アクリル酸系水溶性単量体1モル当り、0.001〜0.1モル量用いることを特徴とする請求項1〜6の何れか1項に記載の(メタ)アクリル酸系水溶性重合体の製造方法。  The amount of the polymerization initiator is used in an amount of 0.001 to 0.1 mole per mole of (meth) acrylic acid-based water-soluble monomer. Of (meth) acrylic acid water-soluble polymer.
JP2003045167A 2003-02-21 2003-02-21 Production method and use of (meth) acrylic acid water-soluble polymer Expired - Lifetime JP3980496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045167A JP3980496B2 (en) 2003-02-21 2003-02-21 Production method and use of (meth) acrylic acid water-soluble polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045167A JP3980496B2 (en) 2003-02-21 2003-02-21 Production method and use of (meth) acrylic acid water-soluble polymer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5051873A Division JPH06263803A (en) 1993-03-12 1993-03-12 Production and use of water-soluble (meth)acrylic acid polymer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006291571A Division JP4091092B2 (en) 2006-10-26 2006-10-26 Metal corrosion inhibitor

Publications (2)

Publication Number Publication Date
JP2003277409A JP2003277409A (en) 2003-10-02
JP3980496B2 true JP3980496B2 (en) 2007-09-26

Family

ID=29244448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045167A Expired - Lifetime JP3980496B2 (en) 2003-02-21 2003-02-21 Production method and use of (meth) acrylic acid water-soluble polymer

Country Status (1)

Country Link
JP (1) JP3980496B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756983B2 (en) * 2005-09-30 2011-08-24 株式会社日本触媒 (Meth) acrylic acid copolymer, production method thereof and use thereof
EP2583984B1 (en) * 2010-06-18 2019-03-20 Nippon Shokubai Co., Ltd. Aqueous poly(meth)acrylic acid-based polymer solution
WO2012086716A1 (en) 2010-12-21 2012-06-28 株式会社日本触媒 Aqueous poly(meth)acrylic acid (salt) solution and process for preparing same
JP6053685B2 (en) * 2011-08-31 2016-12-27 株式会社日本触媒 Poly (meth) acrylic acid polymer composition
JP6623613B2 (en) * 2015-08-18 2019-12-25 東亞合成株式会社 Water-soluble polymer composition, production method thereof, and use thereof

Also Published As

Publication number Publication date
JP2003277409A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
JP4091092B2 (en) Metal corrosion inhibitor
JP5178008B2 (en) Amino group-containing water-soluble copolymer
AU676841B2 (en) Easy to disperse polycarboxylic acid thickeners
JP3399874B2 (en) Detergent builder, method for producing the same, poly (meth) acrylic acid (salt) polymer and use
JP6275131B2 (en) Carboxyl group-containing polymer and composition thereof
JPS6256890B2 (en)
EP0969024A2 (en) Detergent builder, production process therefor, and poly(meth)acrylic acid (or salt) polymer and use thereof
JPH07100492A (en) Preventing deposition of sticking layer in water containing system
JP3650724B2 (en) (Meth) acrylic acid copolymer and method for producing the same
JP3980496B2 (en) Production method and use of (meth) acrylic acid water-soluble polymer
CA2836718A1 (en) (meth) acrylic acid-based copolymer
JP2011072851A (en) Scale inhibitor containing amino group-containing copolymer
JPH06263803A (en) Production and use of water-soluble (meth)acrylic acid polymer
JP3819766B2 (en) Paper sludge dewatering method
JP7125203B2 (en) Method for producing carboxyl group-containing copolymer
JPS6121486B2 (en)
JPH0360798A (en) Scale inhibitor for magnesium hydroxide
JP6756842B2 (en) Sulfuric acid (salt) ester group-containing copolymer and its production method
JP6881918B2 (en) Method for Producing Polycarboxylic Acid Copolymer
JPS62214186A (en) Corrosion preventive agent for metal
WO2019172365A1 (en) (meth)acrylic acid copolymer-containing composition and method for producing (meth)acrylic acid copolymer
JPS60212410A (en) Preparation of maleate copolymer
JP4068886B2 (en) Acrylic acid (salt) polymer, production method thereof and use thereof
JPH0762263B2 (en) Method for producing metal corrosion inhibitor
JP6888916B2 (en) Polycarboxylic acid-based copolymers and their uses

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061109

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

EXPY Cancellation because of completion of term