JP3978813B2 - Spray type square absorption tower of flue gas desulfurization equipment - Google Patents

Spray type square absorption tower of flue gas desulfurization equipment Download PDF

Info

Publication number
JP3978813B2
JP3978813B2 JP16390097A JP16390097A JP3978813B2 JP 3978813 B2 JP3978813 B2 JP 3978813B2 JP 16390097 A JP16390097 A JP 16390097A JP 16390097 A JP16390097 A JP 16390097A JP 3978813 B2 JP3978813 B2 JP 3978813B2
Authority
JP
Japan
Prior art keywords
exhaust gas
absorption tower
tower
tower body
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16390097A
Other languages
Japanese (ja)
Other versions
JPH119955A (en
Inventor
有夫 松本
博明 島▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP16390097A priority Critical patent/JP3978813B2/en
Publication of JPH119955A publication Critical patent/JPH119955A/en
Application granted granted Critical
Publication of JP3978813B2 publication Critical patent/JP3978813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硫黄分を含んだ排ガスにアルカリ吸収剤スラリをスプレして脱硫する吸収塔に係り、特に、その塔本体を箱型すなわち角型に構成した吸収塔に関する。
【0002】
【従来の技術】
石炭等の燃料を燃焼したとき発生する排ガスには、高濃度の硫黄分が含まれているので、これを排煙脱硫装置に導入して脱硫してから大気放出する必要がある。
【0003】
図3A,図3B及び図3Cに、従来の排煙脱硫装置30の一部であって、排ガスを下方から導入して上方に流すと共に、この排ガスにアルカリ性の吸収剤スラリ(炭酸カルシウム等)を上方からスプレして脱硫を行う従来の吸収塔の塔本体21が示されている(図3Aは排煙脱硫装置30の水平断面図,図3Bは排煙脱硫装置30の垂直断面図,図3Cは排煙脱硫装置30の鳥瞰図である)。
【0004】
これらの図から明らかなように、従来の吸収塔の塔本体21は円筒形(丸型)に構成されている。塔本体21の底部には吸収剤スラリが溜まる液溜部29が形成される。塔本体21の下部(但し液溜部29よりも上部)に排ガス導入口24を介して排ガス導入ダクト22が接続され、一方、塔本体21の最上部には排ガス排出口25を介して排ガス排出ダクト23が接続されて、排ガス導入ダクト22を介して塔本体21の下部に導入された排ガスが、塔本体21内をその下方から上方に上昇した後、エリミネータ26及び排ガス排出ダクト23を介して排出されるようになっている。排ガス排出ダクト23は、架構31によって支持されている。
【0005】
排ガス導入ダクト22の上流側には、ボイラ,ガスクーラ,熱回収ガスガスヒータ等の図示されない諸設備が接続され、一方、排ガス排出ダクト23の下流側には、図示されない再加熱ガスガスヒータ,煙突等が接続される。
【0006】
塔本体21内には、その上部(但し排ガス排出口25よりも下部)に排ガスに吸収剤スラリをスプレする吸収剤スプレ手段7が、図3Bに示されるように設置される。吸収剤スプレ手段7及び塔本体21には、塔本体21の液溜部29に溜まった吸収剤スラリを汲み出して吸収剤スプレ手段7に戻す吸収剤スラリ循環手段8が、図示されるように設けられる。又、塔本体21に接続して、塔本体21内に吸収剤スラリを供給する図示されない吸収剤スラリ供給手段が設置される。
【0007】
塔本体21の液溜部29には、液溜部29から液を抜き取ると共に石膏を分離して上澄み液を液溜部29に戻す石膏分離手段11が接続される。
【0008】
尚、図3A及び図3Cから明らかなように、排ガス導入口24の(水平方向の)上縁部及び下縁部の幅は塔本体21の直径より充分小さく設定され、排ガス導入ダクト22を排ガス導入口24を介して塔本体21に接続しても塔本体21の強度が損なわれないように構成される。又、同様に、排ガス排出口25の(水平方向の)上縁部及び下縁部の幅も塔本体21の直径より充分小さく設定され、排ガス排出ダクト23を排ガス排出口25を介して塔本体21に接続しても塔本体21の強度が損なわれないように構成される。
【0009】
ボイラで燃料が燃焼されて排ガスが発生し、排ガスは、ガスクーラその他の排ガス処理設備を通った後、排ガス導入ダクト22を介して排ガス導入口24から塔本体21下部に導入される。
【0010】
塔本体21下部に導入された排ガスは、塔本体21内を上昇すると共に吸収剤スプレ手段7によってアルカリ性の吸収剤スラリをスプレされ、これにより排ガス中の硫黄分(SO2 ,SO3 等)が吸収剤スラリと気液接触して吸収されて、脱硫が行われる。
【0011】
脱硫された排ガスは、排ガス排出口25から排ガス排出ダクト23を介して排出され、煙突等を介して大気放出される。
【0012】
一方、吸収塔21の液溜部29に溜まった吸収液(上記の脱硫反応によって生成した石膏を含む)は、吸収剤スラリ循環手段8によって抜き出され、再び吸収剤スプレ手段7に戻されてスプレされる。又、液溜部29からは、石膏分離手段11によって液が適宜抜き出されると共に石膏が分離・回収されて上澄み液が液溜部29に戻され、以下、上記の過程が繰り返される。又、吸収剤スラリ供給手段によって、吸収剤スラリが塔本体21内に適宜供給される。
【0013】
【発明が解決しようとする課題】
上記のような円筒形(丸型の)吸収塔の場合、排ガス導入ダクト及び排ガス排出ダクトと塔本体との接続部分(すなわち上記の排ガス導入口及び排ガス排出口)の上縁部及び下縁部の幅を塔本体の周壁に沿って広く取ろうとすると、その部分の塔本体断面が円形でなくなり強度が落ちてしまうので、排ガス導入口,排ガス排出口の上縁部及び下縁部の幅を(塔本体の周壁に沿って)広く取ることができない。
【0014】
つまり、丸型の吸収塔の場合、排ガス導入口及び排ガス排出口の横幅を吸収塔の直径に対して一定の割合以上に広くできない。そのため、排ガス導入ダクト及び排ガス排出ダクトの断面積を一定以上に維持しようとすると、排ガス導入口及び排ガス排出口の軸方向の高さがどうしても高くなってしまう。
【0015】
そして、排ガス導入口及び排ガス排出口の高さが大きいとそれだけ吸収塔が高くなり、スラリ循環ポンプの揚程距離が長くなって、ポンプの負担が大きいという問題があった。
【0016】
又、吸収塔が高いと、吸収塔に接続されたダクト等を支える構造物(架構)も高くなり、装置全体の重量及びコストを押し上げるという問題があった。
【0017】
さらに、従来の丸型の吸収塔の場合、ガス到達距離(ガス入口側から反対側の(塔本体)側面までの距離)が均一でなく、ガス到達距離が中央部では長いのに端部に向かうにつれて短くなるため、ガスの偏流が起き易い(図2B参照)という問題があった。
【0018】
又、塔本体の水平断面が円形であるため、塔本体内に均一に吸収剤スラリをスプレするためには、上記の吸収剤スプレ手段(スプレノズル)の配置を、塔径が変わる毎に個別に検討しなければならないという問題があった。
【0019】
そこで、本発明の目的は、従来の円形の構成を改良することにより、塔高が低く、スプレノズルの配置が容易で且つガス偏流の発生を抑制できる排煙脱硫装置のスプレ式角型吸収塔を提供することである。
【0020】
【課題を解決するための手段】
上記目的を達成するために本願発明は、底部に吸収剤スラリを溜める液溜部が形成され、上部に吸収剤スプレ手段が設けられ、排ガス導入ダクトから排ガスを導入して、吸収剤スプレ手段からの吸収剤で脱硫したのち、排ガスを排ガス排出ダクトへ排出する吸収塔において、吸収塔本体を水平断面長方形の箱型に形成し、吸収塔本体のガス導入側の側面にその側面幅と同じ幅の排ガス導入口を上記液溜部の上部に位置して形成すると共に、排ガス導入ダクトを排ガス導入口の幅に合わせるべく水平断面を拡幅して形成し、かつ、上記排ガス導入口に向かって下方に傾斜させて接続し、さらに上記排ガス導入口と対向する吸収塔本体の側面上部に、その側面幅と同じ幅の排ガス排出口を形成すると共に、その幅と同じ幅の排ガス排出ダクトを略水平に接続し、この排ガス排出ダクトにエリミネータを設け、さらに排ガス排出ダクトの上面を下流側に向けて上方に傾斜するように形成してエリミネータの入口側に対して出口側の流路断面が大きくなるようにしたものである。
【0022】
【発明の実施の形態】
以下、本発明の好適実施の形態を添付図面により説明する。
【0023】
図1A,図1B及び図1Cに、排煙脱硫装置20の一部であって、排ガスを下方から導入して上方に流すと共に、この排ガスにアルカリ性の吸収剤スラリ(炭酸カルシウム等)を上方からスプレして脱硫を行う本発明の吸収塔の塔本体1が示されている(尚、図1Aは排煙脱硫装置20の水平断面図,図1Bは排煙脱硫装置20の垂直断面図,図1Cは排煙脱硫装置20の鳥瞰図である)。
【0024】
これらの図から明らかなように、本発明の吸収塔の塔本体1は箱型(角型)に構成されている。塔本体1の底部には、吸収剤スラリが溜まる液溜部9が形成される。塔本体1の下部(但し液溜部9よりも上部)に排ガス導入口4を介して排ガス導入ダクト2が接続され、一方、塔本体1の最上部には排ガス排出口5を介して排ガス排出ダクト3が接続されて、排ガス導入ダクト2を介して塔本体1の下部に導入された排ガスが、塔本体1内をその下方から上方に上昇した後、エリミネータ6及び排ガス排出ダクト3を介して排出されるようになっている。排出ダクト3は、架構10によって支持されている。
【0025】
尚、本実施の形態においては、塔本体1に、その強度を補う適当な補強手段(図示されず)を設けることが望ましい。
【0026】
排ガス導入ダクト2の上流側には、ボイラ,ガスクーラ,熱回収ガスガスヒータ等の図示されない諸設備が接続され、一方、排ガス排出ダクト3の下流側には、図示されない再加熱ガスガスヒータ,煙突等が接続される。
【0027】
又、塔本体1内には、その上部(但し排ガス排出口5よりも下部)に、排ガスに吸収剤スラリをスプレする吸収剤スプレ手段7が、図1Bに示されるように設置される。吸収剤スプレ手段7及び塔本体1には、さらに、塔本体1の液溜部9に溜まった吸収剤スラリを汲み出して吸収剤スプレ手段7に戻す吸収剤スラリ循環手段8が、図示されるように設けられる。塔本体1に接続して、塔本体1内に吸収剤スラリを供給する図示されない吸収剤スラリ供給手段が設置される。
【0028】
塔本体1の液溜部9には、液溜部9から液を抜き取ると共に石膏を分離して上澄み液を液溜部9に戻す石膏分離手段11が接続される。
【0029】
尚、図1A及び図1Cから明らかなように、排ガス導入口4の水平方向に延びる上縁部及び下縁部は、共に塔本体1の平坦な側壁に沿って幅広く構成される。又、排ガス排出口5の水平方向に延びる上縁部及び下縁部も、共に塔本体1の平坦な側壁に沿って幅広く構成される。
【0030】
本発明においては、このように、排ガス導入口4及び排ガス排出口5、すなわち排ガス導入ダクト2及び排ガス排出ダクト3と塔本体1との接続部分において、その水平方向の上縁部及び下縁部を幅広く構成できるので(角型の場合は上述のように塔本体1に補強を施してあるため、このように構成しても強度を損なう恐れが余りないからである)、その分だけ排ガス導入口4,排ガス排出口5の高さを低くできる。
【0031】
つまり、排ガス導入口4及び排ガス排出口5を、横長な(扁平な)形状に構成でき、従って、ダクト高を低くした分だけ塔本体1の高さが従来の塔本体21の高さよりも低くなる(図1B及び図3B参照。尚、塔本体1が従来の塔本体21より低いにもかかわらず、排ガス導入口4から排ガス排出口5に到る煙道距離は両者において同じである)。この結果、本実施の形態における架構10を、従来の装置における架構31(図3B参照)よりも低く構成できる。
【0032】
ボイラで燃料が燃焼されて排ガスが発生し、排ガスは、ガスクーラその他の排ガス処理設備を通った後、排ガス導入ダクト2を介して排ガス導入口4から塔本体1下部に導入される。
【0033】
塔本体1下部に導入された排ガスは、塔本体1内を上昇すると共に吸収剤スプレ手段7によってアルカリ性の吸収剤スラリをスプレされ、これにより排ガス中の硫黄分(SO2 ,SO3 等)が吸収剤スラリと気液接触して吸収されて、脱硫が行われる。
【0034】
脱硫された排ガスは、排ガス排出口5から排ガス排出ダクト3を介して排出され、煙突等を介して大気放出される。
【0035】
一方、吸収塔1の液溜部9に溜まった吸収液(上記の脱硫反応によって生成した石膏を含む)は、吸収剤スラリ循環手段8によって適宜抜き出され、石膏を分離された後、再び吸収剤スプレ手段7に戻されてスプレされる。液溜部9からは、石膏分離手段11によってスラリ液が適宜抜き出されると共に石膏が分離・回収されて上澄み液が液溜部9に戻され、以下、上記の過程が繰り返される。又、吸収剤スラリ供給手段によって、吸収剤スラリが塔本体1内に適宜供給される。
【0036】
本発明の吸収塔の塔本体1においては、その水平断面が長方形であり、従って、排ガスが排ガス導入口4から塔本体1内に導入されたときのガス到達距離(排ガス導入口4側から反対側の(塔本体1の)側面までの距離)が均一になるので、従来の吸収塔21(ガス到達距離が吸収塔21の中央部と端部とで相違する)よりもガスの偏流が減少する(図2A及び図2B参照)。
【0037】
ちなみに、本発明の角型の吸収塔1の排ガス導入口4直上部の水平断面X(図2A参照)におけるガス偏流度は約11%であり、一方、従来の丸型の吸収塔21の排ガス導入口24直上部の水平断面Y(図2Aの水平断面Xに対応する断面,図2B参照)におけるガス偏流度は、約15%である。
【0038】
又、本発明の吸収塔の塔本体1の水平断面が長方形に構成されることにより、塔本体1内に均一に吸収剤スラリをスプレする上で最適な吸収剤スプレ(スプレノズル)手段7の配置を容易に決定でき、また、塔径すなわち塔の大きさが変わっても常に同じ(最適)スプレノズル配置を適用できる(一方、従来の丸型の吸収塔21においては、上述のように、吸収剤スプレ手段7の配置を吸収塔21の塔径が変わる毎に個別に検討しなければならない)。
【0039】
以上、要するに、本発明においては、排ガス導入ダクト及び排出ダクトと角型の塔本体との接続部分すなわち排ガス導入口及び排ガス排出口付近のダクトを扁平に構成でき、よって、吸収塔の高さ全体を顕著に縮小できる。
【0040】
その結果、スラリ循環ポンプの揚程距離が短くなってポンプの負担が減少すると共に、吸収塔に接続されたダクト等を支える構造物(架構)を低く構成でき、装置全体の重量及びコストを節減できる。
【0041】
又、本発明においては塔本体の水平断面が長方形であり、従って排ガスが排ガス導入口から塔本体内に導入されたときのガス到達距離(排ガス導入口側から反対側の塔側面までの距離)が均一になるので、ガス到達距離が塔の中央部と端部とで相違する従来の吸収塔よりガスの偏流が減少し、よって脱硫効率の向上を期待できる。
【0042】
又、塔本体の水平断面が長方形に構成されるため、吸収剤スラリを均一にスプレする上で最適なスプレノズル配置を容易に決定できると共に、塔の大きさが変わっても常に同じ(最適)スプレノズル配置を適用できるので、従来の吸収塔よりもスプレノズル配置を基準化し易い。
【0043】
【発明の効果】
以上、要するに、本発明に係る排煙脱硫装置の吸収塔によれば、以下の優れた効果がもたらされる。
【0044】
(1)排ガス導入口及び排ガス排出口付近のダクトを扁平に構成でき、吸収塔の高さ全体を顕著に縮小できる。この結果、吸収塔に接続されたダクト等を支える構造物(架構)を低く構成でき、装置全体の重量及びコストを節減できる。
【0045】
(2)塔本体の水平断面が長方形であり、従って排ガスが排ガス導入口から塔本体内に導入されたときのガス到達距離(排ガス導入口側から反対側の塔側面までの距離)が均一になるので、ガス到達距離が塔の中央部と端部とで相違する従来の吸収塔よりガスの偏流が減少し、脱硫率が向上する。
【0046】
(3)塔本体の水平断面が長方形に構成されるため、吸収剤スラリを均一にスプレする上で最適なスプレノズル配置を容易に決定できると共に、塔の大きさが変わっても常に同じ(最適)スプレノズル配置を適用できるので、従来の吸収塔よりもスプレノズル配置を基準化し易い。
【図面の簡単な説明】
【図1A】本発明の角型の吸収塔(排煙脱硫装置の一部である)の水平断面図である。
【図1B】図1Aの吸収塔の垂直断面図である。
【図1C】図1Aの吸収塔の鳥瞰図である。
【図2A】本発明の角型の吸収塔におけるガス流れシミュレーションの結果を示す図である。
【図2B】従来の丸型の吸収塔におけるガス流れシミュレーションの結果を示す図である。
【図3A】従来の丸型の吸収塔(排煙脱硫装置の一部である)の水平断面図である。
【図3B】図3Aの吸収塔の垂直断面図である。
【図3C】図3Aの吸収塔の鳥瞰図である。
【符号の説明】
1 吸収塔本体
4 排ガス導入口
5 排ガス排出口
7 吸収剤スプレ手段
9 液溜部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption tower for spraying an alkali absorbent slurry to exhaust gas containing sulfur to desulfurize the gas, and more particularly to an absorption tower having a box body, that is, a square shape.
[0002]
[Prior art]
Since the exhaust gas generated when burning fuel such as coal contains a high concentration of sulfur, it must be introduced into a flue gas desulfurization device and desulfurized before being released into the atmosphere.
[0003]
3A, 3B, and 3C show a part of the conventional flue gas desulfurization apparatus 30. The exhaust gas is introduced from below and flows upward, and an alkaline absorbent slurry (such as calcium carbonate) is supplied to the exhaust gas. A tower body 21 of a conventional absorption tower that performs desulfurization by spraying from above is shown (FIG. 3A is a horizontal sectional view of the flue gas desulfurization device 30, FIG. 3B is a vertical sectional view of the flue gas desulfurization device 30, and FIG. 3C. Is a bird's-eye view of the flue gas desulfurization apparatus 30).
[0004]
As is clear from these figures, the tower body 21 of the conventional absorption tower is formed in a cylindrical shape (round shape). A liquid reservoir 29 is formed at the bottom of the tower body 21 to store the absorbent slurry. An exhaust gas introduction duct 22 is connected to the lower part of the tower main body 21 (but above the liquid reservoir 29) via the exhaust gas inlet 24, while exhaust gas is discharged to the uppermost part of the tower main body 21 via the exhaust gas outlet 25. After the duct 23 is connected and the exhaust gas introduced into the lower portion of the tower main body 21 through the exhaust gas introduction duct 22 rises upward from below in the tower main body 21, the exhaust gas is introduced through the eliminator 26 and the exhaust gas discharge duct 23. It is supposed to be discharged. The exhaust gas discharge duct 23 is supported by a frame 31.
[0005]
Various equipments (not shown) such as a boiler, a gas cooler, and a heat recovery gas gas heater are connected to the upstream side of the exhaust gas introduction duct 22, while a reheating gas gas heater, a chimney, etc. (not shown) are connected to the downstream side of the exhaust gas discharge duct 23. Connected.
[0006]
In the tower main body 21, an absorbent spraying means 7 for spraying an absorbent slurry to the exhaust gas is installed in the upper part (but below the exhaust gas outlet 25) as shown in FIG. 3B. As shown in the figure, the absorbent spray means 7 and the tower body 21 are provided with an absorbent slurry circulating means 8 for pumping the absorbent slurry collected in the liquid reservoir 29 of the tower body 21 and returning it to the absorbent spray means 7. It is done. In addition, an absorbent slurry supply means (not shown) that is connected to the tower body 21 and supplies the absorbent slurry into the tower body 21 is installed.
[0007]
Connected to the liquid reservoir 29 of the tower body 21 is a gypsum separating means 11 for extracting the liquid from the liquid reservoir 29 and separating the gypsum to return the supernatant liquid to the liquid reservoir 29.
[0008]
As apparent from FIGS. 3A and 3C, the width of the upper and lower edges (in the horizontal direction) of the exhaust gas inlet 24 is set to be sufficiently smaller than the diameter of the tower body 21, and the exhaust gas inlet duct 22 is connected to the exhaust gas. Even if it connects with the tower main body 21 via the inlet 24, it is comprised so that the intensity | strength of the tower main body 21 may not be impaired. Similarly, the widths of the upper and lower edges (in the horizontal direction) of the exhaust gas outlet 25 are also set sufficiently smaller than the diameter of the tower body 21, and the exhaust gas exhaust duct 23 is connected to the tower body via the exhaust gas outlet 25. Even if it connects to 21, it is comprised so that the intensity | strength of the tower main body 21 may not be impaired.
[0009]
Fuel is burned in the boiler to generate exhaust gas. The exhaust gas passes through a gas cooler and other exhaust gas treatment facilities, and is then introduced into the lower portion of the tower body 21 from the exhaust gas inlet 24 via the exhaust gas introduction duct 22.
[0010]
The exhaust gas introduced into the lower part of the tower main body 21 rises in the tower main body 21 and is sprayed with an alkaline absorbent slurry by the absorbent spray means 7, whereby sulfur (SO 2 , SO 3, etc.) in the exhaust gas is removed. It is absorbed through gas-liquid contact with the absorbent slurry and desulfurized.
[0011]
The desulfurized exhaust gas is discharged from the exhaust gas discharge port 25 through the exhaust gas discharge duct 23 and is released into the atmosphere through a chimney or the like.
[0012]
On the other hand, the absorption liquid (including gypsum generated by the desulfurization reaction) collected in the liquid reservoir 29 of the absorption tower 21 is extracted by the absorbent slurry circulating means 8 and returned to the absorbent spray means 7 again. It is sprayed. Further, the liquid is appropriately extracted from the liquid reservoir 29 by the gypsum separation means 11, and the gypsum is separated and recovered, and the supernatant liquid is returned to the liquid reservoir 29, and the above process is repeated thereafter. Further, the absorbent slurry is appropriately supplied into the tower body 21 by the absorbent slurry supply means.
[0013]
[Problems to be solved by the invention]
In the case of the cylindrical (round) absorption tower as described above, the upper and lower edge portions of the exhaust gas introduction duct and the connection portion between the exhaust gas discharge duct and the tower body (that is, the exhaust gas introduction port and the exhaust gas discharge port). If the width of the column is to be widened along the peripheral wall of the tower body, the section of the tower body at that portion is not circular and the strength is reduced. Therefore, the width of the upper and lower edges of the exhaust gas inlet and the exhaust gas outlet is reduced. Cannot be taken widely (along the peripheral wall of the tower body).
[0014]
That is, in the case of a round absorption tower, the horizontal width of the exhaust gas inlet and the exhaust gas outlet cannot be made wider than a certain ratio with respect to the diameter of the absorber. Therefore, if the cross-sectional areas of the exhaust gas introduction duct and the exhaust gas exhaust duct are maintained at a certain level or more, the axial heights of the exhaust gas introduction port and the exhaust gas discharge port are inevitably increased.
[0015]
And if the height of the exhaust gas inlet and the exhaust gas outlet is large, the absorption tower becomes high accordingly, and the lift distance of the slurry circulation pump becomes long, and there is a problem that the burden on the pump is large.
[0016]
In addition, if the absorption tower is high, the structure (frame) that supports the ducts connected to the absorption tower is also high, which increases the weight and cost of the entire apparatus.
[0017]
Furthermore, in the case of a conventional round absorption tower, the gas arrival distance (distance from the gas inlet side to the opposite (tower body) side surface) is not uniform, and the gas arrival distance is long in the center, but at the end. Since it becomes shorter as it goes, there is a problem that gas drift tends to occur (see FIG. 2B).
[0018]
Moreover, since the horizontal cross section of the tower body is circular, in order to spray the absorbent slurry uniformly in the tower body, the arrangement of the above-mentioned absorbent spray means (spray nozzle) is individually set every time the tower diameter changes. There was a problem that had to be considered.
[0019]
Accordingly, an object of the present invention is to provide a spray-type square absorption tower of a flue gas desulfurization apparatus that can reduce the occurrence of gas drift by reducing the height of the tower, easily arranging the spray nozzle, and improving the conventional circular configuration. Is to provide.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a liquid reservoir for storing an absorbent slurry at the bottom, an absorbent spray means at the top, introduces exhaust gas from an exhaust gas introduction duct, In an absorption tower that exhausts exhaust gas to an exhaust gas exhaust duct after desulfurization with an absorbent, the absorption tower body is formed into a rectangular box with a horizontal cross section, and the side width of the absorption tower body on the gas introduction side is the same width as the side width The exhaust gas inlet is located at the upper part of the liquid reservoir , and the exhaust gas inlet duct is formed with a horizontal section widened to match the width of the exhaust gas inlet, and downward toward the exhaust gas inlet. substantially tilted by connecting, to the further upper portion of the side surface of the absorption tower body opposed to the exhaust gas inlet, thereby forming an exhaust gas outlet of the same width as a side width, the exhaust gas discharge duct of the same width as the width Earnestly connected, this exhaust gas discharge duct provided eliminator, larger flow cross-section of the outlet side of the inlet side of the eliminator is formed to be inclined upwardly further towards the upper surface of the exhaust gas discharge duct downstream It was made to become .
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
[0023]
FIG. 1A, FIG. 1B, and FIG. 1C show a part of the flue gas desulfurization apparatus 20, which introduces exhaust gas from below and flows it upward, and applies an alkaline absorbent slurry (such as calcium carbonate) to the exhaust gas from above. The tower main body 1 of the absorption tower of the present invention for performing desulfurization by spraying is shown (FIG. 1A is a horizontal sectional view of the flue gas desulfurization device 20, FIG. 1B is a vertical sectional view of the flue gas desulfurization device 20, and FIG. 1C is a bird's-eye view of the flue gas desulfurization apparatus 20).
[0024]
As is clear from these figures, the tower body 1 of the absorption tower of the present invention is configured in a box shape (square shape). A liquid reservoir 9 is formed at the bottom of the tower body 1 to store the absorbent slurry. An exhaust gas introduction duct 2 is connected to the lower part of the tower body 1 (but above the liquid reservoir 9) via an exhaust gas introduction port 4, while exhaust gas is discharged to the uppermost part of the tower body 1 via an exhaust gas discharge port 5. After the duct 3 is connected and the exhaust gas introduced into the lower part of the tower body 1 through the exhaust gas introduction duct 2 rises upward from below in the tower body 1, it passes through the eliminator 6 and the exhaust gas discharge duct 3. It is supposed to be discharged. The discharge duct 3 is supported by the frame 10.
[0025]
In the present embodiment, it is desirable to provide the tower body 1 with an appropriate reinforcing means (not shown) for supplementing its strength.
[0026]
Various equipments (not shown) such as a boiler, a gas cooler, and a heat recovery gas gas heater are connected to the upstream side of the exhaust gas introduction duct 2, while a reheating gas gas heater, a chimney, etc. (not shown) are connected to the downstream side of the exhaust gas exhaust duct 3. Connected.
[0027]
Further, in the tower main body 1, an absorbent spray means 7 for spraying the absorbent slurry to the exhaust gas is installed at the upper part (but below the exhaust gas outlet 5) as shown in FIG. 1B. The absorbent spray means 7 and the tower body 1 are further illustrated with an absorbent slurry circulating means 8 for pumping the absorbent slurry collected in the liquid reservoir 9 of the tower body 1 and returning it to the absorbent spray means 7 as shown in the figure. Is provided. An absorbent slurry supply means (not shown) that is connected to the tower body 1 and supplies the absorbent slurry into the tower body 1 is installed.
[0028]
Connected to the liquid reservoir 9 of the tower body 1 is a gypsum separating means 11 for extracting the liquid from the liquid reservoir 9 and separating the gypsum to return the supernatant liquid to the liquid reservoir 9.
[0029]
As is clear from FIGS. 1A and 1C, the upper edge portion and the lower edge portion of the exhaust gas inlet 4 extending in the horizontal direction are both widely configured along the flat side wall of the tower body 1. Moreover, the upper edge part and lower edge part which extend in the horizontal direction of the exhaust gas discharge port 5 are both widely configured along the flat side wall of the tower body 1.
[0030]
In the present invention, in this way, in the exhaust gas inlet 4 and the exhaust gas outlet 5, that is, in the connection portion between the exhaust gas inlet duct 2 and the exhaust gas exhaust duct 3 and the tower body 1, the upper and lower edges in the horizontal direction. Since the tower body 1 is reinforced as described above in the case of a square type, there is no risk of losing strength even if configured in this way. The height of the port 4 and the exhaust gas discharge port 5 can be lowered.
[0031]
That is, the exhaust gas inlet 4 and the exhaust gas outlet 5 can be configured in a horizontally long (flat) shape. Therefore, the height of the tower main body 1 is lower than the height of the conventional tower main body 21 by the amount of the reduced duct height. (Refer to FIG. 1B and FIG. 3B. Although the tower body 1 is lower than the conventional tower body 21, the flue distance from the exhaust gas inlet 4 to the exhaust gas outlet 5 is the same in both cases). As a result, the frame 10 in the present embodiment can be configured lower than the frame 31 (see FIG. 3B) in the conventional apparatus.
[0032]
Fuel is burned in the boiler to generate exhaust gas. The exhaust gas passes through a gas cooler and other exhaust gas treatment equipment, and is then introduced into the lower portion of the tower body 1 from the exhaust gas inlet 4 via the exhaust gas introduction duct 2.
[0033]
The exhaust gas introduced into the lower part of the tower main body 1 rises in the tower main body 1 and is sprayed with an alkaline absorbent slurry by the absorbent spray means 7, whereby sulfur (SO 2 , SO 3, etc.) in the exhaust gas is removed. It is absorbed through gas-liquid contact with the absorbent slurry and desulfurized.
[0034]
The desulfurized exhaust gas is discharged from the exhaust gas discharge port 5 through the exhaust gas discharge duct 3, and is released into the atmosphere through a chimney or the like.
[0035]
On the other hand, the absorption liquid (including gypsum generated by the above desulfurization reaction) collected in the liquid reservoir 9 of the absorption tower 1 is appropriately extracted by the absorbent slurry circulating means 8 and separated again after the gypsum is separated. It returns to the agent spray means 7 and is sprayed. The slurry liquid is appropriately extracted from the liquid reservoir 9 by the gypsum separating means 11, and the gypsum is separated and recovered, and the supernatant liquid is returned to the liquid reservoir 9, and the above process is repeated. Further, the absorbent slurry is appropriately supplied into the tower body 1 by the absorbent slurry supply means.
[0036]
In the tower main body 1 of the absorption tower of the present invention, the horizontal cross section is rectangular. Therefore, the gas arrival distance when the exhaust gas is introduced into the tower main body 1 from the exhaust gas inlet 4 (opposite from the exhaust gas inlet 4 side). Since the distance to the side surface (to the side of the tower body 1) is uniform, the gas drift is less than that of the conventional absorption tower 21 (the gas arrival distance differs between the central portion and the end portion of the absorption tower 21). (See FIGS. 2A and 2B).
[0037]
Incidentally, the gas drift in the horizontal section X (see FIG. 2A) immediately above the exhaust gas inlet 4 of the square absorption tower 1 of the present invention is about 11%, while the exhaust gas of the conventional round absorption tower 21 is about 11%. The degree of gas drift in the horizontal section Y immediately above the inlet 24 (the section corresponding to the horizontal section X in FIG. 2A, see FIG. 2B) is about 15%.
[0038]
Further, since the horizontal section of the tower body 1 of the absorption tower of the present invention is configured to be rectangular, the arrangement of the optimum absorbent spray (spray nozzle) means 7 for spraying the absorbent slurry uniformly in the tower body 1 The same (optimum) spray nozzle arrangement can always be applied even if the column diameter, that is, the column size is changed (in contrast, in the conventional round absorption tower 21, as described above, the absorbent The arrangement of the spray means 7 must be examined individually each time the tower diameter of the absorption tower 21 changes).
[0039]
In short, in the present invention, in the present invention, the connecting portion between the exhaust gas introduction duct and the exhaust duct and the rectangular tower body, that is, the duct in the vicinity of the exhaust gas introduction port and the exhaust gas discharge port can be configured flat, and thus the entire height of the absorption tower Can be significantly reduced.
[0040]
As a result, the lifting distance of the slurry circulation pump is shortened, the burden on the pump is reduced, and the structure (frame) that supports the duct connected to the absorption tower can be configured low, thereby reducing the weight and cost of the entire apparatus. .
[0041]
Further, in the present invention, the horizontal cross section of the tower body is rectangular, and therefore the gas reach distance when the exhaust gas is introduced into the tower body from the exhaust gas inlet (distance from the exhaust gas inlet side to the opposite side of the tower) As a result, the gas drift is reduced as compared with the conventional absorption tower in which the gas arrival distance is different between the central part and the end part of the tower, so that improvement of the desulfurization efficiency is expected.
[0042]
In addition, since the horizontal section of the tower body is rectangular, it is easy to determine the optimal spray nozzle arrangement for uniformly spraying the absorbent slurry, and always the same (optimum) spray nozzle even if the tower size changes. Since the arrangement can be applied, it is easier to standardize the spray nozzle arrangement than the conventional absorption tower.
[0043]
【The invention's effect】
In summary, the absorption tower of the flue gas desulfurization apparatus according to the present invention brings about the following excellent effects.
[0044]
(1) exhaust gas inlet and be flattened configuration the duct in the vicinity of the exhaust gas outlet can be significantly reduced overall height of the intake Osamuto. As a result, the structure (frame) that supports the ducts and the like connected to the absorption tower can be configured low, and the weight and cost of the entire apparatus can be reduced.
[0045]
(2) The horizontal cross section of the tower body is rectangular, so the gas reach distance (distance from the exhaust gas inlet side to the opposite side of the tower) when exhaust gas is introduced into the tower body from the exhaust gas inlet is uniform. Therefore, the gas drift is reduced and the desulfurization rate is improved as compared with the conventional absorption tower in which the gas reach distance is different between the central part and the end part of the tower.
[0046]
(3) Since the horizontal cross section of the tower body is rectangular, it is easy to determine the optimal spray nozzle arrangement for uniformly spraying the absorbent slurry and is always the same (optimal) even if the tower size changes. Since the spray nozzle arrangement can be applied, it is easier to standardize the spray nozzle arrangement than the conventional absorption tower.
[Brief description of the drawings]
FIG. 1A is a horizontal sectional view of a square absorption tower (which is a part of a flue gas desulfurization apparatus) of the present invention.
1B is a vertical cross-sectional view of the absorption tower of FIG. 1A.
1C is a bird's-eye view of the absorption tower of FIG. 1A.
FIG. 2A is a diagram showing the result of gas flow simulation in the rectangular absorption tower of the present invention.
FIG. 2B is a diagram showing the results of gas flow simulation in a conventional round absorption tower.
FIG. 3A is a horizontal sectional view of a conventional round absorption tower (which is a part of a flue gas desulfurization apparatus).
3B is a vertical cross-sectional view of the absorption tower of FIG. 3A.
3C is a bird's-eye view of the absorption tower of FIG. 3A.
[Explanation of symbols]
1 Absorption tower body 4 Exhaust gas inlet 5 Exhaust gas outlet 7 Absorbent spray means 9 Liquid reservoir

Claims (1)

底部に吸収剤スラリを溜める液溜部が形成され、上部に吸収剤スプレ手段が設けられ、排ガス導入ダクトから排ガスを導入して、吸収剤スプレ手段からの吸収剤で脱硫したのち、排ガスを排ガス排出ダクトへ排出する吸収塔において、吸収塔本体を水平断面長方形の箱型に形成し、吸収塔本体のガス導入側の側面にその側面幅と同じ幅の排ガス導入口を上記液溜部の上部に位置して形成すると共に、排ガス導入ダクトを排ガス導入口の幅に合わせるべく水平断面を拡幅して形成し、かつ、上記排ガス導入口に向かって下方に傾斜させて接続し、さらに上記排ガス導入口と対向する吸収塔本体の側面上部に、その側面幅と同じ幅の排ガス排出口を形成すると共に、その幅と同じ幅の排ガス排出ダクトを略水平に接続し、この排ガス排出ダクトにエリミネータを設け、さらに排ガス排出ダクトの上面を下流側に向けて上方に傾斜するように形成してエリミネータの入口側に対して出口側の流路断面が大きくなるようにしたことを特徴とする排ガスを導入して脱硫する排煙脱硫装置のスプレ式角型吸収塔。A liquid reservoir for storing the absorbent slurry is formed at the bottom, and an absorbent spray means is provided at the top. After exhaust gas is introduced from the exhaust gas introduction duct and desulfurized with the absorbent from the absorbent spray means, the exhaust gas is exhausted. in the absorption tower for discharging to the discharge duct, the absorption tower body is formed into a box-shaped horizontal cross-section rectangular upper part of the liquid reservoir to the exhaust gas inlet port of the same width as the side surface width to the side of the gas inlet side of the absorption tower body and forming situated in the exhaust gas introducing duct is formed by widening the horizontal section to fit the width of the exhaust gas inlet and connected by inclined downwardly toward the exhaust gas inlet, further the exhaust gas inlet the upper side surface of the absorption tower body to mouth facing, to form the exhaust gas outlet of the same width as a side width, connected substantially horizontally exhaust gas discharge duct of the same width as the width, in the exhaust gas discharge duct The Rimineta provided, the exhaust gas which is characterized in that as the flow path cross-section of the outlet side increases further for the formation to the inlet side of the eliminator to be inclined upwardly an upper surface of the exhaust gas discharge duct toward the downstream side Spray type square absorption tower of flue gas desulfurization equipment that introduces and desulfurizes.
JP16390097A 1997-06-20 1997-06-20 Spray type square absorption tower of flue gas desulfurization equipment Expired - Lifetime JP3978813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16390097A JP3978813B2 (en) 1997-06-20 1997-06-20 Spray type square absorption tower of flue gas desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16390097A JP3978813B2 (en) 1997-06-20 1997-06-20 Spray type square absorption tower of flue gas desulfurization equipment

Publications (2)

Publication Number Publication Date
JPH119955A JPH119955A (en) 1999-01-19
JP3978813B2 true JP3978813B2 (en) 2007-09-19

Family

ID=15782964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16390097A Expired - Lifetime JP3978813B2 (en) 1997-06-20 1997-06-20 Spray type square absorption tower of flue gas desulfurization equipment

Country Status (1)

Country Link
JP (1) JP3978813B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198837A (en) * 2012-03-23 2013-10-03 Ihi Corp Flue gas desulfurizer
CN109925846A (en) * 2017-03-28 2019-06-25 三菱日立电力系统株式会社 Ship desulfurizer and ship
CN111655357A (en) * 2018-01-30 2020-09-11 三菱日立电力系统株式会社 Desulfurization system
JP7091280B2 (en) * 2019-04-24 2022-06-27 三菱重工業株式会社 Exhaust gas inlet structure of absorption tower
CN118577110A (en) * 2024-06-11 2024-09-03 北京北科欧远科技有限公司 Low-sulfur large-smoke-amount waste gas energy-saving desulfurizing tower

Also Published As

Publication number Publication date
JPH119955A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
US5512072A (en) Flue gas scrubbing apparatus
EP1034025B1 (en) Gas-liquid contactor with liquid redistribution device
WO2008035703A1 (en) Wet-type exhaust desulfurizing apparatus
JPH119956A (en) Absorption tower of wet flue gas desulfurizer
JP3978813B2 (en) Spray type square absorption tower of flue gas desulfurization equipment
JP2007296447A (en) Two-chamber type wet flue gas desulfurization apparatus
JP2002136835A (en) Two-chamber type wet flue gas desulfurization apparatus
JP2617544B2 (en) Gas-liquid contact method
JP2001327831A (en) Wet type exhaust gas desulfurizer
JP2002253925A (en) Wet type stack gas desulfurization apparatus
KR102027895B1 (en) Voltex type gas-liquid mixing scrubber apparatus using vaccum
JP2002248318A (en) Wet flue gas desulfurizing apparatus
JP2003103139A (en) Wet process flue gas desulfurizer
KR100733075B1 (en) Wet-type flue gas desulfurization apparatus equipped with a gas layered sieve plate
JPH11104449A (en) Spray absorption tower and wet flue gas desulfurization apparatus having the same
JP3667823B2 (en) Exhaust gas treatment method and apparatus
JP3805783B2 (en) Two-chamber wet flue gas desulfurization apparatus and method
JP2002153727A (en) Double chamber type wet flue gas desulfurization device
JPH1133352A (en) Absorption tower for flue gas desulfurization equipment
JP3904771B2 (en) Two-chamber wet flue gas desulfurization system
JP3883745B2 (en) Two-chamber wet flue gas desulfurization apparatus and method
JPH08229341A (en) Gas-liquid contacting method and device thereof
CN206577584U (en) Smoke eliminator with aeration dome
CN206342990U (en) A kind of desulfurizer mist eliminator
JP4094694B2 (en) Jet bubbling reactor for flue gas desulfurization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

EXPY Cancellation because of completion of term