JP3977725B2 - Phantom of the magnetoencephalograph - Google Patents

Phantom of the magnetoencephalograph Download PDF

Info

Publication number
JP3977725B2
JP3977725B2 JP2002322385A JP2002322385A JP3977725B2 JP 3977725 B2 JP3977725 B2 JP 3977725B2 JP 2002322385 A JP2002322385 A JP 2002322385A JP 2002322385 A JP2002322385 A JP 2002322385A JP 3977725 B2 JP3977725 B2 JP 3977725B2
Authority
JP
Japan
Prior art keywords
phantom
current
measuring apparatus
conductive solid
magnetoencephalogram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002322385A
Other languages
Japanese (ja)
Other versions
JP2004154311A (en
Inventor
弦 上原
淳 河合
康博 春田
正法 樋口
善昭 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Yokogawa Electric Corp
Original Assignee
Kanazawa Institute of Technology (KIT)
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT), Yokogawa Electric Corp filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2002322385A priority Critical patent/JP3977725B2/en
Publication of JP2004154311A publication Critical patent/JP2004154311A/en
Application granted granted Critical
Publication of JP3977725B2 publication Critical patent/JP3977725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、脳磁計測装置の評価や実験等に用いられる、導電率が一様な球状導体モデルの中に模擬電流ダイポールを固定配置したファントムに関する。
【0002】
【従来の技術】
【0003】
【非特許文献1】
第7回日本生体磁気学会大会論文集Vol.5,No.1,1992.6p.218〜p.219
「マルチチャネルSQUIDシステムの信号源推定精度」
【非特許文献2】
日本生体磁気学会誌 特別号
Vol.9,No.1,1996 第11回日本生体磁気学会大会論文集p.62〜p.63
「球形ファントムを用いたダイポール推定精度の評価」
【0004】
図2は、脳磁計測の概念を説明する模式図である。大脳皮質の神経細胞1が刺激を受けて電気的に活動すると、細胞内電流2が流れる。3は、この電流2により頭表面4を貫通して発生する磁力線であり、この磁力線3により頭表面4に磁場5が発生する。SQUID(Superconducting Quantum Interference Device)などの高感度な磁束計により頭表面4近傍でこの磁場分布を測定すると、逆に神経細胞1の活動部位を推定することができる。
【0005】
細胞内電流2は、電流の湧き出しと吸い込みのペアーが近接しているような状態であるが、実際にはこの電流2の他に細胞外電流6と呼ばれるものが、細胞内電流2のリターンの電流(分布電流、2次電流)として、大脳全体に広く分布して流れる。図3は、脳内を流れる細胞外電流6の分布を示す模式図である。
【0006】
細胞内電流2は、電流ダイポールに例えられることが多い。無限小の大きさのプラスの電極と無限小の大きさのマイナスの電極が、無限小の距離に配置され、プラスとマイナスの電極間に無限大の大きさの電流が流れるものを電流ダイポールと呼んでいる。即ち、湧き出しと吸い込みのペアーが無現に近い距離で接している状態である。
【0007】
導電率が一様な球状導体の中に電流ダイポールが配置されたものを球体モデルと呼んでいる。物理的には電流の湧き出しと吸い込みだけでは存在できないので、球形導体の中に広く分布したリターンの電流が流れることになる。この状況は細胞内電流と細胞外電流の関係と同様である。
【0008】
脳磁計測装置の計測結果から磁場の源を推定する場合には、この球体モデルを仮定して推定する場合が多い。従って、正確に加工された球体モデル(ファントムと呼ばれる)があれば、磁場源推定の方法が正しいかどうかの確認ができ、あるいは脳磁計測装置そのものが正しい計測をしているかどうかの評価ができる。
【0009】
図4は、従来のファントム構造を示す模式図である。7は脳を模した直径100mm乃至150mmの透明樹脂材で形成された球状容器、8はこの球形容器7内に満たされた生理食塩水である。
【0010】
距離1cm程度を有する一対の電極9a及び9bは、疑似電流ダイポールを形成する湧き出し電極及び吸い込み電極であり、球状容器7内の既知の所定位置に固定配置されている。この電極間に有限の大きさの電流、例えば20μA程度の交流電流が流される。
【0011】
10は、2芯撚線のリード線であり、球状容器7の外部に設けた電源(図示せず)から電極9a及び9b電極に正弦波の交流電流を供給する。撚線とするのは、リード線から出る磁場を最小にするためである。同様の効果を考えて2芯の撚線は平行近接線や同軸ケーブルなどが使われる場合もある。
【0012】
電極9a,9b及びリード線10を、生理食塩水8で満たされた球状容器7内の所定位置に精度よく固定配置するためには、何らかのサポート手段が必要である。通常は、リード線を電極までガイドする柱状の支持部材が球状容器7内に設置されている。
【0013】
【発明が解決しようとする課題】
湧き出し電極9a及び吸い込み電極9bを、体積の大きな支持部材でサポートするとリターンの電流(分布電流、2次電流)の分布を乱してしまうため、細長い支持部材でサポートするしか方法がなく、結果として電極の位置がブラブラして精密な測定ができなくなるという問題点、あるいは、電極の設置の位置精度がでない等の問題点があった。
【0014】
支持部材の強度に制約があると、リード線の種類や重量にも制約が生じ、リード線から出る磁場を最小にするための設計の障害要因となる。
【0015】
更に、従来構造のファントムでは、リターンの電流(分布電流、2次電流)は生理食塩水などの電解質を流れているため、流れた電荷の総量に応じて電気分解が起き、電解質の抵抗が高くなり、結果として電流の分布が変わり、磁場分布が乱れるという問題点があった。
【0016】
図5は、電気分解による磁場分布の乱れを説明する遷移図である。遷移は、時間と共に磁場の分布がどう変わるか示している。電極に流れる電流は正弦波であり、その位相が(-π/4, -π/8, 0, π/8,π/4)になる5つの時刻(t1,t2,t3,t4,t5)を選んで磁場分布を示してある。 上段(A)は従来技術によるファントムの測定結果、下段(B)は理想的な磁場分布である。
【0017】
磁場の極大の中心と極小の中心の位置に注目すると、理想的な場合はこの2つの中心は電極の位置と向きが変わらないので動かないはずであるが、従来技術によるファントムでは、2つの中心はお互いに右回りに回転することが分かる。これは電気分解により、リターンの電流の分布(分布電流、2次電流)が変動するためである
【0018】
本発明の目的の第1は、従来のファントム構造で生じていた、電極位置が安定しない、あるいは電極設置の位置精度がでない等の問題点を解決したファントムの提供にある。
【0019】
本発明の目的の第2は、従来のファントム構造で生じていた、電気分解によりリターンの電流の分布(分布電流、2次電流)が変わってしまうという問題点を解決したファントムの提供にある。
【0020】
【課題を解決するための手段】
このような目的を達成するための本発明の構成は次の通りである。
(1)導電率が一様な球状導体中に模擬電流ダイポールを固定配置した脳磁計測装置のファントムにおいて、
前記模擬電流ダイポールのリターンの電流を伝える部分を導電性の固体で形成したことを特徴とする、脳磁計測装置のファントム。
(2)前記導電性の固体が、カーボンを発泡性樹脂の含ませた部材で形成されてなる、請求項1記載の脳磁計測装置のファントム。
(3)前記導電性の固体が、金属粉をペーストに含ませた部材で形成されてなる、請求項1記載の脳磁計測装置のファントム。
(4)前記導電性の固体が、導電性の微粒子を固めた部材で形成されてなる、請求項1記載の脳磁計測装置のファントム。
(5)前記導電性の固体は、球状の導電性部材を複数に分割して前記模擬電流ダイポールを挟んで形成されてなる、請求項1乃至4のいずれかに記載の脳磁計測装置のファントム。
(6)前記導電性の固体は、前記模擬電流ダイポールを内部の所定位置に設置した中空球状の型材に、流動的な導電性部材を充填して固形化形成されてなる、請求項1乃至4のいずれかに記載の脳磁計測装置のファントム。
(7)前記模擬電流ダイポールへ電流を供給するためのリード線が、2芯の撚り線で形成されてなる、請求項1乃至6のいずれかに記載の脳磁計測装置のファントム。
(8)前記模擬電流ダイポールへ電流を供給するためのリード線が、平行近接線で形成されてなる、請求項1乃至6のいずれかに記載の脳磁計測装置のファントム。
(9)前記模擬電流ダイポールへ電流を供給するためのリード線が、同軸ケーブルで形成されてなる、請求項1乃至6のいずれかに記載の脳磁計測装置のファントム。
(10)前記模擬電流ダイポールへ電流を供給するためのリード線が、プリント基板又はフレキシブルプリント基板で形成されてなる、請求項1乃至6のいずれかに記載の脳磁計測装置のファントム。
【0021】
【発明の実施の形態】
以下本発明実施態様を、図面を用いて説明する。図1は本発明を適用した脳磁計測装置のファントムの一例を示す模式図あり、図4の従来構造で説明した要素と同一要素には同一符号を付して説明を省略する。
【0022】
本発明の特徴は、導電率が一様な球状導体中に模擬電流ダイポールを固定配置したファントムにおいて、従来の生理食塩水の部分に相当する、模擬電流ダイポールのリターンの電流を伝える部分を導電性の固体で形成した点にある。
【0023】
図1により具体的な構成例を説明する。(A)は球状導体中に固定された擬電流ダイポールを構成する湧き出し電極9aと吸い込み電極9bを正面から見た図、(B)はX方向から見た側面図である。
【0024】
11は球状の導電性固体であり、(B)に示されるように、半球形の導電性固11a及び11bよりなり、所定位置に配置された湧き出し電極9aと吸い込みの電極9b及びリード線10を、矢印P,P´で示すようにサンドイッチ状に挟んで接着固定している。
【0025】
12a及び12bは、半球形の導電性固11a及び11bの接着対向面に形成されたガイド溝であり、溝の形状は、湧き出し電極9aと吸い込みの電極9b及びリード線10の形状に合わせて形成されている。
【0026】
湧き出し電極9aと吸い込みの電極9bは、従来のファントムと同様に、距離1cm程度を有し、電極間に有限の大きさの電流、例えば20μA程度の交流電流がリード線10を介して流される。リード線10についても従来のファントムと同様に、2芯の撚線、平行近接線、同軸ケーブル等が使用できる。
【0027】
本発明のファントムに通電すると、湧き出し電極9aから有限の大きさの電流が流れ出し、それは球状の導電性固体11球の中を流れて分布し、吸い込み電極9bに帰ってくる。即ち、電流ダイポールを模した部分と、リターンの電流(分布電流、2次電流)を模した部分の両方を発生することができる。
【0028】
図1の実施例は、電極を2個の導電性固体の半球で鋏み込む構造であるが、模擬電流ダイポールを複数個もつファントムを作る場合には、導電性固体の球を任意の個数のブロックに分けて電極を挟み込んで支持し、組み上がった姿で球になるようにしてもかまわない。
【0029】
導電性固体11の形成には、固形の導電性部材を加工する他、模擬電流ダイポールを内部の所定位置に設置した中空球状の型材に、流動的な導電性部材を充填して固形化して形成するようにしてもよい。
【0030】
導電性固体11としては、カーボンを発泡性の樹脂に含ませたもの、金属粉をペーストに含ませたもの、導電性の微粒子を固めたもの等、導電性を有する部材であればあらゆる部材が利用可能である。
【0031】
本発明の構成によれば、従来のように電極を保持すると共にリード線をガイドする支持部材は本質的にないので、リード線の形状や重さに制約がなく、2芯の撚線のリード線、平行近接線、同軸ケーブル、プリント基板、フレキシブルなプリント基板等任意のものが選択可能であるため、リード線から出る磁場を最小にするための設計が容易となる。
【0032】
本発明の構成によれば、脳を模擬した球状導体は、従来ファントムのような生理食塩水ではなく導電性固体であるために、電気分解によるリターンの電流の分布(分布電流、2次電流)の乱れは本質的に発生することがない。
【0033】
【発明の効果】
以上説明したことから明らかなように、本発明によれば、模擬電流ダイポールを形成する電極は導電性固体内で固定されるので、電極位置が安定しない、あるいは電極設置の位置精度がでない等の従来ファントムの問題点を解決することができる。
【0034】
また、リターンの電流を伝える部分には電解質を用いていないので、リターンの電流の分布(分布電流、2次電流)が変わってしまうという従来ファントムの問題点を解決することができる。
【0035】
【図面の簡単な説明】
【図1】本発明を適用した脳磁計測装置のファントムの構成例を示す模式図である。
【図2】脳磁計測の概念を説明する模式図である。
【図3】脳内を流れる細胞外電流の分布を示す模式図である。
【図4】従来のファントム構造を示す模式図である。
【図5】電気分解による磁場分布の乱れを説明する遷移図である。
【符号の説明】
9a 湧き出し電極
9b 吸い込み電極
10 リード線
11 導電性固体
11a 導電性固体(半球)
11b 導電性固体(半球)
12a ガイド溝
12b ガイド溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phantom in which a simulated current dipole is fixedly arranged in a spherical conductor model with uniform conductivity, which is used for evaluation and experiments of a magnetoencephalograph.
[0002]
[Prior art]
[0003]
[Non-Patent Document 1]
Proceedings of the 7th Annual Meeting of the Biomagnetic Society of Japan Vol.5, No.1,1992.6 p.218-p.219
"Signal source estimation accuracy of multi-channel SQUID system"
[Non-Patent Document 2]
Special issue of Japanese Society for Biomagnetics
Vol.9, No.1,1996 Proceedings of the 11th Annual Meeting of the Biomagnetic Society of Japan p.62-p.63
"Evaluation of dipole estimation accuracy using spherical phantom"
[0004]
FIG. 2 is a schematic diagram for explaining the concept of magnetoencephalogram measurement. When nerve cells 1 in the cerebral cortex are stimulated to be electrically activated, an intracellular current 2 flows. Reference numeral 3 denotes magnetic lines generated through the head surface 4 by the current 2, and a magnetic field 5 is generated on the head surface 4 by the magnetic lines 3. When this magnetic field distribution is measured in the vicinity of the head surface 4 with a high-sensitivity magnetometer such as a SQUID (Superconducting Quantum Interference Device), the active site of the nerve cell 1 can be estimated conversely.
[0005]
Intracellular current 2 is a state in which a pair of current source and sink is close to each other. Actually, in addition to this current 2, what is called extracellular current 6 is the return of intracellular current 2. Current (distributed current, secondary current) flows widely distributed throughout the cerebrum. FIG. 3 is a schematic diagram showing the distribution of extracellular current 6 flowing in the brain.
[0006]
The intracellular current 2 is often compared to a current dipole. An infinitely small positive electrode and an infinitely small negative electrode are arranged at an infinitely small distance, and an infinitely large current flows between the positive and negative electrodes as a current dipole. I'm calling. That is, it is a state in which a pair of spring and suction touches at a distance close to innocence.
[0007]
A device in which a current dipole is arranged in a spherical conductor with uniform conductivity is called a spherical model. Since it cannot physically exist only by current source and sink, a return current widely distributed in the spherical conductor flows. This situation is similar to the relationship between the intracellular current and the extracellular current.
[0008]
When estimating the source of the magnetic field from the measurement result of the magnetoencephalograph, it is often estimated assuming this spherical model. Therefore, if there is an accurately processed sphere model (called phantom), it is possible to check whether the magnetic field source estimation method is correct, or to evaluate whether the magnetoencephalograph itself is measuring correctly. .
[0009]
FIG. 4 is a schematic diagram showing a conventional phantom structure. Reference numeral 7 denotes a spherical container formed of a transparent resin material having a diameter of 100 mm to 150 mm, which imitates the brain, and 8 is a physiological saline filled in the spherical container 7.
[0010]
A pair of electrodes 9 a and 9 b having a distance of about 1 cm are a spring electrode and a suction electrode forming a pseudo current dipole, and are fixedly arranged at a predetermined predetermined position in the spherical container 7. A finite current, for example, an alternating current of about 20 μA flows between the electrodes.
[0011]
Reference numeral 10 denotes a two-core stranded lead wire that supplies a sinusoidal alternating current to the electrodes 9a and 9b from a power source (not shown) provided outside the spherical container 7. The reason for using a stranded wire is to minimize the magnetic field emitted from the lead wire. Considering the same effect, a parallel proximity wire or a coaxial cable may be used as the two-core stranded wire.
[0012]
In order to accurately fix and arrange the electrodes 9a and 9b and the lead wire 10 at predetermined positions in the spherical container 7 filled with the physiological saline 8, some support means is necessary. Usually, a columnar support member that guides the lead wire to the electrode is installed in the spherical container 7.
[0013]
[Problems to be solved by the invention]
If the spring electrode 9a and the suction electrode 9b are supported by a support member having a large volume, the distribution of the return current (distributed current, secondary current) is disturbed. As a result, there is a problem that the position of the electrode is dull and accurate measurement cannot be performed, or the position accuracy of the electrode is not accurate.
[0014]
If the strength of the support member is restricted, the type and weight of the lead wire are also restricted, which becomes an obstacle to design for minimizing the magnetic field emitted from the lead wire.
[0015]
Furthermore, in a phantom having a conventional structure, the return current (distributed current, secondary current) flows through an electrolyte such as physiological saline, so electrolysis occurs according to the total amount of the flowed electric charge, and the resistance of the electrolyte is high. As a result, there is a problem that the current distribution changes and the magnetic field distribution is disturbed.
[0016]
FIG. 5 is a transition diagram for explaining disturbance of the magnetic field distribution due to electrolysis. The transition shows how the magnetic field distribution changes over time. The current flowing through the electrode is a sine wave, and five times (t1, t2, t3, t4, t5) when the phase becomes (−π / 4, −π / 8, 0, π / 8, π / 4) The magnetic field distribution is shown. The upper row (A) shows the phantom measurement results according to the prior art, and the lower row (B) shows the ideal magnetic field distribution.
[0017]
Focusing on the position of the maximum and minimum centers of the magnetic field, in the ideal case, the two centers should not move because the position and orientation of the electrodes do not change. You can see that they rotate clockwise to each other. This is because the return current distribution (distributed current, secondary current) varies due to electrolysis.
A first object of the present invention is to provide a phantom that solves the problems caused by the conventional phantom structure, such as unstable electrode position or inaccurate position of electrode installation.
[0019]
A second object of the present invention is to provide a phantom that solves the problem that the return current distribution (distributed current, secondary current) changes due to electrolysis, which has occurred in the conventional phantom structure.
[0020]
[Means for Solving the Problems]
The configuration of the present invention for achieving such an object is as follows.
(1) In a phantom of a magnetoencephalography device in which a simulated current dipole is fixedly arranged in a spherical conductor with uniform conductivity,
A portion of the simulated current dipole that transmits a return current is formed of a conductive solid.
(2) The phantom of the magnetoencephalogram measuring apparatus according to claim 1, wherein the conductive solid is formed of a member containing carbon in a foamable resin.
(3) The phantom of the magnetoencephalogram measuring apparatus according to claim 1, wherein the conductive solid is formed of a member in which a metal powder is included in a paste.
(4) The phantom of the magnetoencephalogram measuring apparatus according to claim 1, wherein the conductive solid is formed of a member obtained by solidifying conductive fine particles.
(5) The phantom of the magnetoencephalogram measuring apparatus according to any one of claims 1 to 4, wherein the conductive solid is formed by dividing a spherical conductive member into a plurality of pieces and sandwiching the simulated current dipole. .
(6) The conductive solid is formed by solidifying a hollow spherical mold material in which the simulated current dipole is installed at a predetermined position inside by filling a fluid conductive member. The phantom of the magnetoencephalogram measuring apparatus in any one of.
(7) The phantom of the magnetoencephalogram measuring apparatus according to any one of claims 1 to 6, wherein a lead wire for supplying a current to the simulated current dipole is formed of a two-core stranded wire.
(8) The phantom of the magnetoencephalogram measuring apparatus according to any one of claims 1 to 6, wherein a lead wire for supplying a current to the simulated current dipole is formed by a parallel proximity wire.
(9) The phantom of the magnetoencephalogram measuring apparatus according to any one of claims 1 to 6, wherein a lead wire for supplying current to the simulated current dipole is formed of a coaxial cable.
(10) The phantom of the magnetoencephalogram measuring apparatus according to any one of claims 1 to 6, wherein a lead wire for supplying a current to the simulated current dipole is formed of a printed board or a flexible printed board.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an example of a phantom of a magnetoencephalography measuring apparatus to which the present invention is applied. The same elements as those described in the conventional structure of FIG.
[0022]
The feature of the present invention is that, in a phantom in which a simulated current dipole is fixedly arranged in a spherical conductor having a uniform conductivity , a portion that transmits a return current of the simulated current dipole , which corresponds to a conventional physiological saline portion, is made conductive. It is in the point formed with a solid.
[0023]
A specific configuration example will be described with reference to FIG. (A) is the figure which looked at the spring electrode 9a and the suction electrode 9b which comprise the pseudo-current dipole fixed in the spherical conductor from the front, (B) is the side view seen from the X direction.
[0024]
Reference numeral 11 denotes a spherical conductive solid, which is made of hemispherical conductive solids 11a and 11b as shown in (B), and includes a spring electrode 9a, a suction electrode 9b, and a lead wire 10 arranged at predetermined positions. Is sandwiched and fixed as shown by arrows P and P ′.
[0025]
Reference numerals 12a and 12b are guide grooves formed on the adhesively facing surfaces of the hemispherical conductive solids 11a and 11b, and the shape of the grooves matches the shape of the source electrode 9a, the suction electrode 9b, and the lead wire 10. Is formed.
[0026]
The spring electrode 9a and the suction electrode 9b have a distance of about 1 cm, as in the conventional phantom, and a finite current, for example, an AC current of about 20 μA flows between the electrodes via the lead wire 10. . As for the lead wire 10, similarly to the conventional phantom, a two-core stranded wire, a parallel proximity wire, a coaxial cable, or the like can be used.
[0027]
When the phantom of the present invention is energized, a finite current flows out from the spring electrode 9a, which flows and distributes in the spherical conductive solid 11 sphere, and returns to the suction electrode 9b. That is, both a portion simulating a current dipole and a portion simulating a return current (distributed current, secondary current) can be generated.
[0028]
The embodiment of FIG. 1 has a structure in which an electrode is sandwiched between two conductive solid hemispheres. However, when making a phantom having a plurality of simulated current dipoles, an arbitrary number of blocks of conductive solid can be formed. It is also possible to divide the electrodes into pieces and support them so that they form a sphere in an assembled form.
[0029]
The conductive solid 11 is formed by processing a solid conductive member, filling a hollow spherical mold material with a simulated current dipole at a predetermined position inside, and solidifying by filling the fluid conductive member. You may make it do.
[0030]
The conductive solid 11 may be any member as long as it has conductivity, such as carbon containing foamable resin, metal powder contained in paste, or conductive fine particles solidified. Is available.
[0031]
According to the configuration of the present invention, there is essentially no support member that holds the electrode and guides the lead wire as in the prior art, so there is no restriction on the shape and weight of the lead wire, and the lead of the two-core stranded wire Since any wire, parallel proximity wire, coaxial cable, printed circuit board, flexible printed circuit board or the like can be selected, the design for minimizing the magnetic field emitted from the lead wire becomes easy.
[0032]
According to the configuration of the present invention, since the spherical conductor simulating the brain is not a physiological saline like a phantom but a conductive solid, distribution of return current by electrolysis (distributed current, secondary current) There is essentially no disturbance.
[0033]
【The invention's effect】
As is apparent from the above description, according to the present invention, since the electrode forming the simulated current dipole is fixed in the conductive solid, the electrode position is not stable or the position accuracy of the electrode installation is not The problems of conventional phantoms can be solved.
[0034]
In addition, since no electrolyte is used for the portion that transmits the return current, the problem of the conventional phantom that the distribution of the return current (distributed current, secondary current) changes can be solved.
[0035]
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration example of a phantom of a magnetoencephalogram measuring apparatus to which the present invention is applied.
FIG. 2 is a schematic diagram for explaining the concept of magnetoencephalogram measurement.
FIG. 3 is a schematic diagram showing the distribution of extracellular current flowing in the brain.
FIG. 4 is a schematic diagram showing a conventional phantom structure.
FIG. 5 is a transition diagram for explaining disturbance of a magnetic field distribution due to electrolysis.
[Explanation of symbols]
9a Spring electrode 9b Suction electrode 10 Lead wire 11 Conductive solid 11a Conductive solid (hemisphere)
11b Conductive solid (hemisphere)
12a guide groove 12b guide groove

Claims (10)

導電率が一様な球状導体中に模擬電流ダイポールを固定配置した脳磁計測装置のファントムにおいて、
前記模擬電流ダイポールのリターンの電流を伝える部分を導電性の固体で形成したことを特徴とする、脳磁計測装置のファントム。
In the phantom of a magnetoencephalograph that has a simulated current dipole fixedly placed in a spherical conductor with uniform conductivity,
A portion of the simulated current dipole that transmits a return current is formed of a conductive solid.
前記導電性の固体が、カーボンを発泡性樹脂の含ませた部材で形成されてなる、請求項1記載の脳磁計測装置のファントム。  The phantom of the magnetoencephalogram measuring apparatus according to claim 1, wherein the conductive solid is formed of a member containing carbon and a foamable resin. 前記導電性の固体が、金属粉をペーストに含ませた部材で形成されてなる、請求項1記載の脳磁計測装置のファントム。  The phantom of the magnetoencephalogram measuring apparatus according to claim 1, wherein the conductive solid is formed of a member in which a metal powder is included in a paste. 前記導電性の固体が、導電性の微粒子を固めた部材で形成されてなる、請求項1記載の脳磁計測装置のファントム。  The phantom of the magnetoencephalogram measurement apparatus according to claim 1, wherein the conductive solid is formed of a member obtained by solidifying conductive fine particles. 前記導電性の固体は、球状の導電性部材を複数に分割して前記模擬電流ダイポールを挟んで形成されてなる、請求項1乃至4のいずれかに記載の脳磁計測装置のファントム。  5. The phantom of the magnetoencephalogram measuring apparatus according to claim 1, wherein the conductive solid is formed by dividing a spherical conductive member into a plurality of parts and sandwiching the simulated current dipole. 前記導電性の固体は、前記模擬電流ダイポールを内部の所定位置に設置した中空球状の型材に、流動的な導電性部材を充填して固形化形成されてなる、請求項1乃至4のいずれかに記載の脳磁計測装置のファントム。  5. The conductive solid according to claim 1, wherein the conductive solid is solidified by filling a hollow spherical mold having the simulated current dipole in a predetermined position inside with a fluid conductive member. A phantom of the magnetoencephalography measuring device described in 1. 前記模擬電流ダイポールへ電流を供給するためのリード線が、2芯の撚り線で形成されてなる、請求項1乃至6のいずれかに記載の脳磁計測装置のファントム。  The phantom of the magnetoencephalogram measuring apparatus according to any one of claims 1 to 6, wherein a lead wire for supplying current to the simulated current dipole is formed of a two-core stranded wire. 前記模擬電流ダイポールへ電流を供給するためのリード線が、平行近接線で形成されてなる、請求項1乃至6のいずれかに記載の脳磁計測装置のファントム。  The phantom of the magnetoencephalogram measuring apparatus according to any one of claims 1 to 6, wherein a lead wire for supplying a current to the simulated current dipole is formed by a parallel proximity wire. 前記模擬電流ダイポールへ電流を供給するためのリード線が、同軸ケーブルで形成されてなる、請求項1乃至6のいずれかに記載の脳磁計測装置のファントム。  The phantom of the magnetoencephalogram measuring apparatus according to any one of claims 1 to 6, wherein a lead wire for supplying a current to the simulated current dipole is formed of a coaxial cable. 前記模擬電流ダイポールへ電流を供給するためのリード線が、プリント基板又はフレキシブルプリント基板で形成されてなる、請求項1乃至6のいずれかに記載の脳磁計測装置のファントム。  The phantom of the magnetoencephalogram measuring apparatus according to any one of claims 1 to 6, wherein a lead wire for supplying a current to the simulated current dipole is formed of a printed board or a flexible printed board.
JP2002322385A 2002-11-06 2002-11-06 Phantom of the magnetoencephalograph Expired - Fee Related JP3977725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322385A JP3977725B2 (en) 2002-11-06 2002-11-06 Phantom of the magnetoencephalograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322385A JP3977725B2 (en) 2002-11-06 2002-11-06 Phantom of the magnetoencephalograph

Publications (2)

Publication Number Publication Date
JP2004154311A JP2004154311A (en) 2004-06-03
JP3977725B2 true JP3977725B2 (en) 2007-09-19

Family

ID=32802583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322385A Expired - Fee Related JP3977725B2 (en) 2002-11-06 2002-11-06 Phantom of the magnetoencephalograph

Country Status (1)

Country Link
JP (1) JP3977725B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867209B2 (en) * 2005-06-16 2012-02-01 横河電機株式会社 Phantom of the magnetoencephalograph

Also Published As

Publication number Publication date
JP2004154311A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
Barth et al. Magnetic localization of a dipolar current source implanted in a sphere and a human cranium
Hallez et al. Review on solving the forward problem in EEG source analysis
Oostenveld et al. Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull
Weaver et al. Current density in bilateral and unilateral ECT.
Wikswo Biomagnetic sources and their models
Thevenet et al. The finite element method for a realistic head model of electrical brain activities: preliminary results
US20060199159A1 (en) Head phantom for simulating the patient response to magnetic stimulation
JP2000510373A (en) Electrodes with improved signal to noise ratio
US10272254B2 (en) Current diverter for magnetic stimulation of biological systems
Buccino et al. How does the presence of neural probes affect extracellular potentials?
Gençer et al. Forward problem solution of electromagnetic source imaging using a new BEM formulation with high-order elements
US8483795B2 (en) Primary source mirror for biomagnetometry
CN100444176C (en) Method and system for displaying confidence intervals for source reconstruction
JP3977725B2 (en) Phantom of the magnetoencephalograph
Galt et al. Experimental search for combined AC and DC magnetic field effects on ion channels
Kotnik et al. Induced transmembrane voltage—theory, modeling, and experiments
Brauer et al. Reconstruction of extended current sources in a human body phantom applying biomagnetic measuring techniques
Tsizin et al. Printable anisotropic phantom for EEG with distributed current sources
Hagen et al. LFPy–multimodal modeling of extracellular neuronal recordings in Python
Sun et al. Application of the reciprocity theorem to volume conduction based data communication systems between implantable devices and computers
Lu et al. Design automation of a dynamic thorax-like mesh phantom for evaluating the performance of electrical impedance tomography system
Tanguay et al. Comparison of applied and induced current electrical impedance tomography
JP4867209B2 (en) Phantom of the magnetoencephalograph
JP3567564B2 (en) Current source simulator
CN116869538B (en) Phantom device, magnetoencephalography system and verification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees