JP3977131B2 - Propagation path characteristic measuring method and apparatus - Google Patents

Propagation path characteristic measuring method and apparatus Download PDF

Info

Publication number
JP3977131B2
JP3977131B2 JP2002121160A JP2002121160A JP3977131B2 JP 3977131 B2 JP3977131 B2 JP 3977131B2 JP 2002121160 A JP2002121160 A JP 2002121160A JP 2002121160 A JP2002121160 A JP 2002121160A JP 3977131 B2 JP3977131 B2 JP 3977131B2
Authority
JP
Japan
Prior art keywords
signal
propagation path
measured
reference signal
system under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002121160A
Other languages
Japanese (ja)
Other versions
JP2003318847A (en
Inventor
浩一郎 今村
啓之 濱住
一彦 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2002121160A priority Critical patent/JP3977131B2/en
Publication of JP2003318847A publication Critical patent/JP2003318847A/en
Application granted granted Critical
Publication of JP3977131B2 publication Critical patent/JP3977131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は伝搬路特性測定方法及びその装置に関し、デジタル放送やデジタル伝送の伝搬路の周波数特性及び遅延プロファイルを正確に測定する伝搬路特性測定方法及びその装置に関する。
【0002】
【従来の技術】
従来の伝搬路特性測定装置では、信号発生器で発生した広帯域の基準信号を被測定系に供給して被測定系を通過し出力された信号と、信号発生器から直接供給された基準信号とを別々に同時測定し、被測定系を通過して測定された信号の周波数特性を、同時に測定した信号発生器からの基準信号の周波数特性で除算することで、被測定系の周波数特性や遅延プロファイルなどの伝搬路特性を算出している。このため、伝搬路特性測定装置は、基準信号と被測定系を通過した信号との2系統の信号を同時に測定するように構成されている。
【0003】
また、OFDM(直交周波数分割多重)信号など広帯域の既知のトレーニング信号が挿入されている信号を基準信号として用いる場合、被測定系を通過した1系統の信号を測定するだけで伝搬路特性の算出を行う方法がある。
【0004】
【発明が解決しようとする課題】
しかしながら、被測定系を通過した1系統の信号だけを測定しトレーニング信号を用いて伝搬路特性を算出する方法では、基準信号を測定してないために絶対的な基準がなく、測定した信号の主波に対する相対的な伝搬路特性しか算出できず、被測定系全体の時間変動があった場合に、この被測定系全体の時間変動を測定することはできないという問題があった。
【0005】
このため、被測定系全体の時間変動を測定するためには、基準信号と被測定系を通過した信号との2系統を同時に測定する必要があり、このような伝搬路特性測定装置は2系統の信号を同時に測定するために2系統の測定部を持たなければならず、回路構成が複雑かつ大規模になるいう問題があった。
【0006】
本発明は、上記の点に鑑みなされたもので、1系統の信号を測定するだけで被測定系の伝搬路特性を正確に測定することができる伝搬路特性測定方法及びその装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、広帯域の基準信号を発生して出力し、
前記基準信号を分岐した一方の信号をレベル調整して出力し、
前記基準信号を分岐した他方の信号を前記被測定系に供給し、
前記被測定系を通して供給される信号と前記レベル調整して供給される信号とを加算し、
前記加算した信号から測定される周波数特性を、前記被測定系を取り外し終端した状態で測定された周波数特性で較正して、前記被測定系の周波数特性または遅延プロファイルを算出することにより、
1系統の信号を測定するだけで被測定系の伝搬路特性を正確に測定することができる。
【0008】
請求項2に記載の発明では、基準信号を分岐した一方の信号のレベル調整は、前記加算において前記被測定系から供給される信号電力に対し、レベル調整して供給される信号電力の方が高くなるように行うことにより、
基準信号が主波成分として取り出され、この基準信号を基準として信号処理を行うことで被測定系の伝搬路特性の時間変動を測定することができる。
【0009】
請求項3に記載の発明は、広帯域の基準信号を発生して出力する信号発生器と、
前記基準信号を分岐した一方の信号を供給されレベル調整して出力する利得調整回路と、
前記基準信号を分岐した他方の信号が供給され前記被測定系を通して出力される信号と前記利得調整回路から供給される信号とを加算する加算器と、
前記加算器で加算した信号から前記被測定系の周波数特性または遅延プロファイルを算出する伝搬路特性算出回路を有することにより、
1系統の信号を測定するだけで被測定系の伝搬路特性を正確に測定することができる。
【0010】
請求項4に記載の発明では、利得調整回路は、前記加算器において前記被測定系から供給される信号電力に対し前記利得調整回路から供給される信号電力の方が高くなるよう利得調整を行うことにより、
基準信号が主波成分として取り出され、この基準信号を基準として信号処理を行うことで被測定系の伝搬路特性の時間変動を測定することができる。
【0011】
請求項5に記載の発明では、伝搬路特性算出回路は、前記被測定系を接続した状態の周波数特性を、前記被測定系を取り外し終端した状態で算出した周波数特性で較正することにより、前記被測定系の周波数特性または遅延プロファイルを算出することにより、
測定装置の周波数特性の歪みを除去した被測定系だけの伝搬路特性を求めることができる。
【0012】
【発明の実施の形態】
図1は、本発明の伝搬路特性測定装置の一実施例のブロック図を示す。同図中、伝搬路特性測定装置10は信号発生器1、分配器2、利得調整回路3、加算器4、伝搬路特性算出回路5で構成され、これに被測定系6が接続される。
【0013】
信号発生器1は、広帯域の基準信号を発生して分配器2に供給する。この信号は例えばOFDM信号,CDMA(符号分割多元接続)信号などが可能である。分配器2は、信号発生器1からの基準信号を2分岐して利得調整回路3と被測定系6それぞれに分配する。利得調整回路3は、分配器2からの基準信号に対する利得を調整して加算器4へ出力する。ここで、利得調整回路3は、信号全体に対する利得だけを調整し、その他の周波数特性は変わらないように構成している。
【0014】
利得調整回路3は、加算器4に供給する基準信号電力が、被測定系6を通して加算器4に供給される信号電力より3〜10dB程度高くなるように利得を調整する。これは、後述の伝搬路特性算出回路5において利得調整回路3からの基準信号を主波成分として取り出し基準として使用するためである。
【0015】
加算器4は、利得調整回路3からの信号と被測定系6からの信号を加算し、その和を伝搬路特性算出回路5へ出力する。伝搬路特性算出回路5は、加算器4から供給される信号を解析して、その信号の周波数特性を求め、それら周波数特性を処理することで被測定系6の周波数特性や遅延プロファイルなどの伝搬路特性を算出して出力する。
【0016】
以下では周波数特性を処理する部分を伝搬路特性算出回路5に含めているが、これは外部の汎用コンピュータ等で処理しても良い。なお、本明細書で周波数特性とは周波数に対する振幅及び位相の情報を含む複素数の情報である。また、伝搬路特性算出回路5における伝搬路特性の算出方法については後述する。
【0017】
図2は、信号発生器1の周波数特性の歪みを補正するための較正値を測定する際のブロック図を示す。同図中、図1と同一部分には同一符号を付し、その説明を省略する。
【0018】
図2において、終端器7及び終端器8それぞれは、伝搬路特性測定装置10の特性インピーダンスとなる抵抗器である。終端器7は測定の際に被測定系6に供給される基準信号が、被測定系6を取り除いているために反射しないよう終端している。終端器8は被測定系6を取り除いているために加算器4の入力端子が開放されており、このために発生する不整合を防ぐために取り付けられている。
【0019】
本発明による較正値測定及び伝搬路特性測定は、図3及び図4に示すフローチャートに示す手順にて行う。なお、大文字は複素数、小文字は実数を表すものとする。
【0020】
図3は、伝搬路特性算出回路5が図2に示す構成で実行する較正値測定処理のフローチャートを示す。図3に示すステップS1で、信号発生器1からの基準信号が持つ周波数特性の歪みを補正するための較正値を測定する。ここで、利得調整回路3の利得GをG=1(0dB)に設定し、伝搬路特性算出回路5で測定される較正のための周波数特性をR(ω)とする。ここで、ωは角周波数である。較正のための周波数特性R(ω)の算出法を、トレーニング信号を用いた例で説明すると、信号発生器1で加えたトレーニング信号の周波数スペクトルをTr(ω)とし、伝搬路特性算出回路5で測定された周波数スペクトルをIr(ω)とすると、R(ω)は、R(ω)=Ir(ω)/Tr(ω)として求められる。
【0021】
なお、図3に示す較正値測定処理は、伝搬路特性測定を行う度に実行する必要はなく、伝搬路特性測定装置10を最初に使用するときに1度だけ実行するすれば良い。
【0022】
図4は、伝搬路特性算出回路5が図1に示す構成で実行する伝搬路特性測定処理のフローチャートを示す。図4に示すステップS2で、被測定系6の伝搬路特性を測定する。このとき、伝搬路特性算出回路5の入力端子で観測された周波数特性をF(ω)とする。周波数特性F(ω)の算出は、信号発生器1で挿入した広帯域のトレーニング信号を用いる方法や観測信号を平均化して変調成分を除去して算出する方法などを用いる。
【0023】
上記トレーニング信号を用いる方法は、既知のトレーニング信号の周波数スペクトルをT(ω)とし、伝搬路特性算出回路5で観測された周波数スペクトルをI(ω)とすると、周波数特性F(ω)は、F(ω)=I(ω)/T(ω)として求められる。
【0024】
ステップS3で、周波数特性をF(ω)を信号発生器1の周波数特性R(ω)で較正した周波数特性C(ω)を(1)式から求める。
【0025】
C(ω)=F(ω)/R(ω) …(1)
次に、ステップS4で、周波数特性C(ω)に含まれる利得調整回路3からの基準信号の信号レベルを示すベクトルDを算出する。利得調整回路3からの基準信号は、被測定系6を通った信号電力より3〜10dB程度高くなるように、つまり、観測信号の主波となるように利得調整されているため、周波数特性C(ω)を周波数軸について複素平均を計算することで主波成分のベクトルDを算出できる。
【0026】
これは遅延プロファイル上の遅延0の成分を周波数軸上で抽出しているのと等価である。周波数特性C(ω)のデータ数をnとすると、ベクトルDは(2)式から求められる。
【0027】
D={ΣC(ω)}/n …(2)
次に、ステップS5で、基準信号の信号レベルとなるベクトルDで周波数特性C(ω)を除算し、基準信号のレベルが1となるように較正した周波数特性S(ω)を(3)式から算出する。
【0028】
S(ω)=C(ω)/D …(3)
さらに、ステップS6で、周波数特性S(ω)から主波成分すなわち基準信号の成分を除去する。ここでは、(3)式で基準信号のレベルを1となるように較正しているため、基準信号除去後の周波数特性X(ω)を(4)式から算出する。
【0029】
X(ω)=S(ω)−1 …(4)
ここで、被測定系6からの信号に加算した利得調整回路3からの基準信号は、信号発生回路1からの基準信号を利得調整しているため、被測定系6に供給する信号と比較すると利得Gだけの差がついている。この利得分を較正し被測定系6だけの利得を含んだ周波数特性H(ω)を算出するためにステップS7で、(5)式を用いて基準信号除去後の周波数特性X(ω)を較正する。
【0030】
H(ω)=G・X(ω) …(5)
さらに、ステップS8で、H(ω)を(6)式を用いて逆フーリエ変換し、被測定系の遅延プロファイルP(t)を求める。
【0031】
P(t)=IFFT[H(ω)] …(6)
但し、tは時間を表し、IFFTは逆フーリエ変換関数を表している。このようにして算出された周波数特性H(ω)及び遅延プロファイルP(t)は被測定系6の伝搬路特性だけを示している。
【0032】
本発明では、測定する信号は加算器4の出力信号だけの1系統であるが、加算器4にて基準信号を加算し、伝搬路特性算出回路5で基準信号を基準とした信号処理(ステップS5〜S7)を行うことで、基準信号に対しての被測定系の時間変動を正確に測定できる。また、測定する信号は1系統だけであるため、測定時間を短縮することができる。
【0033】
また、(4)式を用いることで、加算器4で加えられた基準信号の成分を除去できるため、伝搬路特性測定装置10は被測定系6の周波数特性及び遅延プロファイルを得ることができる。勿論、必要に応じて周波数特性、遅延プロファイルのいずれか一方を得るだけでも良い。
【0034】
この伝搬路特性測定装置10を用いることにより、被測定系6における伝搬路の時間変動を正確に測定することが可能となる。また、図1の構成で伝搬路特性算出回路5の部分に、被測定系を通過した信号のみを観測するタイプの既存の伝搬路特性測定装置を用いても、この測定装置の後段に計算機を追加して測定結果に(1)式から(6)式までの演算を行うことで、正確に被測定系6の伝搬路の変動を測定できる。本発明の伝搬路特性測定装置10は、特に反射波や回り込みの伝搬路変動測定に有効である。
【0035】
なお、本明細書に記載の「及び/または」は、「及び」もしくは「または」を表す。
【0036】
【発明の効果】
上述の如く、請求項1に記載の発明は、広帯域の基準信号を発生して出力し、基準信号を分岐した一方の信号をレベル調整して出力し、基準信号を分岐した他方の信号を被測定系に供給し、被測定系を通して供給される信号とレベル調整して供給される信号とを加算し、加算した信号から測定される周波数特性を、被測定系を取り外し終端した状態で測定された周波数特性で較正して、被測定系の周波数特性または遅延プロファイルを算出することにより、1系統の信号を測定するだけで被測定系の伝搬路特性を正確に測定することができる。
【0037】
請求項2に記載の発明では、基準信号を分岐した一方の信号のレベル調整は、加算において被測定系から供給される信号電力に対し、レベル調整して供給される信号電力の方が高くなるように行うことにより、基準信号が主波成分として取り出され、この基準信号を基準として信号処理を行うことで被測定系の伝搬路特性の時間変動を測定することができる。
【0038】
請求項3に記載の発明は、広帯域の基準信号を発生して出力する信号発生器と、基準信号を分岐した一方の信号を供給されレベル調整して出力する利得調整回路と、基準信号を分岐した他方の信号が供給され被測定系を通して出力される信号と利得調整回路から供給される信号とを加算する加算器と、加算器で加算した信号から被測定系の周波数特性または遅延プロファイルを算出する伝搬路特性算出回路を有することにより、1系統の信号を測定するだけで被測定系の伝搬路特性を正確に測定することができる。
【0039】
請求項4に記載の発明では、利得調整回路は、加算器において被測定系から供給される信号電力に対し利得調整回路から供給される信号電力の方が高くなるよう利得調整を行うことにより、基準信号が主波成分として取り出され、この基準信号を基準として信号処理を行うことで被測定系の伝搬路特性の時間変動を測定することができる。
【0040】
請求項5に記載の発明では、伝搬路特性算出回路は、被測定系を接続した状態の周波数特性を、被測定系を取り外し終端した状態で算出した周波数特性で較正することにより、被測定系の周波数特性または遅延プロファイルを算出することにより、測定装置の周波数特性の歪みを除去した被測定系だけの伝搬路特性を求めることができる。
【図面の簡単な説明】
【図1】本発明の伝搬路特性測定装置の一実施例のブロック図である。
【図2】信号発生器の周波数特性の歪みを補正するための較正値を測定する際のブロック図である。
【図3】較正値測定処理のフローチャートである。
【図4】伝搬路特性測定処理のフローチャートである。
【符号の説明】
1 信号発生器
2 分配器
3 利得調整回路
4 加算器
5 伝搬路特性算出回路
6 被測定系
7,8 終端器
10 伝搬路特性測定装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a propagation path characteristic measuring method and apparatus, and more particularly to a propagation path characteristic measuring method and apparatus for accurately measuring frequency characteristics and delay profiles of propagation paths for digital broadcasting and digital transmission.
[0002]
[Prior art]
In a conventional propagation path characteristic measuring apparatus, a wideband reference signal generated by a signal generator is supplied to a system to be measured and passed through the system to be measured, and a reference signal directly supplied from the signal generator Are measured simultaneously, and the frequency characteristics of the signal measured through the system under test are divided by the frequency characteristics of the reference signal from the signal generator measured simultaneously. Propagation path characteristics such as profiles are calculated. For this reason, the propagation path characteristic measuring apparatus is configured to simultaneously measure two systems of signals, that is, a reference signal and a signal that has passed through the measurement target system.
[0003]
In addition, when a signal having a known wideband training signal inserted, such as an OFDM (orthogonal frequency division multiplexing) signal, is used as a reference signal, the propagation path characteristics can be calculated simply by measuring one system signal that has passed through the system under test. There is a way to do.
[0004]
[Problems to be solved by the invention]
However, in the method of measuring propagation path characteristics using a training signal by measuring only one system signal that has passed through the system under measurement, there is no absolute reference because the reference signal is not measured, and the measured signal When only the propagation path characteristic relative to the main wave can be calculated and there is a time variation of the entire system under measurement, there is a problem that the time variation of the entire system under measurement cannot be measured.
[0005]
For this reason, in order to measure the time variation of the entire system under measurement, it is necessary to simultaneously measure two systems of the reference signal and the signal that has passed through the system under measurement. In order to measure these signals simultaneously, it is necessary to have two measuring units, and there is a problem that the circuit configuration becomes complicated and large-scale.
[0006]
The present invention has been made in view of the above points, and provides a propagation path characteristic measuring method and apparatus capable of accurately measuring the propagation path characteristic of a system to be measured only by measuring one system of signals. With the goal.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 generates and outputs a broadband reference signal,
Level-adjusting one of the signals branched from the reference signal and outputting it,
Supplying the other signal branched from the reference signal to the system under test;
Adding a signal supplied through the system to be measured and a signal supplied by adjusting the level;
The frequency characteristic measured from the addition signal, said calibrated with the measured frequency characteristic while terminating remove the system under measurement, by calculating the frequency characteristic or the delay profile of the system under measurement,
It is possible to accurately measure the propagation path characteristics of the system under measurement simply by measuring one system of signals.
[0008]
According to the second aspect of the present invention, the level adjustment of one signal branched from the reference signal is performed by adjusting the level of the signal power supplied from the system under measurement in the addition to the signal power supplied by adjusting the level. By doing it higher,
A reference signal is taken out as a main wave component, and signal processing is performed using this reference signal as a reference, whereby time fluctuations in the propagation path characteristics of the system under measurement can be measured.
[0009]
The invention according to claim 3 is a signal generator for generating and outputting a broadband reference signal;
A gain adjusting circuit that is supplied and adjusts the level of one of the signals branched from the reference signal,
An adder for adding the signal supplied from the gain adjustment circuit and the signal supplied through the system under test to which the other signal branched from the reference signal is supplied;
By having a propagation path characteristic calculation circuit that calculates the frequency characteristic or delay profile of the measured system from the signal added by the adder,
It is possible to accurately measure the propagation path characteristics of the system under measurement simply by measuring one system of signals.
[0010]
According to a fourth aspect of the present invention, the gain adjustment circuit performs gain adjustment in the adder so that the signal power supplied from the gain adjustment circuit is higher than the signal power supplied from the system under measurement. By
A reference signal is taken out as a main wave component, and signal processing is performed using this reference signal as a reference, whereby time fluctuations in the propagation path characteristics of the system under measurement can be measured.
[0011]
In the invention described in claim 5, the channel characteristic calculation circuit, the frequency characteristic of the state of connecting the system under measurement, by calibrating the frequency characteristics calculated while terminating remove the system under measurement, the By calculating the frequency characteristics or delay profile of the system under test,
It is possible to obtain the propagation path characteristic of only the system under measurement from which the distortion of the frequency characteristic of the measuring apparatus is removed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a block diagram of an embodiment of a propagation path characteristic measuring apparatus of the present invention. In the figure, a propagation path characteristic measuring apparatus 10 includes a signal generator 1, a divider 2, a gain adjustment circuit 3, an adder 4, and a propagation path characteristic calculation circuit 5, to which a system under test 6 is connected.
[0013]
The signal generator 1 generates a broadband reference signal and supplies it to the distributor 2. This signal can be, for example, an OFDM signal, a CDMA (Code Division Multiple Access) signal, or the like. The distributor 2 divides the reference signal from the signal generator 1 into two and distributes it to the gain adjusting circuit 3 and the system under test 6. The gain adjustment circuit 3 adjusts the gain with respect to the reference signal from the distributor 2 and outputs it to the adder 4. Here, the gain adjusting circuit 3 is configured so as to adjust only the gain for the entire signal and other frequency characteristics are not changed.
[0014]
The gain adjustment circuit 3 adjusts the gain so that the reference signal power supplied to the adder 4 is about 3 to 10 dB higher than the signal power supplied to the adder 4 through the system under test 6. This is because the reference signal from the gain adjustment circuit 3 is extracted as a main wave component and used as a reference in the propagation path characteristic calculation circuit 5 described later.
[0015]
The adder 4 adds the signal from the gain adjustment circuit 3 and the signal from the system under measurement 6 and outputs the sum to the propagation path characteristic calculation circuit 5. The propagation path characteristic calculation circuit 5 analyzes the signal supplied from the adder 4, obtains the frequency characteristic of the signal, and processes the frequency characteristic to propagate the frequency characteristic and delay profile of the measured system 6 Calculate and output road characteristics.
[0016]
In the following, the part for processing the frequency characteristic is included in the propagation path characteristic calculation circuit 5, but this may be processed by an external general-purpose computer or the like. In this specification, the frequency characteristic is information on complex numbers including amplitude and phase information with respect to frequency. A method for calculating the propagation path characteristic in the propagation path characteristic calculation circuit 5 will be described later.
[0017]
FIG. 2 is a block diagram when measuring a calibration value for correcting distortion of the frequency characteristics of the signal generator 1. In the figure, the same parts as those in FIG.
[0018]
In FIG. 2, each of the terminator 7 and the terminator 8 is a resistor serving as a characteristic impedance of the propagation path characteristic measuring apparatus 10. The terminator 7 is terminated so that the reference signal supplied to the measured system 6 at the time of measurement is not reflected because the measured system 6 is removed. Since the terminator 8 is removed from the system 6 to be measured, the input terminal of the adder 4 is opened, and is attached to prevent a mismatch that occurs for this purpose.
[0019]
Calibration value measurement and propagation path characteristic measurement according to the present invention are performed according to the procedure shown in the flowcharts shown in FIGS. Uppercase letters represent complex numbers, and lowercase letters represent real numbers.
[0020]
FIG. 3 shows a flowchart of a calibration value measurement process executed by the propagation path characteristic calculation circuit 5 with the configuration shown in FIG. In step S1 shown in FIG. 3, a calibration value for correcting distortion of the frequency characteristics of the reference signal from the signal generator 1 is measured. Here, the gain G of the gain adjusting circuit 3 is set to G = 1 (0 dB), and the frequency characteristic for calibration measured by the propagation path characteristic calculating circuit 5 is R (ω). Here, ω is an angular frequency. The calculation method of the frequency characteristic R (ω) for calibration will be described using an example using a training signal. The frequency spectrum of the training signal added by the signal generator 1 is Tr (ω), and the propagation path characteristic calculation circuit 5 If the frequency spectrum measured in (1) is Ir (ω), R (ω) is obtained as R (ω) = Ir (ω) / Tr (ω).
[0021]
Note that the calibration value measurement process shown in FIG. 3 does not have to be executed every time the propagation path characteristic measurement is performed, but only needs to be executed once when the propagation path characteristic measurement apparatus 10 is used for the first time.
[0022]
FIG. 4 shows a flowchart of a propagation path characteristic measurement process executed by the propagation path characteristic calculation circuit 5 with the configuration shown in FIG. In step S2 shown in FIG. 4, the propagation path characteristics of the measured system 6 are measured. At this time, the frequency characteristic observed at the input terminal of the propagation path characteristic calculation circuit 5 is defined as F (ω). The frequency characteristic F (ω) is calculated by using a method using a wide-band training signal inserted by the signal generator 1 or a method of calculating by removing the modulation component by averaging observation signals.
[0023]
In the method using the training signal, if the frequency spectrum of the known training signal is T (ω) and the frequency spectrum observed by the propagation path characteristic calculation circuit 5 is I (ω), the frequency characteristic F (ω) is It is obtained as F (ω) = I (ω) / T (ω).
[0024]
In step S3, a frequency characteristic C (ω) obtained by calibrating the frequency characteristic F (ω) with the frequency characteristic R (ω) of the signal generator 1 is obtained from the equation (1).
[0025]
C (ω) = F (ω) / R (ω) (1)
Next, in step S4, a vector D indicating the signal level of the reference signal from the gain adjustment circuit 3 included in the frequency characteristic C (ω) is calculated. Since the reference signal from the gain adjustment circuit 3 is gain-adjusted so as to be about 3 to 10 dB higher than the signal power passing through the system 6 to be measured, that is, to become the main wave of the observation signal, the frequency characteristic C The vector D of the main wave component can be calculated by calculating a complex average of (ω) with respect to the frequency axis.
[0026]
This is equivalent to extracting the component of delay 0 on the delay profile on the frequency axis. When the number of data of the frequency characteristic C (ω) is n, the vector D is obtained from the equation (2).
[0027]
D = {ΣC (ω)} / n (2)
Next, in step S5, the frequency characteristic C (ω) is divided by the vector D that becomes the signal level of the reference signal, and the frequency characteristic S (ω) calibrated so that the level of the reference signal becomes 1 is expressed by the equation (3). Calculate from
[0028]
S (ω) = C (ω) / D (3)
In step S6, the main wave component, that is, the reference signal component is removed from the frequency characteristic S (ω). Here, since the calibration is performed so that the level of the reference signal becomes 1 in the equation (3), the frequency characteristic X (ω) after the removal of the reference signal is calculated from the equation (4).
[0029]
X (ω) = S (ω) −1 (4)
Here, the reference signal from the gain adjustment circuit 3 added to the signal from the system under test 6 is gain-adjusted with the reference signal from the signal generation circuit 1, and therefore compared with the signal supplied to the system under test 6. Only the gain G is different. In order to calculate the frequency characteristic H (ω) including the gain of only the system under test 6 by calibrating the gain, in step S7, the frequency characteristic X (ω) after removing the reference signal is calculated using the equation (5). Calibrate.
[0030]
H (ω) = G · X (ω) (5)
In step S8, H (ω) is inverse Fourier transformed using equation (6) to obtain a delay profile P (t) of the system under measurement.
[0031]
P (t) = IFFT [H (ω)] (6)
However, t represents time and IFFT represents an inverse Fourier transform function. The frequency characteristic H (ω) and delay profile P (t) calculated in this way indicate only the propagation path characteristics of the system under measurement 6.
[0032]
In the present invention, the signal to be measured is only one system of the output signal of the adder 4. However, the adder 4 adds the reference signal, and the propagation path characteristic calculation circuit 5 performs signal processing based on the reference signal (step By performing S5 to S7), it is possible to accurately measure the time variation of the system under test with respect to the reference signal. Moreover, since only one signal is measured, the measurement time can be shortened.
[0033]
Moreover, since the reference signal component added by the adder 4 can be removed by using the expression (4), the propagation path characteristic measuring apparatus 10 can obtain the frequency characteristic and delay profile of the system under measurement 6. Of course, only one of the frequency characteristic and the delay profile may be obtained as necessary.
[0034]
By using this propagation path characteristic measuring apparatus 10, it is possible to accurately measure the time variation of the propagation path in the measured system 6. In addition, even if an existing propagation path characteristic measuring device of the type that observes only the signal that has passed through the system to be measured is used for the propagation path characteristic calculation circuit 5 in the configuration of FIG. In addition, by performing calculations from Equations (1) to (6) to the measurement result, it is possible to accurately measure the fluctuation of the propagation path of the system under measurement 6. The propagation path characteristic measuring apparatus 10 of the present invention is particularly effective for measuring reflected wave fluctuations and wraparound propagation path fluctuations.
[0035]
In the present specification, “and / or” means “and” or “or”.
[0036]
【The invention's effect】
As described above, the invention according to claim 1 generates and outputs a wideband reference signal, adjusts the level of one signal branched from the reference signal, and outputs the other signal branched from the reference signal. Supplied to the measurement system, the signal supplied through the system to be measured and the signal supplied after level adjustment are added, and the frequency characteristics measured from the added signal are measured with the system to be measured removed and terminated. was calibrated with a frequency characteristic, by calculating the frequency characteristic or the delay profile of the measurement system, it is possible to accurately measure the channel characteristics of the measurement system by simply measuring the signal of one system.
[0037]
According to the second aspect of the present invention, in the level adjustment of one signal branched from the reference signal, the signal power supplied by adjusting the level is higher than the signal power supplied from the system under measurement in the addition. By doing so, the reference signal is extracted as the main wave component, and by performing signal processing using this reference signal as a reference, it is possible to measure the time variation of the propagation path characteristic of the system under measurement.
[0038]
According to a third aspect of the present invention, there is provided a signal generator for generating and outputting a wideband reference signal, a gain adjusting circuit for supplying a level-adjusted signal to which one of the reference signals is branched, and branching the reference signal The adder that adds the signal that is supplied to the other system and the signal that is output through the system under test and the signal that is supplied from the gain adjustment circuit, and calculates the frequency characteristics or delay profile of the system under test from the signal added by the adder By having the propagation path characteristic calculation circuit that performs the measurement, it is possible to accurately measure the propagation path characteristic of the system under measurement only by measuring one system of signals.
[0039]
In the invention according to claim 4, the gain adjustment circuit adjusts the gain so that the signal power supplied from the gain adjustment circuit is higher than the signal power supplied from the system under measurement in the adder, A reference signal is taken out as a main wave component, and signal processing is performed using this reference signal as a reference, whereby the time variation of the propagation path characteristic of the system under measurement can be measured.
[0040]
In the invention described in claim 5, the channel characteristic calculation circuit, the frequency characteristic of the state of connecting the system under measurement, by calibrating the frequency characteristics calculated while terminating remove the system under measurement, the measuring system By calculating the frequency characteristic or the delay profile, it is possible to obtain the propagation path characteristic of only the system under measurement from which the distortion of the frequency characteristic of the measuring apparatus is removed.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of a propagation path characteristic measuring apparatus according to the present invention.
FIG. 2 is a block diagram when measuring a calibration value for correcting distortion of a frequency characteristic of a signal generator.
FIG. 3 is a flowchart of a calibration value measurement process.
FIG. 4 is a flowchart of a propagation path characteristic measurement process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Signal generator 2 Divider 3 Gain adjustment circuit 4 Adder 5 Propagation path characteristic calculation circuit 6 System to be measured 7, 8 Terminator 10 Propagation path characteristic measuring device

Claims (5)

被測定系の伝搬路の周波数特性または遅延プロファイルを測定するための伝搬路特性測定方法であって、
広帯域の基準信号を発生して出力し、
前記基準信号を分岐した一方の信号をレベル調整して出力し、
前記基準信号を分岐した他方の信号を前記被測定系に供給し、
前記被測定系を通して供給される信号と前記レベル調整して供給される信号とを加算し、
前記加算した信号から測定される周波数特性を、前記被測定系を取り外し終端した状態で測定された周波数特性で較正して、前記被測定系の周波数特性または遅延プロファイルを算出することを特徴とする伝搬路特性測定方法。
A propagation path characteristic measuring method for measuring a frequency characteristic or a delay profile of a propagation path of a measured system,
Generate and output a wideband reference signal,
Level-adjusting one of the signals branched from the reference signal and outputting it,
Supplying the other signal branched from the reference signal to the system under test;
Adding a signal supplied through the system to be measured and a signal supplied by adjusting the level;
The frequency characteristic measured from the added signal is calibrated with the frequency characteristic measured with the measured system removed and terminated, and the frequency characteristic or delay profile of the measured system is calculated. A method for measuring propagation path characteristics.
請求項1記載の伝搬路特性測定方法において、
前記基準信号を分岐した一方の信号のレベル調整は、前記加算において前記被測定系から供給される信号電力に対し、レベル調整して供給される信号電力の方が高くなるように行うことを特徴とする伝搬路特性測定方法。
In the propagation path characteristic measuring method according to claim 1,
The level adjustment of one signal branched from the reference signal is performed such that the signal power supplied by adjusting the level is higher than the signal power supplied from the system under measurement in the addition. A propagation path characteristic measuring method.
被測定系の伝搬路の周波数特性または遅延プロファイルを測定するための伝搬路特性測定装置であって、
広帯域の基準信号を発生して出力する信号発生器と、
前記基準信号を分岐した一方の信号を供給されレベル調整して出力する利得調整回路と、
前記基準信号を分岐した他方の信号が供給され前記被測定系を通して出力される信号と前記利得調整回路から供給される信号とを加算する加算器と、
前記加算器で加算した信号から前記被測定系の周波数特性または遅延プロファイルを算出する伝搬路特性算出回路を
有することを特徴とする伝搬路特性測定装置。
A propagation path characteristic measuring apparatus for measuring a frequency characteristic or a delay profile of a propagation path of a measured system,
A signal generator for generating and outputting a broadband reference signal;
A gain adjusting circuit that is supplied and adjusts the level of one of the signals branched from the reference signal,
An adder for adding the signal supplied from the gain adjustment circuit and the signal supplied through the system under test to which the other signal branched from the reference signal is supplied;
A propagation path characteristic measuring apparatus comprising: a propagation path characteristic calculating circuit that calculates a frequency characteristic or a delay profile of the system under measurement from the signals added by the adder.
請求項3記載の伝搬路特性測定装置において、
前記利得調整回路は、前記加算器において前記被測定系から供給される信号電力に対し前記利得調整回路から供給される信号電力の方が高くなるよう利得調整を行うことを特徴とする伝搬路特性測定装置。
In the propagation path characteristic measuring apparatus according to claim 3,
The gain adjusting circuit adjusts the gain so that the signal power supplied from the gain adjusting circuit is higher than the signal power supplied from the measured system in the adder. measuring device.
請求項3または4記載の伝搬路特性測定装置において、
前記伝搬路特性算出回路は、前記被測定系を接続した状態の周波数特性を、前記被測定系を取り外し終端した状態で算出した周波数特性で較正することにより、前記被測定系の周波数特性または遅延プロファイルを算出することを特徴とする伝搬路特性測定装置。
In the propagation path characteristic measuring apparatus according to claim 3 or 4,
The channel characteristic calculation circuit, the frequency characteristic of the state of connecting the system under measurement, said by calibrating the frequency characteristics calculated while terminating remove the system under measurement, frequency characteristics or delay of the system under measurement A propagation path characteristic measuring apparatus characterized by calculating a profile.
JP2002121160A 2002-04-23 2002-04-23 Propagation path characteristic measuring method and apparatus Expired - Fee Related JP3977131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002121160A JP3977131B2 (en) 2002-04-23 2002-04-23 Propagation path characteristic measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002121160A JP3977131B2 (en) 2002-04-23 2002-04-23 Propagation path characteristic measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2003318847A JP2003318847A (en) 2003-11-07
JP3977131B2 true JP3977131B2 (en) 2007-09-19

Family

ID=29537183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002121160A Expired - Fee Related JP3977131B2 (en) 2002-04-23 2002-04-23 Propagation path characteristic measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP3977131B2 (en)

Also Published As

Publication number Publication date
JP2003318847A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
EP2393224B1 (en) Method and apparatus for synthesizing and correcting phase distortions in ultra-wide bandwidth optical waveforms
US20050129152A1 (en) Method and sytem for noise reduction in measurement receivers using automatic noise subtraction
US20180367224A1 (en) Signal generating apparatus and signal generating method
JP5225994B2 (en) Measuring apparatus, test apparatus and measuring method
US20100201442A1 (en) Distortion compensation device for use in high-frequency power amplifier
CA2928579C (en) Time domain measuring method with calibration in the frequency domain
US11329633B2 (en) Joint optimization of FIR filters in a non-linear compensator
JP3977131B2 (en) Propagation path characteristic measuring method and apparatus
WO2018139926A1 (en) An interferometric iq-mixer/dac solution for active, high speed vector network analyser impedance renormalization
KR101432342B1 (en) Signal quality determination in cable networks
JP6910791B2 (en) Signal measurement method
CN107219491B (en) Eight-channel calibration module and calibration method
CN112782440B (en) Method and system for determining and/or adjusting the phase of at least two electrical signals
JP3561184B2 (en) IQ splitter device
JP4166787B2 (en) Variable power distributor, error detection method thereof, and set value correction method
CN111274534B (en) Short-time DFT interpolation method for improving total leakage inhibition
KR100762218B1 (en) Apparatus for calibrating transmitters and receivers in array antenna system
JP6716633B2 (en) Signal generating device and signal generating method
US11137445B1 (en) Method and apparatus for reducing non-linear distortion
WO2020144740A1 (en) Transmission path design assistance device, transmission path design assistance method, and program
RU2773481C1 (en) Method for determining the time delay between copies of a non-deterministic pseudo-random signal
JP2004309472A (en) System and method for calibrating balanced signal
KR101324172B1 (en) Method and device for toa calibration of multi-channel digital receiver
US20220170979A1 (en) Phase frequency response measurement method
JP2017096951A (en) Test measurement system and method for acquiring characteristic thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3977131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees