JP3976145B2 - Alumina long fiber or alumina long fiber molded article having excellent stretchability and bulkiness and method for producing the same - Google Patents

Alumina long fiber or alumina long fiber molded article having excellent stretchability and bulkiness and method for producing the same Download PDF

Info

Publication number
JP3976145B2
JP3976145B2 JP2004201315A JP2004201315A JP3976145B2 JP 3976145 B2 JP3976145 B2 JP 3976145B2 JP 2004201315 A JP2004201315 A JP 2004201315A JP 2004201315 A JP2004201315 A JP 2004201315A JP 3976145 B2 JP3976145 B2 JP 3976145B2
Authority
JP
Japan
Prior art keywords
long fiber
yarn
alumina long
fiber
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004201315A
Other languages
Japanese (ja)
Other versions
JP2006022431A (en
Inventor
道明 提坂
健司 増田
Original Assignee
株式会社ニチビ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニチビ filed Critical 株式会社ニチビ
Priority to JP2004201315A priority Critical patent/JP3976145B2/en
Publication of JP2006022431A publication Critical patent/JP2006022431A/en
Application granted granted Critical
Publication of JP3976145B2 publication Critical patent/JP3976145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Knitting Of Fabric (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Description

本発明は、耐熱性と伸縮性および嵩高性を有するアルミナ長繊維またはアルミナ長繊維成形体およびその製造方法に関する。   The present invention relates to an alumina long fiber or an alumina long fiber molded article having heat resistance, stretchability and bulkiness, and a method for producing the same.

アルミナ繊維は耐熱性を有し、強度が強く、また電気絶縁性に優れるなど多くの優れた特性を持った繊維であり高温耐熱材料として広い分野で使用されている。ガラス繊維やシリカ繊維などのセラミック繊維、ステンレス繊維などの金属繊維も耐熱性を有している。しかし、ガラス繊維はせいぜい400℃以下での使用限度があり、シリカ繊維は800℃以上の高温で長時間使用すると強度低下が起こりやすいなどの欠点があるし、ステンレス繊維は1,000℃以上にも耐えることができるが、高価であるという欠点がある。   Alumina fiber is a fiber having many excellent characteristics such as heat resistance, high strength, and excellent electrical insulation, and is used in a wide range of fields as a high temperature heat resistant material. Ceramic fibers such as glass fibers and silica fibers, and metal fibers such as stainless fibers also have heat resistance. However, glass fiber has a limit of use at 400 ° C. or less at most, silica fiber has a drawback such that strength decreases easily when used at a high temperature of 800 ° C. or higher for a long time, and stainless steel fiber has a disadvantage of 1,000 ° C. or higher. Can withstand, but has the disadvantage of being expensive.

アルミナ繊維やシリカ繊維は織物に加工することができる。アルミナ繊維やシリカ繊維を織成した織物は柔軟性と耐熱性を併せ持った優れた材料であり、長繊維形態のものとは異なった新たな分野へ用途が広がっている。しかし、長繊維形態のものも同じであるが、織物形態のものは伸縮性に乏しいものであった。すなわち、アルミナ繊維やセラミック繊維は強度は大きいものの伸度がほとんどないためである。   Alumina fiber or silica fiber can be processed into a woven fabric. Fabrics woven with alumina fibers and silica fibers are excellent materials having both flexibility and heat resistance, and their applications are expanding to new fields different from those of long fiber forms. However, the long fiber form was the same, but the woven form was poor in stretchability. That is, although alumina fibers and ceramic fibers have high strength, there is almost no elongation.

伸縮性を得るためには組織上伸縮性を得られる組織、例えば、編物状にすることにより織物状物では得られない伸縮性編物を得ることができ、本発明者らは既にその方法を提案している。
特開昭62−170522号公報
In order to obtain stretchability, it is possible to obtain a stretchable knitted fabric that cannot be obtained with a woven fabric by making it into a knitted fabric, such as a knitted fabric, and the present inventors have already proposed the method. is doing.
JP-A-62-170522

本発明は、伸縮性および嵩高性を有し、かつ耐熱性に優れたアルミナ長繊維またはアルミナ長繊維成形体を提供することを目的とする。   An object of the present invention is to provide an alumina long fiber or an alumina long fiber molded article having stretchability and bulkiness and excellent heat resistance.

前述したように、アルミナ繊維は強度は大きいが伸度は小さい。そのため繊維の屈曲強度が小さく、曲げに対しては極端に弱くなる。曲げ強度を大きくする手段としては単繊維の直径を小さくすれば曲げに対する耐性を大きくできることが分かっているが、繊維径を小さくすると製造コストがかさみ、非常に高価な繊維となってしまい、汎用には不適切となる。   As described above, alumina fiber has high strength but low elongation. Therefore, the bending strength of the fiber is small, and it becomes extremely weak against bending. As a means to increase the bending strength, it has been found that if the diameter of the single fiber is reduced, the resistance to bending can be increased. However, if the fiber diameter is reduced, the manufacturing cost increases, resulting in a very expensive fiber. Is inappropriate.

アルミナ繊維をそのまま直接編機にかけて編成することは非常に困難である。そのため、伸縮性に富むアルミナ繊維成形体を得る方法を検討し、本発明者らは既に特開昭62−170522号公報にその結果を提案している。しかしながら、アルミナ繊維の前駆体繊維は柔軟ではあるが高速度での生産に耐えることができる十分な強度を有しておらず、慎重な工程管理をしてはじめて実施できるのであり、また、広巾の成形体を得るには織キズや編キズが発生しやすく、焼成後のアルミナ繊維成形体の欠陥として残るという欠点があった。   It is very difficult to knit the alumina fibers directly on a knitting machine. For this reason, a method for obtaining an alumina fiber molded article rich in stretchability has been studied, and the present inventors have already proposed the result in Japanese Patent Application Laid-Open No. 62-170522. However, the alumina fiber precursor fiber is flexible but does not have sufficient strength to withstand high-speed production, and can only be implemented with careful process control. In order to obtain a molded product, weaving scratches and knitted scratches are likely to occur, and there is a defect that the alumina fiber molded product after firing remains as a defect.

また、これらの欠点を解決する方法も特願2004−201307として提案しているが、この方法では伸縮性に富むアルミナ長繊維編物を得ることはできるが、嵩高性の面からは不十分なものであった。伸縮性と嵩高性を併せ持つアルミナ長繊維またはアルミナ長繊維成形体はその嵩高性ゆえに耐熱性のクッション材として有用に使用できると予想されてはいたが、その効率的な製造方法は未開発であった。   Moreover, although the method of solving these faults is also proposed as Japanese Patent Application No. 2004-201307, an alumina long fiber knitted fabric rich in stretchability can be obtained by this method, but it is insufficient from the viewpoint of bulkiness. Met. Although it has been expected that alumina long fibers or alumina long fiber molded bodies having both stretchability and bulkiness can be usefully used as a heat-resistant cushion material due to their bulkiness, an efficient production method has not been developed yet. It was.

一般に、繊維に伸縮性や嵩高性を付与する方法としては、フィラメントを加撚後、熱固定して解撚する仮撚り加工方法、狭い箱等に繊維を押し込み、曲がり形状を固定する押し込み法、歯車に繊維を噛み込ませて歯形を賦型するギアクリンプ法などがある。しかし、アルミナ繊維やシリカ繊維はその物性からこれらの加工方法を用いることができず、伸縮性かつ嵩高性を有するアルミナ長繊維およびアルミナ長繊維成形体は得られなかったのが現状であった。   In general, as a method of imparting stretchability and bulkiness to the fiber, after twisting the filament, it is heat-fixed and untwisted, a false twisting method, the fiber is pushed into a narrow box or the like, and an indentation method for fixing the bent shape, For example, there is a gear crimping method in which a tooth is formed by causing a fiber to bite into a gear. However, these processing methods cannot be used for alumina fibers and silica fibers due to their physical properties, and it has been impossible to obtain stretchable and bulky alumina long fibers and alumina long fiber molded bodies.

そこで本発明者らはこれらの欠点を克服し、伸縮性と嵩高性を有するアルミナ長繊維またはアルミナ長繊維成形体を得るべく鋭意研究した結果、アルミナ長繊維前駆体と250℃以下の乾熱処理で収縮するような補強糸とを合糸あるいは撚糸した糸条をそのまま乾熱処理、焼成処理を施すか、または製編織して成形体となし、得られた成形体を乾熱処理、次いで焼成処理することによって伸縮性と嵩高性を有するアルミナ長繊維またはアルミナ長繊維成形体が得られることを見出し本発明を完成した。   Therefore, the present inventors have overcome these drawbacks and conducted intensive research to obtain an alumina long fiber or an alumina long fiber molded article having stretchability and bulkiness. A yarn obtained by combining or twisting a reinforcing yarn that shrinks is subjected to dry heat treatment and firing treatment as it is, or it is knitted and woven to form a molded body, and the obtained molded body is subjected to dry heat treatment and then firing treatment. As a result, it was found that an alumina long fiber or an alumina long fiber molded article having stretchability and bulkiness can be obtained.

すなわち、本発明の要旨とするところは、アルミナ長繊維前駆体と乾熱処理により収縮する補強糸を合撚した後、乾熱処理し、次いで焼成処理して得られる優れた伸縮性と嵩高性を有するアルミナ長繊維とその製造方法であり、さらにアルミナ長繊維前駆体と乾熱処理により収縮する補強糸を合糸または撚糸し、製編織して成形体とした後、乾熱処理し、次いで焼成処理して得られる優れた伸縮性と嵩高性を有するアルミナ繊維成形体とその製造方法である。 That is, the gist of the present invention is that it has excellent stretchability and bulkiness obtained by twisting an alumina long fiber precursor and a reinforcing yarn that shrinks by dry heat treatment, followed by dry heat treatment and then firing treatment. Alumina long fiber and its manufacturing method, and further, alumina long fiber precursor and reinforcing yarn that shrinks by dry heat treatment are combined or twisted, knitted and woven into a molded body, then dry heat treated, and then fired. This is an alumina long fiber molded article having excellent stretchability and bulkiness and a method for producing the same.

上述のように構成された本発明によれば、伸縮性と嵩高性を併せ持つ耐熱性に優れたアルミナ長繊維またはアルミナ長繊維成形体が得られる。これらの成形体は高温雰囲気において種々の物体のクッション材として用いることができ、伸縮性と嵩高性を有するため種々の形の物体にも適合して、表面保護材としても有用に用いることができる。   According to the present invention configured as described above, an alumina long fiber or an alumina long fiber molded body excellent in heat resistance having both stretchability and bulkiness can be obtained. These molded bodies can be used as cushioning materials for various objects in a high temperature atmosphere, and can be used as surface protective materials because they are stretchable and bulky, so that they can be used for various shapes of objects. .

以下に本発明を詳細に説明する。本発明で云うアルミナ長繊維とは、Al2O3とSiO2から構成されており、Al2O3成分が重量比で50%以上のものを云い、好ましくは60%以上のものを云う。従って、アルミナ長繊維前駆体も、焼成した後、Al2O3とSiO2の構成比が上記のようになるよう調整されている。前駆体繊維の製造方法はいろいろあるが、その一例を示すと、オキシ塩化アルミニウム溶液とポリビニルアルコール水溶液とコロイド状シリカを焼成後のAl2O3とSiO2の成分比が上記の範囲になるよう混合し、粘度を調整して紡糸用原液とする。この紡糸原液を乾式紡糸して前駆体繊維を得る。 The present invention is described in detail below. The alumina long fiber referred to in the present invention is composed of Al 2 O 3 and SiO 2 , and refers to those having an Al 2 O 3 component of 50% or more by weight, preferably 60% or more. Therefore, the alumina long fiber precursor is also adjusted so that the composition ratio of Al 2 O 3 and SiO 2 becomes as described above after firing. There are various methods for producing precursor fibers. For example, the component ratio of Al 2 O 3 and SiO 2 after firing an aluminum oxychloride solution, an aqueous polyvinyl alcohol solution, and colloidal silica is within the above range. Mix and adjust the viscosity to make a stock solution for spinning. This spinning dope is dry-spun to obtain precursor fibers.

前駆体繊維の単繊維径は50μm以下のものが使用できるが、40μm以下のものを使用するのが好ましく、より好ましくは30μm以下である。繊維径が50μm以上だと、前駆体繊維の柔軟性が悪くなり、製編織工程で折れ易くなり、毛羽が発生したり、糸切れの原因となるので好ましくない。   The precursor fiber having a single fiber diameter of 50 μm or less can be used, but 40 μm or less is preferably used, and more preferably 30 μm or less. When the fiber diameter is 50 μm or more, the flexibility of the precursor fiber is deteriorated, and the fiber tends to be broken during the weaving and weaving process, which causes fuzz and breakage of the yarn.

本発明で用いる補強糸とは、250℃以下の乾熱処理で20%以上収縮し、かつ400℃以下の温度で熱分解し、焼成工程で残渣も霧散してしまう有機繊維なら何でも使用できる。補強糸の収縮温度は250℃以下で好ましくは200℃以下の糸条を用いる。また乾熱収縮率は20%以上であり、好ましくは25%以上、より好ましくは30%以上である糸条を用いる。さらにアルミナ長繊維前駆体との合糸あるいは撚糸によって乾熱収縮糸の収縮力が0.1cN/dtex以上、好ましくは0.2cN/dtex以上である糸条を用いる。収縮率が20%未満で、かつ収縮力が 0.1cN/dtex未満の糸条を用いると、アルミナ長繊維前駆体の収縮が軽微となるため、目的とする伸縮性と嵩高性を有するアルミナ長繊維またはアルミナ長繊維成形体が得られにくくなるので好ましくない。   As the reinforcing yarn used in the present invention, any organic fiber can be used as long as it shrinks by 20% or more by a dry heat treatment at 250 ° C. or less, is thermally decomposed at a temperature of 400 ° C. or less, and the residue is also scattered in the baking process. The shrinkage temperature of the reinforcing yarn is 250 ° C. or lower, preferably 200 ° C. or lower. Further, a yarn having a dry heat shrinkage rate of 20% or more, preferably 25% or more, more preferably 30% or more is used. Further, a yarn having a shrinkage force of the dry heat shrinkable yarn of 0.1 cN / dtex or more, preferably 0.2 cN / dtex or more by using a yarn or a twisted yarn with an alumina long fiber precursor is used. When a yarn having a shrinkage rate of less than 20% and a shrinkage force of less than 0.1 cN / dtex is used, the alumina long fiber precursor shrinks lightly, so the alumina long fiber having the desired stretchability and bulkiness. Alternatively, it is not preferable because it becomes difficult to obtain an alumina long fiber molded body.

用いられる補強糸の例としては、ポリオレフィン系繊維、ポリビニルアルコール系繊維、ポリ塩化ビニル系繊維、ポリアミド系繊維、ポリエステル系繊維などの乾熱処理時に収縮を伴う繊維が挙げられる。なかでも低ケン化ポリビニルアルコール系繊維は200℃以下の温度で20%以上の収縮率と0.1cN/dtex以上の収縮力を有し、熱溶融温度と熱分解温度も300℃以下であり、本発明に使用する補強糸として好ましい特性を有している。使用する補強糸の太さは撚糸した際、前駆体繊維の太さとバランスがとれるような太さのものを使用するのが好ましいが、焼成時発生する補強糸からの灰分がアルミナ繊維の表面に残存することもあり、アルミナ繊維の表面がざらついたり、強度が低下することもあるため、できるだけ灰分の発生が少ない細繊度の糸を用いるのが好ましい。   Examples of reinforcing yarns that can be used include fibers that shrink during dry heat treatment, such as polyolefin fibers, polyvinyl alcohol fibers, polyvinyl chloride fibers, polyamide fibers, and polyester fibers. Among them, the low saponified polyvinyl alcohol fiber has a shrinkage ratio of 20% or more and a shrinkage force of 0.1 cN / dtex or more at a temperature of 200 ° C. or less, and a heat melting temperature and a thermal decomposition temperature of 300 ° C. or less. It has preferable characteristics as a reinforcing yarn used in the invention. The thickness of the reinforcing yarn to be used is preferably such that when the yarn is twisted, the thickness of the reinforcing fiber is balanced with the thickness of the precursor fiber, but the ash from the reinforcing yarn generated during firing is present on the surface of the alumina fiber. It may remain, and the surface of the alumina fiber may become rough or the strength may be lowered. Therefore, it is preferable to use a fine yarn having as little ash as possible.

アルミナ長繊維前駆体は含有する水分率が高いと焼成後のアルミナ長繊維の物性が低下することが知られているので、合撚糸または成形体の水分率は15%以下で取扱い、好ましくは水分率10%以下で取扱う。必要に応じ合撚糸または成形体に含まれる水分を除去して焼成すべくこれらを80℃から120℃で熱処理し、一部の水分を蒸発させた後に昇温して焼成する手法を採用してもよい。   Since it is known that the alumina long fiber precursor contains a high moisture content, the physical properties of the alumina long fiber after firing are known to deteriorate. Handle at a rate of 10% or less. If necessary, heat treatment is performed at 80 ° C to 120 ° C to remove moisture contained in the plied yarn or the molded body, and after a part of the moisture is evaporated, the temperature is raised and fired. Also good.

アルミナ長繊維前駆体を上記水分率以下にするためには、前駆体繊維と補強糸を合糸、撚糸、製編織する際および焼成する前の合撚糸や成形体を保管する雰囲気を相対湿度が50%以下、好ましくは40%以下で行なう。相対湿度が50%を越える雰囲気では、前駆体繊維が水分を吸着し、その水分率が15%を越え、焼成後得られるアルミナ長繊維の強度が低下したり、剛直化して繊維が折れ易くなったりするような悪影響を与えるので好ましくない。   In order to make the alumina long fiber precursor less than the above moisture content, the relative humidity of the atmosphere in which the precursor fiber and the reinforcing yarn are stored in the combined yarn, the twisted yarn, the weaving and knitting and the pre-fired twisted yarn and the molded body is stored. 50% or less, preferably 40% or less. In an atmosphere where the relative humidity exceeds 50%, the precursor fiber adsorbs moisture, the moisture content exceeds 15%, the strength of the alumina continuous fiber obtained after firing is reduced, or the fiber becomes apt to be broken due to rigidity. It is not preferable because it has an adverse effect.

本発明で云う合糸または撚糸とは次のような概念を云う。合糸とは前駆体繊維と補強糸とを引揃えた状態のことであり、実作業では二つのボビンから引出した状態で編機に供給して編地を作製する。撚糸とは前駆体繊維と補強糸を引揃えて撚りをかけて作製する合撚糸と、前駆体繊維の回りを補強糸でカバーリングするカバーリング糸を含んでいる。合撚糸の場合の撚数は400T/M以下が好ましく、カバーリング糸の場合は2,000T/M以下の撚数が好ましい。   The combined yarn or twisted yarn in the present invention refers to the following concept. The combined yarn is a state in which the precursor fiber and the reinforcing yarn are aligned, and in actual work, the yarn is supplied to the knitting machine in a state of being drawn out from two bobbins to produce a knitted fabric. The twisted yarn includes a synthetic twisted yarn that is produced by twisting together precursor fibers and reinforcing yarns, and a covering yarn that covers around the precursor fibers with reinforcing yarns. In the case of a twisted yarn, the number of twists is preferably 400 T / M or less, and in the case of a covering yarn, a number of twists of 2,000 T / M or less is preferred.

合撚糸の場合、撚数が400T/Mを越えると、撚糸時にアルミナ長繊維前駆体の糸切れが多発するばかりか、高撚数のため乾熱収縮糸の収縮が組織的に抑えられ、伸縮性と嵩高性を発現させる捲縮の程度が軽微になるので好ましくないが、補強糸が収縮する際、アルミナ長繊維前駆体を引き連れて収縮し、アルミナ長繊維前駆体にクリンプを生じさせるために最低でも20T/M以上の撚数が必要である。   In the case of a twisted yarn, if the number of twists exceeds 400 T / M, not only the yarn breakage of the alumina long fiber precursor frequently occurs at the time of twisting, but also the shrinkage of the dry heat shrinkable yarn is systematically suppressed due to the high twist number, and the expansion and contraction This is not preferable because the degree of crimping that develops the properties and bulkiness becomes small, but when the reinforcing yarn shrinks, the alumina long fiber precursor is contracted to shrink and the alumina long fiber precursor is crimped. A minimum number of twists of 20 T / M or more is required.

カバーリング糸の良い点は前駆体繊維を芯にして補強糸で表面全体を覆うことができることである。前駆体繊維の表面は酸性度が強いため、撚糸機や編機のガイド、編針に直接触れて腐食させる危険性があるが、前駆体繊維は表面を補強糸で覆われているため、この危険性を少なくすることができる。   The good point of the covering yarn is that the entire surface can be covered with the reinforcing yarn with the precursor fiber as the core. Since the surface of the precursor fiber is highly acidic, there is a risk of corroding it by directly touching the guides and knitting needles of the twisting machine and knitting machine, but this is dangerous because the surface of the precursor fiber is covered with reinforcing yarn. The sex can be reduced.

アルミナ長繊維自体に目的とする物性を付与する場合には、アルミナ長繊維前駆体と補強糸とは合撚することが必要で、その撚数も先述したように20T/M以上にする。20T/M未満では捲縮付与が困難になる。アルミナ長繊維の捲縮が多く発現した糸条の方がバネ効果が強くなり、より優れた伸縮性と嵩高性を有するアルミナ長繊維またはアルミナ長繊維成形体が得られる。   In order to impart desired physical properties to the alumina long fiber itself, it is necessary to twist the alumina long fiber precursor and the reinforcing yarn, and the number of twists is set to 20 T / M or more as described above. If it is less than 20 T / M, it is difficult to impart crimp. A yarn in which the crimps of the alumina long fiber are expressed more has a stronger spring effect, and an alumina long fiber or an alumina long fiber molded body having more excellent stretchability and bulkiness can be obtained.

前駆体繊維と補強糸は引揃えることにより製編織することができる。しかし、撚糸した方が好ましい。前駆体繊維と補強糸を合撚する場合の撚数は、両糸がバラケない程度に撚りがかかっていればよく、特別に限定されるものではないが、製編織時通糸ガイドなどでしごかれて、どちらかの糸にタルミが生じないようにしなければならない。このため撚数は400T/M以下が好ましく、50〜350T/Mの範囲がより好ましく、100〜300T/Mの範囲がより好ましい。   The precursor fiber and the reinforcing yarn can be knitted and woven by drawing them together. However, twisted yarn is preferred. The number of twists in the case where the precursor fiber and the reinforcing yarn are twisted is not particularly limited as long as the two yarns are twisted to the extent that they are not loosened. It is necessary to make sure that either thread does not have tarmi. For this reason, the number of twists is preferably 400 T / M or less, more preferably in the range of 50 to 350 T / M, and even more preferably in the range of 100 to 300 T / M.

カバーリング糸の場合の撚数は、2,000T/M以下が好ましい。撚糸は前駆体繊維と補強糸の繊度及び補強糸の種類によって撚糸方法と撚数を選択する。   The number of twists in the case of covering yarn is preferably 2,000 T / M or less. The twisting method and the number of twists are selected according to the fineness of the precursor fiber and the reinforcing yarn and the type of the reinforcing yarn.

伸縮性と嵩高性に富むアルミナ長繊維を得ようとする場合は、前駆体繊維と補強糸の合撚糸を250℃以下の温度で熱処理して補強糸を収縮させ、次いで加熱焼成することにより目的物を得ることができる。   When it is intended to obtain an alumina long fiber rich in elasticity and bulkiness, the target yarn is contracted by heat-treating the pre-twisted yarn of the precursor fiber and the reinforcing yarn at a temperature of 250 ° C. or lower, and then heated and fired. You can get things.

また成形体を得る場合は、得られた引揃え糸または撚糸を製編織する。得られた引揃え糸または撚糸は補強糸により補強されているため、通常の織機や編機により高速で製編織することができる。編物の場合、緯編機や丸編機で編成するのが好ましい。経編の場合は糸を整経しなければならないため、糸に毛羽が発生し易くなるためである。それに緯編機や丸編機で編成した編地は伸縮し易い編組織が得られ易い。編巾は用途に応じて調整すればよい。   Moreover, when obtaining a molded object, the obtained aligned yarn or twisted yarn is knitted and woven. Since the obtained aligned yarn or twisted yarn is reinforced by the reinforcing yarn, it can be knitted and woven at high speed by a normal loom or knitting machine. In the case of a knitted fabric, it is preferable to use a weft knitting machine or a circular knitting machine. This is because in the case of warp knitting, the yarn must be warped, so that fluff is likely to occur in the yarn. In addition, a knitted fabric knitted with a weft knitting machine or a circular knitting machine is easy to obtain a knitted structure that easily stretches. The knitting width may be adjusted according to the application.

引揃え糸または撚糸を編成する場合注意しなければならないことは、その後の焼成工程で生じる収縮を考慮した組織、密度にしなければならないということである。糸の収縮は焼成温度やその他の条件により異なってくるが、糸自体としては30〜40%程度の収縮が見られるのが普通である。そのため編み密度が高いと編組織により糸が拘束され、糸が収縮できず、伸縮性が得られなくなるばかりでなく、アルミナ繊維が折れ、毛羽が発生することもある。   When knitting a draw yarn or twisted yarn, care must be taken that the structure and density should be taken into account the shrinkage that occurs in the subsequent firing step. Although the shrinkage of the yarn varies depending on the firing temperature and other conditions, the shrinkage of about 30 to 40% is usually observed as the yarn itself. For this reason, if the knitting density is high, the yarn is restrained by the knitting structure, the yarn cannot be contracted and the stretchability cannot be obtained, and the alumina fiber may be broken and fluff may be generated.

得られた編物を焼成するのであるが、焼成時張力をかけすぎないことである。張力がかかりすぎると、編組織が伸ばされた状態で焼成されるため、所望の伸縮性が得られないことがあるので注意しなければならない。   The obtained knitted fabric is fired, but the tension during firing is not excessively applied. If too much tension is applied, the knitted structure is fired in a stretched state, so that desired stretchability may not be obtained, so care must be taken.

織物の場合は、通常の織機で前駆体繊維と補強糸の合糸または撚糸を織成する。得られた織物は250℃以下の温度で熱処理する。この熱処理で補強糸が収縮するため、前駆体繊維にループ形態やクリンプが生じ、その後の焼成でループやクリンプが固定されるため伸縮性と嵩高性が付与されるのである。   In the case of a woven fabric, a combined yarn or a twisted yarn of a precursor fiber and a reinforcing yarn is woven with a normal loom. The obtained fabric is heat-treated at a temperature of 250 ° C. or lower. Since the reinforcing yarn shrinks by this heat treatment, a loop form and a crimp are generated in the precursor fiber, and the loop and the crimp are fixed by subsequent firing, so that elasticity and bulkiness are imparted.

加熱処理はまず補強糸の収縮処理から始める。第一工程として250℃以下に加熱した焼成炉に入れ、補強糸を収縮させる。収縮させた後、400℃〜550℃に加熱した焼成炉で補強糸を熱分解させる第二工程を経て、800℃以上の温度に加熱した焼成炉で前駆体繊維の焼成を進める第三工程からなる。第一工程、第二工程および第三工程は別々の工程で行うこともできるが、全工程を連続して行うこともできる。乾熱処理、熱分解処理、焼成処理は空気雰囲気で行うことができる。   First, the heat treatment starts with shrinkage treatment of the reinforcing yarn. As a first step, the reinforcing yarn is shrunk in a baking furnace heated to 250 ° C. or lower. From the third step in which the precursor fibers are fired in a firing furnace heated to a temperature of 800 ° C. or higher after being shrunk and then subjected to a second step of thermally decomposing the reinforcing yarn in a firing furnace heated to 400 ° C. to 550 ° C. Become. Although a 1st process, a 2nd process, and a 3rd process can also be performed by a separate process, all the processes can also be performed continuously. Dry heat treatment, pyrolysis treatment, and firing treatment can be performed in an air atmosphere.

以下、本発明を実施例により具体的に説明する。
(実施例1)
オキシ塩化アルミニウム溶液、コロイド状シリカおよびポリビニルアルコール水溶液を混合し、原液粘度を調整した紡糸原液を乾式紡糸して1800dtex/640Fのアルミナ長繊維前駆体を得た。この前駆体繊維の単繊維の直径は15μmであった。この前駆体繊維200℃で40%の収縮率を有する62dtexの低ケン化ポリビニルアルコール繊維とを撚糸機に200T/Mの撚数に合撚した。この合撚糸を昇温速度100℃/hrで200℃に昇温して熱処理した後、さらに100℃/hrで350℃に昇温して低ケン化ポリビニルアルコール繊維を熱分解させ、次いで300℃/hrで1150℃まで昇温して1時間焼成し、アルミナ長繊維を得た。得られたアルミナ長繊維は捲縮が発現し、伸縮性と嵩高性を有するアルミナ長繊維であった。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
An aluminum oxychloride solution, colloidal silica, and an aqueous polyvinyl alcohol solution were mixed, and a spinning stock solution with adjusted stock viscosity was dry-spun to obtain an alumina long fiber precursor of 1800 dtex / 640F. The diameter of the single fiber of this precursor fiber was 15 μm. This precursor fiber and 62 dtex low-saponified polyvinyl alcohol fiber having a shrinkage of 40% at 200 ° C. were twisted in a twisting machine to a twist number of 200 T / M. After heating this synthetic twisted yarn to 200 ° C. at a rate of temperature increase of 100 ° C./hr, the temperature was further increased to 350 ° C. at 100 ° C./hr to thermally decompose the low saponified polyvinyl alcohol fiber, and then 300 ° C. The temperature was raised to 1150 ° C./hr and fired for 1 hour to obtain alumina long fibers. The obtained alumina long fiber was an alumina long fiber exhibiting crimp and having stretchability and bulkiness.

(比較例1)
実施例1と同様にして作製した前駆体繊維を20番手の綿糸と200T/Mで合撚し、実施例1と同様の操作で熱処理、熱分解、焼成を行ってアルミナ長繊維を得た。得られたアルミナ長繊維は捲縮が発現しておらず、直線状のアルミナ長繊維となった。
(Comparative Example 1)
Precursor fibers produced in the same manner as in Example 1 were twisted together with 20th cotton yarn at 200 T / M, and heat treatment, thermal decomposition and firing were performed in the same manner as in Example 1 to obtain alumina continuous fibers. The obtained alumina long fiber did not express crimp, and became a linear alumina long fiber.

(実施例2)
実施例1と同様にしてアルミナ長繊維前駆体を得た。この前駆体繊維200℃で40%の収縮率を有する110dtexの低ケン化ポリビニルアルコール繊維とを撚糸機に200T/Mの撚数に合撚し、丸編機にてメリヤス編みにした。(編径:3.5inch、針数:100本)。
(Example 2)
In the same manner as in Example 1, an alumina long fiber precursor was obtained. The precursor fibers and 110dtex having a 40% shrinkage at 200 ° C. and a low saponified polyvinyl alcohol fibers and Goyo to twist number of 200T / M Te in twisting machine, and the knitted at a circular knitting machine. (Knitting diameter: 3.5inch, number of needles: 100).

この編物を昇温速度100℃/hrで200℃に昇温して熱処理した後、さらに100℃/hrで350℃に昇温して低ケン化ポリビニルアルコール繊維を熱分解させ、次いで300℃/hrで1100℃まで昇温して1時間焼成し、アルミナ長繊維編物を得た。得られたアルミナ長繊維編物は前駆体メリヤス編物に比べ60%収縮しており、優れた伸縮性を有するアルミナ長繊維編物であった。   The knitted fabric was heated to 200 ° C. at a heating rate of 100 ° C./hr and then heat-treated, and further heated to 350 ° C. at 100 ° C./hr to thermally decompose the low saponified polyvinyl alcohol fiber, and then 300 ° C./hr. The temperature was raised to 1100 ° C. in hr and baked for 1 hour to obtain an alumina long fiber knitted fabric. The obtained alumina long fiber knitted fabric was 60% contracted compared to the precursor knitted fabric, and was an alumina long fiber knitted fabric having excellent stretchability.

得られた編物は良好な伸縮性を有し、500g荷重時の伸長率はタテ方向に90%、ヨコ方向に115%を示した。ここで、500g荷重時の伸長率は、つかみ間隔100mm、試料巾25mmの試料を定長引張試験機にて引張速度40mm/minで引張試験を行い、得られた荷重−伸長曲線より500g荷重時の伸長率を算出した。   The obtained knitted fabric had good stretchability, and the elongation rate under a load of 500 g was 90% in the vertical direction and 115% in the horizontal direction. Here, the elongation rate at 500 g load is that the sample with a grip interval of 100 mm and a sample width of 25 mm is subjected to a tensile test at a tensile speed of 40 mm / min with a constant-length tensile tester, and from the obtained load-elongation curve at 500 g load. The elongation rate was calculated.

また得られた編物の嵩高性は5.2cm 3 /gを示し、嵩高性に富んだものであった。嵩高性はJIS L1018(ニット生地試験方法)の嵩高性測定方法に準じ、下記の式により算出した。

嵩高性(cm 3 /g)= t/W x 1000

ここで、W:質量(g/m2) , t:厚さ(mm)
Further, the bulkiness of the obtained knitted fabric was 5.2 cm 3 / g , which was rich in bulkiness. The bulkiness was calculated by the following formula according to the bulkiness measurement method of JIS L1018 ( Knit Fabric Test Method).

Bulkiness ( cm 3 / g ) = t / W x 1000

Where W: mass (g / m 2 ), t: thickness (mm)

(比較例2)
比較例1と同様にして、40番手の綿糸と合撚した前駆体繊維を丸編機にてメリヤス編みにした。この編物を昇温速度100℃/hrで200℃に昇温して熱処理した後、さらに100℃/hrで350℃に昇温して綿糸を熱分解させ、次いで300℃/hrで1100℃まで昇温して1時間焼成し、アルミナ長繊維編物を得た。得られたアルミナ長繊維編物は編組織自体が有する伸縮性は示すものの、高度の伸縮性はしめさず、500g荷重時の伸長率はタテ方向に27%、ヨコ方向に31%を示した。嵩高性も編組織自体が有する数値(2.1cm 3 /g)に止まった。
(Comparative Example 2)
In the same manner as in Comparative Example 1, the precursor fiber twisted with 40th cotton yarn was knitted with a circular knitting machine. The knitted fabric was heated to 200 ° C at a heating rate of 100 ° C / hr and then heat-treated, and further heated to 350 ° C at 100 ° C / hr to thermally decompose the cotton yarn, and then to 1100 ° C at 300 ° C / hr. The temperature was raised and firing was performed for 1 hour to obtain an alumina long fiber knitted fabric. The obtained alumina long fiber knitted fabric showed the stretchability of the knitted structure itself, but did not show a high degree of stretchability, and the elongation at 500 g load was 27% in the vertical direction and 31% in the horizontal direction. The bulkiness was also limited to the numerical value (2.1 cm 3 / g ) of the knitting structure itself.

(実施例3)
実施例1と同様にしてアルミナ長繊維前駆体を得た。この前駆体繊維を110dtexの熱収縮ポリエステル糸でカバーリング撚糸した。カバーリング撚数は1000T/Mとした。このカバーリング糸を丸編機にてメリヤス編みした。(編径:3.5inch、針数:100本)。
(Example 3)
In the same manner as in Example 1, an alumina long fiber precursor was obtained. This precursor fiber was covered and twisted with 110 dtex of heat shrinkable polyester yarn. The number of twists of the cover ring was 1000 T / M. This covering yarn was knitted on a circular knitting machine. (Knitting diameter: 3.5inch, number of needles: 100).

この編物を昇温速度100℃/hrで200℃に昇温して収縮熱処理後、さらに100℃/hrで380℃に昇温してポリエステル糸を熱分解させ、次いで300℃/hrで1200℃まで昇温して1時間焼成し、アルミナ長繊維編物を得た。得られたアルミナ長繊維編物は前駆体メリヤス編物に比べ53%収縮しており、優れた伸縮性を有するアルミナ長繊維編物であった。500g荷重時の伸長率はタテ方向に83%、ヨコ方向に109%を示した。また編物の嵩高性は4.8cm 3 /gを示し、嵩高性に富んだものであった。 The knitted fabric was heated to 200 ° C. at a heating rate of 100 ° C./hr and subjected to shrink heat treatment, and further heated to 380 ° C. at 100 ° C./hr to thermally decompose the polyester yarn, and then 1200 ° C. at 300 ° C./hr. The mixture was heated up to 1 hour and fired for 1 hour to obtain an alumina long fiber knitted fabric. The obtained alumina long fiber knitted fabric was 53% contracted compared to the precursor knit knitted fabric, and was an alumina long fiber knitted fabric having excellent stretchability. The elongation rate at a load of 500 g was 83% in the vertical direction and 109% in the horizontal direction. Further, the bulkiness of the knitted fabric was 4.8 cm 3 / g , which was rich in bulkiness.

本発明の優れた伸縮性と嵩高性を併せ持つアルミナ長繊維またはアルミナ繊維成形体は良好なクッション性を有するため優れた耐熱性を有する表面保護材として利用でき、その優れた伸縮性のため複雑な形状の物体への貼り付けが可能となり、例えば曲面ガラスを製造する際に用いられるガラス成形用保護材料として使用できる。また、本発明の捲縮が付与されたアルミナ長繊維は、短繊維にカットすることによってフェルト等の不織布加工が容易となる。
The alumina long fiber or the alumina fiber molded body having both excellent stretchability and bulkiness according to the present invention has a good cushioning property and can be used as a surface protection material having excellent heat resistance, and is complicated due to its excellent stretchability. It can be attached to an object having a shape, and can be used, for example, as a protective material for glass molding used in producing curved glass. Moreover, the alumina continuous fiber to which the crimp of this invention was provided becomes easy for nonwoven fabrics processing, such as a felt, by cutting into a short fiber.

Claims (4)

アルミナ長繊維前駆体と乾熱処理により収縮する補強糸を合撚した後、乾熱処理次いで焼成して得られる優れた伸縮性と嵩高性を有するアルミナ長繊維。   An alumina long fiber having excellent stretchability and bulkiness obtained by twisting an alumina long fiber precursor and a reinforcing yarn that shrinks by dry heat treatment, followed by dry heat treatment and then firing. アルミナ長繊維前駆体と乾熱処理により収縮する補強糸を合糸または撚糸し、製編織して成形体とした後、乾熱処理次いで焼成して得られる優れた伸縮性と嵩高性を有するアルミナ長繊維成形体。   Alumina long fiber having excellent stretchability and bulkiness obtained by combining or twisting an alumina long fiber precursor and a reinforcing yarn that shrinks by dry heat treatment, knitting and weaving into a molded body, followed by dry heat treatment and firing Molded body. 250℃以下の乾熱処理で20%以上収縮し、かつ400℃以下の温度で熱分解する有機繊維からなる補強糸とアルミナ長繊維前駆体とを20T/M以上、400T/M以下の撚数で合撚し、250℃以下の温度で乾熱処理して補強糸を収縮させ、次いで加熱焼成して補強糸を熱分解させることを特徴とする請求項1記載の優れた伸縮性と嵩高性を有するアルミナ長繊維の製造方法。   Reinforcing yarn composed of organic fiber that shrinks by 20% or more by dry heat treatment at 250 ° C. or less and thermally decomposes at a temperature of 400 ° C. or less and an alumina long fiber precursor at a twist number of 20 T / M or more and 400 T / M or less. 2. The excellent stretchability and bulkiness according to claim 1, wherein the twisted yarn is subjected to a dry heat treatment at a temperature of 250 ° C. or less to shrink the reinforcing yarn, and then heated and fired to thermally decompose the reinforcing yarn. A method for producing alumina long fibers. 250℃以下の乾熱処理で20%以上収縮し、かつ400℃以下の温度で熱分解する有機繊維からなる補強糸とアルミナ長繊維前駆体とを2,000T/M以下の撚数で合糸または撚糸し、製編織して成形体とした後、250℃以下の温度で乾熱処理して補強糸を収縮させ、次いで加熱焼成して補強糸を熱分解させることを特徴とする請求項2記載の優れた伸縮性と嵩高性を有するアルミナ長繊維成形体の製造方法。
A reinforcing yarn made of organic fiber that shrinks by 20% or more by a dry heat treatment of 250 ° C. or less and thermally decomposes at a temperature of 400 ° C. or less and an alumina long fiber precursor are combined with a twist number of 2,000 T / M or less. 3. The yarn according to claim 2, wherein the yarn is twisted and knitted and woven to form a molded body, and then the heat treatment is dry heat-treated at a temperature of 250 ° C. or less to shrink the reinforcing yarn, and then the heat is fired to thermally decompose the reinforcing yarn. A method for producing an alumina long fiber molded article having excellent stretchability and bulkiness.
JP2004201315A 2004-07-08 2004-07-08 Alumina long fiber or alumina long fiber molded article having excellent stretchability and bulkiness and method for producing the same Active JP3976145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201315A JP3976145B2 (en) 2004-07-08 2004-07-08 Alumina long fiber or alumina long fiber molded article having excellent stretchability and bulkiness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201315A JP3976145B2 (en) 2004-07-08 2004-07-08 Alumina long fiber or alumina long fiber molded article having excellent stretchability and bulkiness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006022431A JP2006022431A (en) 2006-01-26
JP3976145B2 true JP3976145B2 (en) 2007-09-12

Family

ID=35795912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201315A Active JP3976145B2 (en) 2004-07-08 2004-07-08 Alumina long fiber or alumina long fiber molded article having excellent stretchability and bulkiness and method for producing the same

Country Status (1)

Country Link
JP (1) JP3976145B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183328B2 (en) * 2008-07-03 2013-04-17 地方独立行政法人 東京都立産業技術研究センター Knitted body and method for manufacturing the same

Also Published As

Publication number Publication date
JP2006022431A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4454048B2 (en) Heat-resistant glass sliver containing Al ▲ lower 2 ▼ O ▲ lower 3 ▼ having high fabric suitability and product thereof
US8635846B2 (en) Fire retardant fabrics and methods for making the same
JPH0670286B2 (en) Carbonaceous fiber
JP7015697B2 (en) Multi-layered woven and knitted fabrics and textiles
JP2008069475A (en) Composite yarn and fiber structure
JP3976145B2 (en) Alumina long fiber or alumina long fiber molded article having excellent stretchability and bulkiness and method for producing the same
JPS6132412B2 (en)
JP4688654B2 (en) Compound twisted yarn
JP2006022430A (en) Alumina filament knitted fabric having stretchability and method for producing the same
TW201641760A (en) Spun metal fiber yarn
JP4815280B2 (en) Compound twisted yarn
JP3511611B2 (en) Woven and knitted fabric excellent in wear resistance and method for producing the same
JP4710249B2 (en) Spun-tone polyamide composite thread and its manufacturing method
KR100496516B1 (en) Manufacturing method of polyester posture working
JP4838657B2 (en) Acetate-based false twisted yarn and fabric and method for producing the same
JP5147338B2 (en) Heat-resistant elastic filamentous body and method for producing the same
JP4366969B2 (en) Method and apparatus for manufacturing false twisted yarn
JP2015089981A (en) False twisted polyolefin fiber
JP2960634B2 (en) Polyester double-layer yarn with excellent refreshing feeling
JPH089816B2 (en) Stretch yarn manufacturing method
JP2006002309A (en) Ultrafine polyester false-twist crimped textured yarn, method for producing the same and woven or knit fabric
KR100493112B1 (en) Manufacturing method of deep sea type composite processing
JP2002294568A (en) Carbon fiber bundle for filament winding
JP2021188156A (en) False-twisted yarn, and woven or knitted fabric
JP2019206768A (en) Polyester highly crimped textured yarn, woven or knitted fabric, and method for manufacturing polyester highly crimped textured yarn

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3976145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250