JP3974475B2 - Electrostatic chuck apparatus and substrate processing method using the apparatus - Google Patents

Electrostatic chuck apparatus and substrate processing method using the apparatus Download PDF

Info

Publication number
JP3974475B2
JP3974475B2 JP2002228210A JP2002228210A JP3974475B2 JP 3974475 B2 JP3974475 B2 JP 3974475B2 JP 2002228210 A JP2002228210 A JP 2002228210A JP 2002228210 A JP2002228210 A JP 2002228210A JP 3974475 B2 JP3974475 B2 JP 3974475B2
Authority
JP
Japan
Prior art keywords
phase
voltage
substrate
electrostatic chuck
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002228210A
Other languages
Japanese (ja)
Other versions
JP2003332412A (en
Inventor
浩一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2002228210A priority Critical patent/JP3974475B2/en
Publication of JP2003332412A publication Critical patent/JP2003332412A/en
Application granted granted Critical
Publication of JP3974475B2 publication Critical patent/JP3974475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハ等の基板を吸着、保持するための静電チャック装置に関し、特に、速やかな基板の吸着と離脱を実現し、かつ、基板の振動の無い、静電チャック装置に関する。
【0002】
【従来の技術】
半導体製造装置等における半導体ウエハ等の基板を吸着、保持する方法として、従来より、静電気力により基板を吸着、保持する、いわゆる静電チャックが用いられている。これらには、単一の電極を有し、その電極に接地電位に対しいくらかの電圧を印加し、他方、基板がプラズマ等を介して接地されることにより、基板と前記電極との間に発生する静電気力を利用する、いわゆるモノポール型の静電チャック、また、一対または複数対の電極を有し、その電極間に電圧を印加し、基板に誘起される逆極性の電荷と前記電極との間に発生する静電気力を利用する、いわゆるダイポール型の静電チャックがある。
【0003】
また、上記の単一、または、一対または複数対の電極に印加する電圧は、直流電圧の場合と単相の交流電圧の場合がある。
【0004】
なお、この種の装置として関連するものには、例えば、特開平7−273177号公報、特開平9−213780号公報、特開平6−244271号公報等が挙げられる。
【0005】
【発明が解決しようとする課題】
しかし、前記従来の技術には以下のような問題がある。まず、直流電圧を印加する方法においては、モノポール型、ダイポール型とも、基板を吸着している間、基板裏面に電荷が蓄積され、この電荷の蓄積により基板の離脱が困難となる。特に、プラズマ処理装置のように、基板がプラズマと接している場合は、基板がプラズマを介して接地電位に対し負電位となるため、電荷の蓄積量はプラズマの状態により変化し、基板裏面への電荷の蓄積過程はより複雑になる。従来はこの蓄積された電荷を除去する方法として、例えば、特開平7−273177号公報や、特開平9−213780号公報に示されるように、除電と呼ばれる逆電圧を印加する等の処理を実施している。しかし、いずれにおいても、この除電の処理のため、装置のスループットを低下させるという問題がある。
【0006】
これに対し、特開平6−244271号公報に示されるような単相の交流電圧を印加する方法は、基板裏面への電荷の蓄積がないため、基板の離脱の際に除電の処理を必要としない方法である。しかし、電圧がゼロとなる瞬間において、吸着力がゼロになり、その結果、基板が振動するという問題がある。
【0007】
本発明の目的は、前記直流電圧を印加する場合のような、基板の離脱の際に除電の処理を必要とせず、また、前記単相の交流電圧を印加する場合のような、基板の振動の無い、静電チャック装置及びその装置を用いた基板の処理方法を提供することにある。
【0008】
【課題を解決するための手段】
上記従来の技術の問題点を解決する手段として、n=2以上のn相交流電圧を印加する静電チャック装置を提案する。図1は、n=3の場合の3相交流電圧を印加する場合の基本構成を示す図面である。図1において基板5はR相電極1、S相電極2、T相電極3、及び、絶縁体4からなる試料台9に載置され、前記電極1、2、3には、スイッチ11を介して、3相交流電源6が接続される。スイッチ11のオン、及び、オフにより、基板5の吸着、及び、離脱が実施される。
【0009】
R相電極1、S相電極2、及び、T相電極3と基板5の間に印加される電圧の時間変化を図3に示す。また、基板5と試料台9の間に加わる吸着力の時間変化を図4に示す。図4に示されるとおり、基板5と試料台9に加わる吸着力はゼロにならず、この結果、基板は振動しない。
【0010】
また、電極1、2、3に印加される電圧の直流成分はゼロであるため、直流電圧を印加する場合のように基板裏面に電荷が蓄積されることも無い。また、プラズマ処理装置のように基板とプラズマが接し、基板が接地電位に対し負電位となる場合においても、3相交流電源6の1次側と2次側を絶縁し、電極1、2、3に3相交流電圧を供給する2次側を、接地電位に対し浮遊電位に維持することにより、基板5と電極1、2、3の間には直流電圧が生じず、基板裏面に電荷が蓄積することが無い。これにより、従来の方法のような除電の処理を必要とせず、スイッチ11のオン、及び、オフによって、速やかな基板の吸着、及び、離脱が実施される。
【0011】
すなわち、3相交流電圧を印加することにより、除電の処理を必要とせず、速やかな基板の吸着と離脱を実現し、かつ、基板の振動の無い、静電チャックを実現することができる。
【0012】
上記の効果はn=4以上のn相交流電圧を印加する場合においても同様に得られる。図2は、n=4の場合の4相交流電圧を印加する場合の基本構成を示す図である。
【0013】
また、上記の効果はn=2の2相交流電圧を印加する場合においても同様に得られる。図15は、n=2の場合の2相交流電圧を印加する場合の基本構成を示す図である。図16は、2相交流電源19のR相電圧、及び、S相電圧の時間変化を示す図である。R相電圧とS相電圧の位相を90°ずらすことにより、基板5と試料台9に加わる吸着力はゼロにならず、この結果、基板は振動しない。
【0014】
【発明の実施の形態】
本発明のうち、n=3の場合の3相交流電圧を印加する場合の静電チャック装置の一実施例を図5に示す。基板5はR相電極1、S相電極2、T相電極3、及び絶縁体4からなる試料台9に載置される。図5では、電極1、2、3は、基板5の載置面において、絶縁体4に覆われている例を示したが、基板5が液晶基板等のように裏面が絶縁体に覆われている場合は、電極1、2、3は基板5の載置面に露出していてもよい。電極1、2、3に印加される電圧、及び、周波数は絶縁体4の材質、基板の材質等により最適な電圧、及び、周波数が選定される。図5では、電極1、2、3に印加する電圧の実効値が400V、及び、周波数が、50Hz、或いは、60Hzの場合を示す。R相電極1、S相電極2、T相電極3にはトランス10、スイッチ11、過電流保護器12を介して商用3相交流電源13が接続される。図5では、トランス10は、Δ−Y結線の例を示したが、これはΔ−Δ結線、Y−Δ結線、Y−Y結線のいずれでも良い。トランス10の巻線比は、2次側の相電圧の実効値が400Vとなるよう1:2の巻線比となっている。巻線比は電極に印加される電圧が異なる場合やトランス10の結線が異なる場合は、それに合わせた巻線比としなければならない。印加する交流電圧の周波数は商用電源として供給される50Hz、或いは、60Hzである。トランス10は1次側と2次側が絶縁されており、プラズマ処理装置などにおいて基板5がプラズマを介して接地電位に対し負電位になったとしても、基板5と電極1、2、3の間に直流電圧は生じず、電荷が蓄積されることも無い。スイッチ11をオン、及び、オフすることにより、基板の吸着、及び、離脱が実施される。
【0015】
図6はn=3の場合の3相交流電圧を印加する場合の静電チャック装置の本発明に含まれない参考例を示す図面である。図6においてインバータ14の出力指令15のオン、及び、オフにより、基板の吸着、及び、離脱が実施される。制御器18からインバータ14への電圧指令16、及び、周波数指令17の指令値を変化させることにより、電極1、2、3と基板5との間に印加される3相交流電圧、及び、周波数に容易に変更できる。
【0016】
図7はn=3の場合の3相交流電圧を印加する場合の静電チャック装置における試料台9の本発明に含まれない参考例を示す平面図である。R相電極1、S相電極2、T相電極3の面積の比の値を1にしている。
【0017】
図8、図9、及び、図10はn=3の場合の3相交流電圧を印加する場合の静電チャック装置における試料台9の本発明に含まれない参考例を示す平面図である。R相電極1、S相電極2、T相電極3の面積の比の値を1にしている。
【0018】
図11、及び、図13は、静電チャック装置を用いた基板の処理方法の一実施例を示す図面である。図11は、当該実施例における基板の処理装置を示す図である。図11において試料台9は真空容器20内に設置され、基板5は試料台9に載置される。真空容器内にはプロセスガス21と、マイクロ波パワー24が導入され、プラズマ23が生成される。図13は、当該実施例における基板の処理方法を示すフロー図である。手続き41において基板5が試料台9に載置された後、手続き42において基板5が試料台9に吸着される。手続き44により基板5が処理された後、手続き46において基板5が試料台9より離脱され、手続き47において基板5が搬出される。
【0019】
本発明における静電チャック装置は、上記のようなプラズマを用いた基板の処理方法以外にも適用できる。図12、及び、図14は、静電チャック装置を用いた基板の処理方法の本発明に含まれない参考例を示す図である。図12は、本発明に含まれない参考例における基板の処理装置を示す図である。試料台9は真空容器20内に設置され、基板5は試料台9に載置される。真空容器内にはプロセスガス21が導入される。図14は、図12に示す装置を用いた場合の基板の処理方法を示すフロー図である。手続き51において基板5が試料台9に載置された後、手続き52において基板5が試料台9に吸着される。手続き54により基板5が処理された後、手続き56において基板5が試料台9より離脱され、手続き57において基板5が搬出される。
【0020】
【発明の効果】
本発明の静電チャック装置は、n=2以上のn相交流電圧を印加することにより、直流電圧を印加する場合のような基板裏面への電荷の蓄積がなく、また、単相の交流電圧を印加する場合のような吸着力がゼロになることが無いため、除電の処理を必要とせず、速やかな基板の吸着と離脱を実現し、かつ、基板の振動の無い、静電チャック装置を提供できる。
【図面の簡単な説明】
【図1】 =3の場合の3相交流電圧を印加する場合の基本構成を示す図。
【図2】 =4の場合の4相交流電圧を印加する場合の基本構成を示す図。
【図3】 =3の場合の3相交流電圧を印加する場合の電極1、2、3と基板5の間に印加される電圧の時間変化を示す図。
【図4】 =3の場合の3相交流電圧を印加する場合の基板5と試料台9の間に加わる吸着力の時間変化を示す図。
【図5】 =3の場合の3相交流電圧を印加する場合の静電チャック装置の一実施例。
【図6】 =3の場合の3相交流電圧を印加する場合の静電チャック装置の本発明に含まれない参考例
【図7】 =3の場合の3相交流電圧を印加する場合の静電チャック装置における試料台9の本発明に含まれない参考例を示す平面図。
【図8】 =3の場合の3相交流電圧を印加する場合の静電チャック装置における試料台9の本発明に含まれない参考例を示す平面図。
【図9】 =3の場合の3相交流電圧を印加する場合の静電チャック装置における試料台9の本発明に含まれない参考例を示す平面図。
【図10】 =3の場合の3相交流電圧を印加する場合の静電チャック装置における試料台9の本発明に含まれない参考例を示す平面図。
【図11】 電チャック装置を用いた基板の処理装置の一実施例。
【図12】 電チャック装置を用いた基板の処理装置の本発明に含まれない参考例
【図13】 電チャック装置を用いた基板の処理方法の一実施例を示すフロー図。
【図14】 電チャック装置を用いた基板の処理方法の本発明に含まれない参考例を示すフロー図。
【図15】 =2の場合の2相交流電圧を印加する場合の基本構成を示す図。
【図16】 =2の場合の2相交流電圧を印加する場合の2相交流電源のR相電圧、及び、S相電圧の時間変化を示す図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrostatic chuck apparatus for attracting and holding a substrate such as a semiconductor wafer, and more particularly to an electrostatic chuck apparatus that realizes rapid adsorption and detachment of a substrate and no vibration of the substrate.
[0002]
[Prior art]
As a method for attracting and holding a substrate such as a semiconductor wafer in a semiconductor manufacturing apparatus or the like, a so-called electrostatic chuck that attracts and holds a substrate by electrostatic force has been conventionally used. These have a single electrode and apply some voltage to the ground potential to the electrode, while the substrate is grounded via plasma etc., which occurs between the substrate and the electrode A so-called monopole-type electrostatic chuck that uses electrostatic force, or a pair of or a plurality of pairs of electrodes, a voltage is applied between the electrodes, and charges of opposite polarity induced on the substrate and the electrodes There is a so-called dipole type electrostatic chuck that uses the electrostatic force generated between the two.
[0003]
The voltage applied to the single electrode or a pair or a plurality of pairs of electrodes may be a DC voltage or a single-phase AC voltage.
[0004]
Examples of devices of this type include JP-A-7-273177, JP-A-9-213780, JP-A-6-244271, and the like.
[0005]
[Problems to be solved by the invention]
However, the conventional technique has the following problems. First, in the method of applying a DC voltage, in both the monopole type and the dipole type, charges are accumulated on the back surface of the substrate while the substrate is adsorbed, and the accumulation of this charge makes it difficult to remove the substrate. In particular, when the substrate is in contact with plasma as in a plasma processing apparatus, the substrate has a negative potential with respect to the ground potential through the plasma. The charge accumulation process becomes more complicated. Conventionally, as a method for removing the accumulated electric charge, for example, as shown in Japanese Patent Application Laid-Open No. 7-273177 and Japanese Patent Application Laid-Open No. 9-213780, a process of applying a reverse voltage called neutralization is performed. is doing. However, in any case, there is a problem that the throughput of the apparatus is lowered due to the process of static elimination.
[0006]
On the other hand, the method of applying a single-phase AC voltage as disclosed in Japanese Patent Laid-Open No. 6-244271 does not accumulate charges on the back surface of the substrate, and therefore requires a charge removal process when the substrate is detached. It is a way not to. However, at the moment when the voltage becomes zero, the adsorption force becomes zero, and as a result, there is a problem that the substrate vibrates.
[0007]
It is an object of the present invention to eliminate the need for a static elimination process when the substrate is detached as in the case of applying the DC voltage, and to vibrate the substrate as in the case of applying the single-phase AC voltage. It is an object of the present invention to provide an electrostatic chuck apparatus and a substrate processing method using the apparatus.
[0008]
[Means for Solving the Problems]
As a means for solving the problems of the conventional technique, an electrostatic chuck device that applies an n-phase AC voltage of n = 2 or more is proposed. FIG. 1 is a drawing showing a basic configuration when a three-phase AC voltage is applied when n = 3. In FIG. 1, a substrate 5 is placed on a sample stage 9 made up of an R-phase electrode 1, an S-phase electrode 2, a T-phase electrode 3, and an insulator 4. Thus, the three-phase AC power source 6 is connected. When the switch 11 is turned on and off, the substrate 5 is attracted and detached.
[0009]
FIG. 3 shows temporal changes in voltage applied between the R-phase electrode 1, the S-phase electrode 2, and the T-phase electrode 3 and the substrate 5. Further, FIG. 4 shows a change with time of the adsorption force applied between the substrate 5 and the sample stage 9. As shown in FIG. 4, the adsorption force applied to the substrate 5 and the sample stage 9 does not become zero, and as a result, the substrate does not vibrate.
[0010]
In addition, since the DC component of the voltage applied to the electrodes 1, 2, and 3 is zero, charges are not accumulated on the back surface of the substrate as in the case of applying a DC voltage. Further, even when the substrate and the plasma are in contact with each other as in the plasma processing apparatus and the substrate has a negative potential with respect to the ground potential, the primary side and the secondary side of the three-phase AC power source 6 are insulated, and the electrodes 1, 2, 3 is maintained at a floating potential with respect to the ground potential, so that no DC voltage is generated between the substrate 5 and the electrodes 1, 2 and 3, and there is no charge on the back surface of the substrate. There is no accumulation. As a result, the neutralization process as in the conventional method is not required, and the substrate is quickly adsorbed and detached by turning the switch 11 on and off.
[0011]
That is, by applying a three-phase AC voltage, it is possible to realize an electrostatic chuck that does not require static elimination processing, realizes quick substrate adsorption and detachment, and does not vibrate the substrate.
[0012]
The above effect can be similarly obtained when an n-phase AC voltage of n = 4 or more is applied. FIG. 2 is a diagram showing a basic configuration when a four-phase AC voltage is applied when n = 4.
[0013]
In addition, the above effect can be obtained in the same manner when a two-phase AC voltage of n = 2 is applied. FIG. 15 is a diagram illustrating a basic configuration in the case of applying a two-phase AC voltage when n = 2. FIG. 16 is a diagram showing temporal changes in the R-phase voltage and the S-phase voltage of the two-phase AC power supply 19. By shifting the phase of the R-phase voltage and the S-phase voltage by 90 °, the adsorption force applied to the substrate 5 and the sample stage 9 does not become zero, and as a result, the substrate does not vibrate.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 5 shows an embodiment of the electrostatic chuck device in the present invention when a three-phase AC voltage is applied when n = 3. The substrate 5 is placed on a sample stage 9 composed of an R-phase electrode 1, an S-phase electrode 2, a T-phase electrode 3, and an insulator 4. 5 shows an example in which the electrodes 1, 2, and 3 are covered with the insulator 4 on the mounting surface of the substrate 5. However, the back surface of the substrate 5 is covered with the insulator like a liquid crystal substrate. In this case, the electrodes 1, 2, and 3 may be exposed on the mounting surface of the substrate 5. As the voltage and frequency applied to the electrodes 1, 2, and 3, the optimum voltage and frequency are selected depending on the material of the insulator 4, the material of the substrate, and the like. FIG. 5 shows the case where the effective value of the voltage applied to the electrodes 1, 2, and 3 is 400 V, and the frequency is 50 Hz or 60 Hz. A commercial three-phase AC power supply 13 is connected to the R-phase electrode 1, the S-phase electrode 2, and the T-phase electrode 3 via a transformer 10, a switch 11, and an overcurrent protector 12. In FIG. 5, the transformer 10 shows an example of Δ-Y connection, but this may be any of Δ-Δ connection, Y-Δ connection, and YY connection. The winding ratio of the transformer 10 is 1: 2 so that the effective value of the secondary phase voltage is 400V. When the voltage applied to the electrodes is different or when the connection of the transformer 10 is different, the turns ratio must be set to match the turn ratio. The frequency of the AC voltage to be applied is 50 Hz or 60 Hz supplied as a commercial power source. In the transformer 10, the primary side and the secondary side are insulated, and even if the substrate 5 becomes a negative potential with respect to the ground potential via the plasma in a plasma processing apparatus or the like, the transformer 10 is not connected between the substrate 5 and the electrodes 1, 2, and 3. In this case, no DC voltage is generated and no charge is accumulated. By turning the switch 11 on and off, the substrate is adsorbed and detached.
[0015]
FIG. 6 is a drawing showing a reference example not included in the present invention of an electrostatic chuck device in the case of applying a three-phase AC voltage when n = 3. In FIG. 6, when the output command 15 of the inverter 14 is turned on and off, the substrate is attracted and detached. By changing the command value of the voltage command 16 and the frequency command 17 from the controller 18 to the inverter 14, the three-phase AC voltage and the frequency applied between the electrodes 1, 2, 3 and the substrate 5 are changed. Can be easily changed.
[0016]
FIG. 7 is a plan view showing a reference example not included in the present invention of the sample stage 9 in the electrostatic chuck apparatus in the case of applying a three-phase AC voltage when n = 3. The ratio of the area ratios of the R-phase electrode 1, the S-phase electrode 2, and the T-phase electrode 3 is set to 1.
[0017]
8, FIG. 9, and FIG. 10 are plan views showing a reference example not included in the present invention of the sample stage 9 in the electrostatic chuck apparatus in the case of applying a three-phase AC voltage when n = 3. The ratio of the area ratios of the R-phase electrode 1, the S-phase electrode 2, and the T-phase electrode 3 is set to 1.
[0018]
11 and 13 are views showing an embodiment of a substrate processing method using an electrostatic chuck device. FIG. 11 is a diagram showing a substrate processing apparatus in this embodiment. In FIG. 11, the sample stage 9 is installed in the vacuum container 20, and the substrate 5 is placed on the sample stage 9. A process gas 21 and a microwave power 24 are introduced into the vacuum container, and a plasma 23 is generated. FIG. 13 is a flowchart showing a substrate processing method in this embodiment. After the substrate 5 is placed on the sample table 9 in the procedure 41, the substrate 5 is adsorbed on the sample table 9 in the procedure 42. After the substrate 5 is processed by the procedure 44, the substrate 5 is detached from the sample stage 9 in the procedure 46, and the substrate 5 is unloaded in the procedure 47.
[0019]
The electrostatic chuck apparatus according to the present invention can be applied to a method other than the above-described substrate processing method using plasma. FIG. 12 and FIG. 14 are diagrams showing a reference example not included in the present invention of the substrate processing method using the electrostatic chuck device. FIG. 12 is a diagram showing a substrate processing apparatus in a reference example not included in the present invention . The sample stage 9 is installed in the vacuum container 20, and the substrate 5 is placed on the sample stage 9. A process gas 21 is introduced into the vacuum vessel. FIG. 14 is a flowchart showing a substrate processing method when the apparatus shown in FIG. 12 is used. After the substrate 5 is placed on the sample stage 9 in the procedure 51, the substrate 5 is adsorbed on the sample stage 9 in the procedure 52. After the substrate 5 is processed by the procedure 54, the substrate 5 is detached from the sample stage 9 in the procedure 56, and the substrate 5 is unloaded in the procedure 57.
[0020]
【The invention's effect】
The electrostatic chuck device of the present invention does not accumulate charges on the back surface of the substrate as in the case of applying a DC voltage by applying an n-phase AC voltage of n = 2 or more, and also has a single-phase AC voltage. An electrostatic chuck device that does not require neutralization processing, realizes quick substrate adsorption and detachment, and does not vibrate the substrate, because the adsorption force does not become zero as in the case of applying Can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a basic configuration when a three-phase AC voltage is applied when n = 3.
FIG. 2 is a diagram showing a basic configuration when a four-phase AC voltage is applied when n = 4.
FIG. 3 is a diagram illustrating a change with time of a voltage applied between electrodes 1, 2, 3 and a substrate 5 when a three-phase AC voltage is applied when n = 3.
FIG. 4 is a diagram showing a change with time of an adsorption force applied between a substrate 5 and a sample stage 9 when a three-phase AC voltage is applied when n = 3.
FIG. 5 shows an example of an electrostatic chuck device when a three-phase AC voltage is applied when n = 3.
FIG. 6 is a reference example not included in the present invention of an electrostatic chuck device in the case of applying a three-phase AC voltage when n = 3.
FIG. 7 is a plan view showing a reference example not included in the present invention of the sample stage 9 in the electrostatic chuck device in the case of applying a three-phase AC voltage when n = 3.
FIG. 8 is a plan view showing a reference example not included in the present invention of the sample stage 9 in the electrostatic chuck device in the case of applying a three-phase AC voltage when n = 3.
Figure 9 is a plan view showing a reference example not included in the present invention the sample stage 9 of the electrostatic chuck apparatus when applying the three-phase AC voltage in the case of n = 3.
FIG. 10 is a plan view showing a reference example not included in the present invention of the sample stage 9 in the electrostatic chuck device in the case of applying a three-phase AC voltage when n = 3.
FIG. 11 shows an embodiment of a substrate processing apparatus using an electrostatic chuck device.
FIG. 12 is a reference example not included in the present invention of a substrate processing apparatus using an electrostatic chuck device;
FIG. 13 is a flowchart showing one embodiment of a substrate processing method using an electrostatic chuck device.
FIG. 14 is a flowchart showing a reference example not included in the present invention of a substrate processing method using an electrostatic chuck device;
FIG. 15 is a diagram showing a basic configuration in the case of applying a two-phase AC voltage when n = 2.
FIG. 16 is a diagram showing temporal changes in the R-phase voltage and the S-phase voltage of the two-phase AC power supply when applying a two-phase AC voltage when n = 2.

Claims (4)

交流電圧を印加する静電チャック装置において、前記交流電圧はn=2以上のn相の交流電圧であって、該n相交流電圧を印加する電極と、前記各電極間を絶縁する絶縁体からなる試料台と、前記n相交流電圧を印加する回路とを具備した静電チャック装置であって、
前記n相交流電圧の印加回路は、n相交流電源の1次側と2次側を絶縁し、各電極にn相交流電圧を供給する2次側を、接地電位に対し浮遊電位に維持するように構成し、前記n相交流電源の1次側と2次側の絶縁は絶縁トランスにより実施され、吸着力をオン、オフするスイッチを絶縁トランスの1次側に設けたことを特徴とする静電チャック装置。
In the electrostatic chuck device for applying an AC voltage, the AC voltage is an n-phase AC voltage of n = 2 or more, and an electrode that applies the n-phase AC voltage and an insulator that insulates between the electrodes. An electrostatic chuck device comprising a sample stage and a circuit for applying the n-phase AC voltage ,
The application circuit for the n-phase AC voltage insulates the primary side and the secondary side of the n-phase AC power source, and maintains the secondary side for supplying the n-phase AC voltage to each electrode at a floating potential with respect to the ground potential. The primary side and the secondary side of the n-phase AC power source are insulated by an insulating transformer, and a switch for turning on / off the adsorption force is provided on the primary side of the insulating transformer. Electrostatic chuck device.
請求項1記載の静電チャック装置において、前記n相交流電圧を印加する電極の面積比は、各相の電極の面積の比の値を1とするように構成したことを特徴とする静電チャック装置。2. The electrostatic chuck device according to claim 1, wherein an area ratio of the electrodes to which the n-phase AC voltage is applied is configured such that a value of an area ratio of the electrodes of each phase is 1. Electric chuck device. 請求項1記載の静電チャック装置において、前記n相交流電圧はn=3とし、商用の3相交流電源を利用するように構成したことを特徴とする静電チャック装置。In the electrostatic chuck according to claim 1, wherein the n-phase AC voltage is set to n = 3, the electrostatic chuck apparatus characterized by being configured to utilize three-phase AC power of a commercial. 交流電圧を印加する静電チャックを備えた真空処理装置で基板の処理を行う基板処理方法において、前記静電チャックはn=2以上の交流電圧であって、該n相交流電圧の印加する電極と、前記各電極間を絶縁する絶縁体からなる試料台と、前記n相交流電圧を印加する回路とを具備し、In a substrate processing method for processing a substrate with a vacuum processing apparatus having an electrostatic chuck for applying an AC voltage, the electrostatic chuck has an AC voltage of n = 2 or more, and an electrode to which the n-phase AC voltage is applied And a sample stage made of an insulator that insulates between the electrodes, and a circuit that applies the n-phase AC voltage,
真空容器内に設置された試料台に基板を搬入載置後静電吸着力で係止する工程と、該真空容器内にプロセスガスを導入する工程と、該導入されたプロセスガスにより係止された基板を真空処理する工程と、該真空処理後プロセスガスの導入を停止する工程と、その後静電吸着力をオフする工程と、真空処理後の基板を搬出する工程とを有する基板のプラズマ処理を行う基板処理方法であって、  A step of locking the substrate with an electrostatic attraction force after loading and mounting the substrate on the sample stage installed in the vacuum vessel, a step of introducing a process gas into the vacuum vessel, and a step of being locked by the introduced process gas. Plasma processing of the substrate, comprising: a step of vacuum processing the substrate, a step of stopping the introduction of the process gas after the vacuum processing, a step of turning off the electrostatic adsorption force, and a step of unloading the substrate after the vacuum processing A substrate processing method for performing
前記n相交流電圧の印加回路は、n相交流電源の1次側と2次側を絶縁し、各電極にn相交流電圧を供給する2次側を、接地電位に対し浮遊電位に維持するように構成し、  The application circuit for the n-phase AC voltage insulates the primary side and the secondary side of the n-phase AC power source, and maintains the secondary side for supplying the n-phase AC voltage to each electrode at a floating potential with respect to the ground potential. Configured as
前記n相交流電源の1次側と2次側の絶縁は絶縁トランスにより実施され、吸着力をオン、オフするスイッチが絶縁トランスの1次側に設けられ、  Insulation between the primary side and the secondary side of the n-phase AC power supply is performed by an insulation transformer, and a switch for turning on and off the adsorption force is provided on the primary side of the insulation transformer,
真空処理後の基板の離脱時該基板の除電処理を不要としたことを特徴とする基板処理方法。  A substrate processing method characterized by eliminating the need for charge removal processing of a substrate when the substrate is detached after vacuum processing.
JP2002228210A 2002-03-04 2002-08-06 Electrostatic chuck apparatus and substrate processing method using the apparatus Expired - Fee Related JP3974475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228210A JP3974475B2 (en) 2002-03-04 2002-08-06 Electrostatic chuck apparatus and substrate processing method using the apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002057357 2002-03-04
JP2002-57357 2002-03-04
JP2002228210A JP3974475B2 (en) 2002-03-04 2002-08-06 Electrostatic chuck apparatus and substrate processing method using the apparatus

Publications (2)

Publication Number Publication Date
JP2003332412A JP2003332412A (en) 2003-11-21
JP3974475B2 true JP3974475B2 (en) 2007-09-12

Family

ID=29713701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228210A Expired - Fee Related JP3974475B2 (en) 2002-03-04 2002-08-06 Electrostatic chuck apparatus and substrate processing method using the apparatus

Country Status (1)

Country Link
JP (1) JP3974475B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505667B2 (en) * 2011-09-30 2014-05-28 Toto株式会社 AC drive electrostatic chuck
JP6224428B2 (en) 2013-11-19 2017-11-01 東京エレクトロン株式会社 Method of attracting the focus ring to the mounting table
US9633885B2 (en) * 2014-02-12 2017-04-25 Axcelis Technologies, Inc. Variable electrode pattern for versatile electrostatic clamp operation
JP2021068880A (en) 2019-10-28 2021-04-30 東京エレクトロン株式会社 Suction method, placing platform, and plasma processing device
US20220084800A1 (en) 2020-09-14 2022-03-17 Tokyo Electron Limited Stage, substrate processing apparatus and substrate attraction method
JP2023130043A (en) 2022-03-07 2023-09-20 東京エレクトロン株式会社 Mounting table and substrate processing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206754A (en) * 1990-11-30 1992-07-28 Tokyo Electron Ltd Electrostatic attraction device
JP2824928B2 (en) * 1990-05-17 1998-11-18 東京エレクトロン株式会社 Electrostatic suction device
JPH04206755A (en) * 1990-11-30 1992-07-28 Tokyo Electron Ltd Electrostatic attraction device
JP3050643B2 (en) * 1991-05-28 2000-06-12 東京エレクトロン株式会社 Wafer positioning device
JPH06244271A (en) * 1993-02-19 1994-09-02 Ulvac Japan Ltd Electrostatic attraction apparatus

Also Published As

Publication number Publication date
JP2003332412A (en) 2003-11-21

Similar Documents

Publication Publication Date Title
US6760213B2 (en) Electrostatic chuck and method of treating substrate using electrostatic chuck
KR19980024679A (en) Electrostatic chuck and sample processing method and apparatus using the same
JP3191139B2 (en) Sample holding device
JP2003502831A (en) Apparatus and method for minimizing semiconductor wafer arcing during semiconductor wafer processing
JP3974475B2 (en) Electrostatic chuck apparatus and substrate processing method using the apparatus
TW201834132A (en) Electrostatic chuck device and electrostatic adsorption method which can electrostatically adsorb an object to be held under an atmospheric pressure environment
JPH04132239A (en) Wafer chuck
JP6069768B2 (en) Electrostatic chuck device and control method thereof
JPH07130826A (en) Electrostatic chuck
JPH01112745A (en) Wafer separating method in semiconductor manufacturing device
JPH06244270A (en) Electrostatic attraction apparatus
TWI725011B (en) Apparatus, substrate support, and method for removing particles accumulated on a substrate contact surface during substrate manufacturing processing
JP2574066B2 (en) Electrostatic suction device
JP2003100720A (en) Plasma apparatus
JPH0513556A (en) Electrostatic chuck
JPS6325706B2 (en)
JPH06310589A (en) Electrostatic absorption method and device
JPH11111826A (en) Method for separating sample in electrostatic chuck
KR100421171B1 (en) Method for removing particulate contaminant on the surface of substrate and Apparatus for removing thereof
JPH04206755A (en) Electrostatic attraction device
JPH04246843A (en) Controlling device for electrostatic chuck
JPH043956A (en) Electrostatic chuck equipment
JPH06314735A (en) Electrostatic chuck
JPH05183043A (en) Apparatus and method for electrostatic attraction
JPH06244271A (en) Electrostatic attraction apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070614

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees