JP3973990B2 - Hydraulic composition for pile method - Google Patents

Hydraulic composition for pile method Download PDF

Info

Publication number
JP3973990B2
JP3973990B2 JP2002229811A JP2002229811A JP3973990B2 JP 3973990 B2 JP3973990 B2 JP 3973990B2 JP 2002229811 A JP2002229811 A JP 2002229811A JP 2002229811 A JP2002229811 A JP 2002229811A JP 3973990 B2 JP3973990 B2 JP 3973990B2
Authority
JP
Japan
Prior art keywords
compound
pile
hydraulic composition
water
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002229811A
Other languages
Japanese (ja)
Other versions
JP2004067887A5 (en
JP2004067887A (en
Inventor
穂高 山室
幸司 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002229811A priority Critical patent/JP3973990B2/en
Publication of JP2004067887A publication Critical patent/JP2004067887A/en
Publication of JP2004067887A5 publication Critical patent/JP2004067887A5/ja
Application granted granted Critical
Publication of JP3973990B2 publication Critical patent/JP3973990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、既製コンクリート杭の埋め込み工法、場所打ち杭工法及びモルタル柱列工法等に使用される、水、水硬性粉体を含有してなる杭工法用水硬性組成物及び該組成物を用いた硬化組成物並びに杭の埋込み工法に関する。
【0002】
【従来の技術】
構造物建設の基礎工事等における代表的な既製コンクリート杭の埋め込み工法では、地盤を掘削攪拌ロッドを用いて支持層まで掘削した後、掘削孔に根固め液を注入し、次に所定の水硬性スラリー(以下、杭周固定液という)を注入しながら掘削攪拌ロッドをゆっくりと引き上げる。そして、その後杭周固定液で満たされた孔中に、既製コンクリートパイルを沈設する。しかしながら、掘削する地盤が砂層、れき層もしくは砂れき層等の透水性の高い地質(透水性地盤)に施工する場合、上述の杭周固定液が地盤に吸い込まれてしまい(以下、逸水という)、施工が困難となるケースがある。また、上述のコンクリート杭の埋め込み工法、場所打ち杭工法及びモルタル柱列工法では、地盤中において地下水の湧出や潮の干満がある場合、孔中に満たした杭周固定液及び場所打ちしたコンクリートのモルタル部分が希釈・流失され、痩せ細ってしまうといった多くのトラブルが発生している。これに対し、吸水膨張性高分子材料(吸水性ポリマー)を配合したり、カルボキシメチルセルロース等のアニオン性水溶性高分子を添加することで逸水防止や上記課題を解決する試みがなされてきたが、吸水性の制御が困難であったり、水溶性高分子の場合、杭周固定液の水硬性が阻害され硬化するまでに地盤に逸水するなどの問題がある。また、逸水防止や崩壊防止策として新聞紙等の紙とアルカリ水溶液を混合し、更にこれを中和させた材料(特開平7−41764号公報)も提案されているが、製造する際に均一な懸濁液を短時間で製造することは困難であった。また、無機材料の観点から、セメント粉体に低活性シリカ質粉体を混合し、粉末度(ブレーン値)を1万cm2/g以上にした逸水防止用のセメント(特開平6−24819号公報)が提案されているが、粉砕コストの増大や汎用性に乏しく現実的でないといった課題があった。他にも、濃厚なセメントミルク、あるいはベントナイト等の粘土鉱物を併用した濃厚なセメントミルク、大豆や小豆等を混合する技術もあるがどれも十分な逸水防止効果は得られていない。
【0003】
【発明が解決しようとする課題】
本発明は、既製コンクリート杭の埋め込み工法、場所打ち杭工法、モルタル柱列工法等に使用される杭周固定液において、逸水防止性能に優れた杭工法用水硬性組成物を提供する事を課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、特定の性質を満たす異なる2種類の水溶性低分子化合物と水硬性粉体とを含有する杭工法用水硬性組成物を使用することで上記の課題を解決することを見出した。
【0005】
本発明は、第1の水溶性低分子化合物〔以下、化合物(A)という〕と、化合物(A)とは異なる第2の水溶性低分子化合物〔以下、化合物(B)という〕とを含有するスラリーレオロジー改質剤であって、化合物(A)の水溶液SA(20℃での粘度が100mPa・s以下のもの)と化合物(B)の水溶液SB(20℃での粘度が100mPa・s以下のもの)とを50/50の重量比で混合した水溶液の20℃における粘度が、混合前のいずれの水溶液の粘度よりも少なくとも2倍高くすることができるスラリーレオロジー改質剤と、水硬性粉体と、水とを含有し、以下の特性1を満足する杭工法用水硬性組成物に関する。
<特性1>
20℃の該組成物について、コーンプレート(直径50mm、角度0.0398rad、GAP0.0508mm)の角速度ωが1〜10rad/sの範囲で測定した貯蔵弾性率の最大値G’maxが50〜10000Paである。
【0006】
また、本発明は、上記本発明の杭工法用水硬性組成物を硬化させてなる場所打ちコンクリート杭に関する。
【0007】
また、本発明は、地盤を、掘削攪拌ロッドを用いて支持層まで掘削した後、掘削孔に根固め液を注入し、次いで上記本発明の杭工法用水硬性組成物を注入しながら掘削攪拌ロッドを引き上げた後、杭工法用水硬性組成物で満たされた孔中に、既製コンクリートパイルを沈設し、地盤と杭を一体化させる杭の埋込み工法に関する。
【0008】
本発明の水硬性組成物においては、水溶性低分子化合物は、室温において、水中に、単分子又は会合体・ミセル・液晶等の構造体を形成した状態又はそれらの混在した状態で、水と相分離を生じない。相とは、マクロな大きさを持ち、温度、圧力等統計的な物理量が明確に定められる領域をいう(コロイド化学、第1巻、第1版、89〜90頁、1995年10月12日発行、東京化学同人)。
【0009】
特に、本発明の杭工法用水硬性組成物における化合物(A)及び化合物(B)の組合わせが、(1)両性界面活性剤から選ばれる化合物(A)及びアニオン性界面活性剤から選ばれる化合物(B)の組合わせ、(2)カチオン性界面活性剤から選ばれる化合物(A)及びアニオン性芳香族化合物から選ばれる化合物(B)の組合わせ、(3)カチオン性界面活性剤から選ばれる化合物(A)及び臭化化合物から選ばれる化合物(B)の組合わせ、から選択される。
【0010】
本発明に係る化合物(A)及び化合物(B)は、それぞれ単独の水溶液では、水中に、単分子又は会合体・ミセル・液晶等の構造体を形成した状態及びそれらの混在した状態で水溶液の粘性が低く、化合物(A)の水溶液と化合物(B)の水溶液を混合することで、混合液の粘度が大きく増大できることが好ましく、それにより水硬性組成物に特定の貯蔵弾性率が付与される点に特徴がある。この特定の貯蔵弾性率の範囲の組成物は、地下水等による希釈、流出がなく、また、周辺の地盤への浸透もないため、杭周固定液の痩せや細りや逸水が起こらないと考えられる。
【0011】
従って、本発明に係る化合物(A)及び化合物(B)は、化合物(A)の水溶液SA(20℃での粘度が100mPa・s以下のもの)と化合物(B)の水溶液SB(20℃での粘度が100mPa・s以下のもの)とを50/50の重量比で混合した水溶液の20℃における粘度が、混合前のいずれの水溶液の粘度よりも少なくとも2倍高くすることができることが必要である。
【0012】
本発明の水硬性組成物は、上記特性1を満たすものであり、特に化合物(A)又は化合物(B)は各々単独の添加では特性1が発現せず、化合物(A)及び化合物(B)の両方を添加することによって特性1が発現する。
【0013】
化合物(A)及び化合物(B)の組合わせを特定した場合、どちらを化合物(A)としてもよい。以下では、どちらかを化合物(A)とした場合、他方を化合物(B)として便宜上区別する。
【0014】
本発明に係る杭工法用水硬性組成物の必須成分である化合物(A)及び化合物(B)のそれぞれの水溶液は、両者を混合した水溶液よりも粘性が低く、これら化合物を含有するスラリーレオロジー改質剤を使用することで、スラリー系への添加操作性は極めて良好なものになる。
【0015】
この化合物(A)と化合物(B)の組み合わせによるスラリーレオロジー改質剤を添加すると、スラリーの水相中にいわゆる低分子化合物の高次構造体である会合体を形成し、水硬性粉体の周辺をこの会合体で覆うためスラリー全体の粘性が増大すると考えられる。また、この会合体のレオロジー特性は高い粘弾性を有していることが挙げられ、スラリー中における水相で会合体同士が絡み合い3次元の網目状会合体を形成していると考えられる。この特徴により、本発明のスラリー中の水硬性粉体粒子はこの粘弾性の高い網目状の会合体に覆われているため、使用部位に水が存在する場合でも希釈されずに投入、充填できるため、例えば従来の杭周固定液と比べ、地下水等によるスラリーの拡散する量は遙かに少なく、施工箇所の痩せ細りを減少することができる。
【0016】
また、スラリー中で分子会合により網目状会合体を形成するため、スラリーに高い粘性を付与することができる。一般の水溶性高分子が共有結合で繋がっているため、撹拌等のせん断力を受けると結合が切れて低分子化してしまうのに対して、網目状会合体は分子間力による分子会合で大きな構造体を形成しているため、せん断力を受けて会合体が切断されても容易に再結合、再融合し、もとの形状の会合体を再構築すると考えられる。この特長は、水硬性粉体粒子や砂、砂利等が存在するスラリー系には特に有効である。例えば、杭周固定液の製造時の水硬性粉体粒子や砂、砂利等の均一混合や内部摩擦が発生する注入時には会合体が壊れて粘性が顕著に低下するため、上述の作業を容易にすると共に、これら作業が終了し応力が解かれると再び会合体が形成されるので適度な粘性を取り戻し、周辺の地盤に浸透せず、また、材料分離抵抗性を生じるので、逸水防止効果に優れると考えられる。
【0017】
【発明の実施の形態】
本発明は、化合物(A)と化合物(B)と水硬性粉体と水とを含有する杭工法用水硬性組成物が以下の特性1を有することが必要である。すなわち、このレオロジー特性1は、20℃の組成物について、ARES粘弾性測定装置(レオメトリック・サイエンティフィック製)でコーンプレート(直径50mm、角度0.0398rad、GAP0.0508mm)を用い、角速度ωが1〜10rad/sの範囲で貯蔵弾性率G’を測定し、そのωの範囲で得られるG’の最大値G’maxが50〜10000Paの範囲である事である。貯蔵弾性率G’maxは、好ましくは100〜10000Pa、より好ましくは400〜7000Pa、更に好ましくは800〜4000Paが作業性の観点から有効である。
【0018】
本発明に用いられる化合物(A)と化合物(B)は、化合物(A)の粘度100mPa・s以下の水溶液SAと、化合物(B)の粘度100mPa・s以下の水溶液SBとを混合すると、その粘度が混合前のいずれの水溶液の粘度よりも少なくとも2倍高くすることができる性質を有することが必要であり、より好ましくは少なくとも5倍、より好ましくは少なくとも10倍、更に好ましくは少なくとも100倍、特に好ましくは少なくとも500倍高くすることができることである。
【0019】
ここで、水溶液の粘度は、20℃の条件でB型粘度計(No.3ローター、1.5r.p.mから12r.p.m)で測定されたものをいう。この場合、前記の粘度挙動は、1.5r.p.m.から12r.p.m.の回転数の何れかで発現されればよい。
【0020】
化合物(A)及び化合物(B)の水溶液の20℃における粘度と両者を混合したときの粘度が、上記要件を満たしている範囲で、化合物(A)及び化合物(B)の濃度を決めることができ、化合物(A)及び化合物(B)を特定した場合に好ましい範囲を決めることができるが、組成物に添加する場合の濃度範囲を広く選択できることを考慮して、それぞれが、0.01〜50重量%の範囲で濃度を決めることができる化合物(A)及び化合物(B)を選ぶことが好ましい。
【0021】
本発明に係る化合物(A)と化合物(B)は、イオン強度の高い杭工法用水硬性組成物でも良好なレオロジー特性を付与できる。
【0022】
本発明の杭工法用水硬性組成物に含有される化合物(A)と化合物(B)の有効分の重量比は、(A)/(B)=5/95〜95/5であることが好ましく、20/80〜80/20がより好ましい。また、水硬性粉体の含有量は組成物中で0.01〜80重量%であることが好ましく、特に25〜70重量%が好ましい。
【0023】
本発明の杭工法用水硬性組成物では、化合物(A)と化合物(B)の有効分合計の含有量が水100重量部に対して0.01〜20重量部、更に0.1〜15重量部、特に0.3〜10重量部の範囲であることが逸水防止の点から好ましい。
【0024】
本発明に係る化合物(A)及び化合物(B)は、本発明で規定する挙動を満たすものであれば、どのようなものを組み合わせてもよいが、作業性及び組成物系の分散性の安定性の観点から、化合物(A)及び化合物(B)は、それぞれ分子量(無機化合物の場合は式量)が1000以下、好ましくは700以下、更に好ましくは500以下、また重合体の場合は重量平均分子量(例えば、ゲルーパーミエーションクロマトグラフィー法/ポリエチレンオキシド換算)が500未満、好ましくは400以下、更に好ましくは300以下であることが望まれる。また、化合物(A)の水溶液と化合物(B)の水溶液も室温において、水中に、単分子又は会合体・ミセル・液晶等の構造体を形成した状態及びそれらの混在した状態で、水と相分離しないことが好ましい。
【0025】
本発明に係る化合物(A)と化合物(B)は、杭工法用水硬性組成物が前記した挙動を示すものであれば、どのようなものを組み合わせてもよいが、好ましい例として、化合物(A)及び化合物(B)の組合わせが、(1)両性界面活性剤から選ばれる化合物(A)及びアニオン性界面活性剤から選ばれる化合物(B)の組合わせ、(2)カチオン性界面活性剤から選ばれる化合物(A)及びアニオン性芳香族化合物から選ばれる化合物(B)の組合わせ、(3)カチオン性界面活性剤から選ばれる化合物(A)及び臭化化合物から選ばれる化合物(B)の組合わせ、から選ばれるものが挙げられる。
【0026】
両性界面活性剤から選ばれるものとして、ベタイン型両性界面活性剤が好ましく、ドデカン酸アミドプロピルベタイン・オクタデカン酸アミドプロピルベタイン・ドデシルジメチルアミノ酢酸ベタイン等が挙げられ、粘度発現の観点からドデカン酸アミドプロピルベタインが好ましい。
【0027】
アニオン性界面活性剤から選ばれるものとして、エチレンオキサイド付加型アルキル硫酸エステル塩型界面活性剤が好ましく、POE(3)ドデシルエーテル硫酸エステル塩、POE(2)ドデシルエーテル硫酸エステル塩、POE(4)ドデシルエーテル硫酸エステル塩等が挙げられ、塩はナトリウム塩等の金属塩、トリエタノールアミン塩等のアルカノールアミン塩等が挙げられる。
【0028】
これらの中でも、杭工法用水硬性組成物の水相中の固形分(有効分)濃度が20重量%以下でも効果を発現するドデカン酸アミドプロピルベタインとPOE(3)ドデシルエーテル硫酸エステルトリエタノールアミンもしくはPOE(3)ドデシルエーテル硫酸エステルナトリウムの組合わせが好ましい。なお、POEはポリオキシエチレンの略であり、( )内はエチレンオキサイド平均付加モル数である(以下同様)。
【0029】
カチオン性界面活性剤から選ばれるものとして、4級塩型カチオン性界面活性剤が好ましく、4級塩型のカチオン性界面活性剤としては、構造中に、10から26個の炭素原子を含む飽和又は不飽和の直鎖又は分岐鎖アルキル基を、少なくとも1つ有しているものが好ましい。例えば、アルキル(炭素数10〜26)トリメチルアンモニウム塩、アルキル(炭素数10〜26)ピリジニウム塩、アルキル(炭素数10〜26)イミダゾリニウム塩、アルキル(炭素数10〜26)ジメチルベンジルアンモニウム塩等が挙げられ、具体的には、ヘキサデシルトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムブロマイド、オクタデシルトリメチルアンモニウムクロライド、オクタデシルトリメチルアンモニウムブロマイド、タロートリメチルアンモニウムクロライド、タロートリメチルアンモニウムブロマイド、水素化タロートリメチルアンモニウムクロライド、水素化タロートリメチルアンモニウムブロマイド、ヘキサデシルエチルジメチルアンモニウムクロライド、オクタデシルエチルジメチルアンモニウムクロライド、ヘキサデシルプロピルジメチルアンモニウムクロライド、ヘキサデシルピリジニウムクロライド、1,1−ジメチル−2−ヘキサデシルイミダゾリニウムクロライド、ヘキサデシルジメチルベンジルアンモニウムクロライド等が挙げられ、これらを2種以上併用してもよい。水溶性と増粘効果の観点から、具体的には、ヘキサデシルトリメチルアンモニウムクロライド、オクタデシルトリメチルアンモニウムクロライド、ヘキサデシルピリジニウムクロライド等が好ましい。また、増粘効果の温度安定性の観点から、化合物(A)又は化合物(B)の一方として、上記のアルキル基の炭素数の異なるカチオン性界面活性剤を2種類以上併用することが好ましい。
【0030】
特に、塩害による鉄筋の腐食やコンクリート劣化を防止する観点から、塩素等のハロゲンを含まない4級アンモニウム塩を用いることが好ましい。
【0031】
塩素等のハロゲンを含まない4級塩として、アンモニウム塩やイミダゾリニウム塩等が挙げられ、具体的にはヘキサデシルトリメチルアンモニウムメトサルフェート、ヘキサデシルジメチルエチルアンモニウムエトサルフェート、オクタデシルトリメチルアンモニウムメトサルフェート、オクタデシルジメチルエチルアンモニウムエトサルフェート、タロートリメチルアンモニウムメトサルフェート、タロージメチルエチルアンモニウムエトサルフェート、1,1−ジメチル−2−ヘキサデシルイミダゾリニウムメトサルフェート、ヘキサデシルジメチルヒドロキシエチルアンモニウムアセテート、オクタデシルジメチルヒドロキシエチルアンモニウムアセテート、ヘキサデシルジメチルヒドロキシエチルアンモニウムプロピオネート、オクタデシルジメチルヒドロキシエチルアンモニウムプロピオネート、タロージメチルヒドロキシエチルアンモニウムアセテート、タロージメチルヒドロキシエチルアンモニウムプロピオネート、等が挙げられる。塩素等のハロゲンを含まない4級アンモニウム塩は、例えば、ジメチル硫酸、ジエチル硫酸、炭酸ジメチルで3級アミンを4級化することで得ることができる。
【0032】
アニオン性芳香族化合物から選ばれるものとして、芳香環を有するカルボン酸及びその塩、ホスホン酸及びその塩、スルホン酸及びその塩が挙げられ、具体的には、サリチル酸、p−トルエンスルホン酸、スルホサリチル酸、安息香酸、m−スルホ安息香酸、p−スルホ安息香酸、4−スルホフタル酸、5−スルホイソフタル酸、p−フェノールスルホン酸、m−キシレン−4−スルホン酸、クメンスルホン酸、メチルサリチル酸、スチレンスルホン酸、クロロ安息香酸等であり、これらは塩を形成していていも良く、これらを2種以上併用してもよい。ただし、重合体である場合は、重量平均分子量(例えば、ゲルーパーミエーションクロマトグラフィー法/ポリエチレンオキシド換算)500未満であることが好ましい。
【0033】
臭化化合物から選ばれるものとして、無機塩が好ましく、NaBr、KBr、HBr等が挙げられる。
【0034】
本発明においては、化合物(A)と化合物(B)とが会合体を形成し易いものが、それぞれ濃厚な水溶液でも粘性が低く、また、杭工法用水硬性組成物の水相中の化合物(A)と化合物(B)の有効分濃度が低くても優れた効果を発現し、また、それぞれが濃厚な水溶液でも粘性が低く、添加時の作業性からも好ましい。本発明では、化合物(A)と化合物(B)の有効分濃度が10重量%以下の極めて低い添加量で杭工法用水硬性組成物の増粘を達成することができ、特に水相と接触した場合の材料分離抵抗性が非常に安定するという、従来の増粘剤の使用では得ることのできなかったレオロジー特性を発現する点で、化合物(A)が4級アンモニウム塩型カチオン性界面活性剤から選ばれるものであり、化合物(B)がアニオン性芳香族化合物又は臭化化合物から選ばれるものである組合わせが特に好ましい。
【0035】
また、化合物(A)がアルキル(炭素数10〜26)トリメチルアンモニウム塩であり、化合物(B)が芳香環を有するスルホン酸塩である組み合わせが特に好ましく、組成物の水相中の有効分濃度が5重量%以下でも効果を発現する。特に、硬化遅延を起こさない観点から、化合物(B)としてはトルエンスルホン酸、キシレンスルホン酸、クメンスルホン酸、スチレンスルホン酸又はこれらの塩が好ましく、特に、p−トルエンスルホン酸又はその塩が好ましい。
【0036】
本発明に係る杭工法用水硬性組成物として、化合物(A)と化合物(B)と水硬性粉体とを併用することで特徴的なスラリーレオロジー特性が得られるのは、以下の理由によると考えられる。
【0037】
化合物(A)と化合物(B)とを混合した時に、水相中に短時間で会合体を形成し、効率的に粘性を付与でき、更に、この会合体形成は、杭工法用水硬性組成物中で均一に形成されることにより水硬性粉体を補足するため、地盤に注入後の痩せ細りが少ないものと考えられる。
【0038】
化合物(A)と化合物(B)は、低分子化合物であっても杭工法用水硬性組成物中で分子会合を起こす事で高分子状の大きな網目状会合体を形成するため、杭工法用水硬性組成物に高い粘性と分離抵抗性を付与することができると考えられる。
【0039】
なかでも、4級アンモニウム塩型カチオン性界面活性剤と、アニオン性芳香族化合物又は臭化化合物から選ばれる化合物との組み合わせで使用すると、スラリーの水相中に細かく分岐した会合体を形成すると考えられる。
【0040】
また、一般の水溶性高分子が共有結合で繋がっているため、繰返しせん断力を受けると結合が切れて低分子化してしまうのに対して、かかる会合体は、水相が強い応力を受けると、会合体構造が破壊されるので、過度の応力が抑制され、応力が減少すると、再び会合体が形成されると考えられる。これにより、杭工法用水硬性組成物に適度な粘性を付与するという特徴を有する。
【0041】
かかる特徴を生かせば、杭工法用水硬性組成物の撹拌、注入、圧送で受ける強いせん断に対しても、せん断から解き放たれると会合体が再形成を起こすため、高いせん断抵抗性を杭工法用水硬性組成物に付与出来る。例えば、過度の内部摩擦が発生することを抑制しつつ杭工法用水硬性組成物の製造や輸送、ポンプ圧送を行い、製造あるいは輸送後の杭工法用水硬性組成物に適度な粘性を付与することができる。
【0042】
さらに、化合物(A)及び化合物(B)を含有する杭工法用水硬性組成物中の水硬性粉体粒子は粘弾性の高い網目状会合体に覆われているため、使用部位に水が存在する場合でも希釈されずに投入、充填でき杭周固定液の痩せ細りを防止できる。
【0043】
化合物(A)として両性界面活性剤から選ばれるものを、化合物(B)としてアニオン性界面活性剤から選ばれるものを使用する場合や、化合物(A)としてカチオン性界面活性剤から選ばれるものを、化合物(B)としてアニオン性芳香族化合物から選ばれるもの又は臭化化合物から選ばれるものを使用する場合は、各化合物単独の濃厚な水溶液でも粘性が低いので、スラリー系への添加前の水溶液の有効分濃度を好ましくは10重量%以上、より好ましくは20重量%以上、更に好ましくは30重量%以上、最も好ましくは40重量%以上にしておくことにより、貯蔵タンクを小型化できる等の生産性を向上することができる。
【0044】
化合物(A)と化合物(B)とをスラリーに添加すればレオロジーが改質された杭工法用水硬性組成物が得られるので、本発明に係る杭工法用水硬性組成物の調製方法は特に限定されないが、以下に、本発明の杭工法用水硬性組成物の好ましい調製方法を説明する。
【0045】
本発明に係る化合物(A)及び化合物(B)は、それぞれ極めて低粘度の水溶液の状態のものでも、混合すると大きな粘性を発現するものが好適に使用されるので、操作性の観点から、スラリー系に添加するときに、それぞれが、使用する温度において100mPa・s以下、好ましくは50mPa・s以下、より好ましくは10mPa・s以下の粘度の水溶液の状態で使用することが好ましい。
【0046】
本発明では、杭工法用水硬性組成物が特定の貯蔵弾性率を持つ2種の化合物を、スラリーのレオロジー改質剤として使用することが好ましい。かかる2種の化合物を化合物(A)、化合物(B)とすると、化合物(A)と化合物(B)のいずれか一方の化合物を水硬性粉体と水を含有するスラリーに添加し、該スラリーに他方の化合物を添加することができる。
【0047】
また、化合物(A)又は化合物(B)は、水硬性粉体と水を含有するスラリー中に任意の順番で混合できるので、一方の化合物をスラリー中に適当な段階で添加し、粘性が必要となる段階で該スラリーに他方を添加するのが作業性の観点から好ましい。また、添加するときの化合物(A)又は化合物(B)の状態は、液状でも粉末状でもよい。
【0048】
本発明の杭工法用水硬性組成物を、カチオン性界面活性剤から選ばれるものとアニオン性芳香族化合物又は臭化化合物から選ばれるものの組合わせで使用する場合には、水硬性粉体粒子の水和反応を制御でき、スラリー攪拌時の巻込み気泡を抑制する観点から、アニオン性芳香族化合物又は臭化化合物をスラリー中に先に添加し、後からカチオン性界面活性剤を添加するのが好適である。
【0049】
本発明の杭工法用水硬性組成物は、特定の貯蔵弾性率により特定できるが、さらに化合物(A)及び化合物(B)のそれぞれが、天然物由来(例えば牛脂由来の化合物)等の混合物ではなく、単一の化合物である場合は、化合物(A)と化合物(B)との会合体を効率良く形成させる観点から、モル比を規定して混合することが好ましい。
【0050】
本発明の杭工法用水硬性組成物においては、化合物(A)と化合物(B)のモル比(有効分モル比)は、化合物(A)と化合物(B)の組み合わせによって増粘効果の高い領域が異なり、目的とする増粘の程度に応じて適宜決めればよいが、特に化合物(A)及び化合物(B)の組合わせが、(1)両性界面活性剤から選ばれる化合物(A)及びアニオン性界面活性剤から選ばれる化合物(B)の組合わせ、(2)カチオン性界面活性剤から選ばれる化合物(A)及びアニオン性芳香族化合物から選ばれる化合物(B)の組合わせ、(3)カチオン性界面活性剤から選ばれる化合物(A)及び臭化化合物から選ばれる化合物(B)の組合わせ、から選ばれる場合は、得られる粘度と会合体の形状の観点から、化合物(A)/化合物(B)=1/20〜20/1、好ましくは1/20〜4/1、より好ましくは1/3〜2/1、特に好ましくは1/1〜2/3が適している。
【0051】
更に、本発明の杭工法用水硬性組成物は、イオン強度の高いスラリー系でも良好なレオロジー特性を維持できることから、水相の電導度が、0.01〜80mS/cmの範囲、好ましくは0.1〜60mS/cm、特に好ましくは1〜40mS/cmであるスラリーであることが好ましい。
【0052】
本発明に係る化合物(A)及び化合物(B)は、水溶液又は粉末のどちらの状態で使用してよく、特に、本発明の杭工法用水硬性組成物ではどちらの形態を用いても良好なスラリーレオロジー特性を付与することができる。化合物(A)及び化合物(B)とを予め粉末状にして使用すれば、プレミクス用途等における作業性が良好となる。ただし、スラリーを所望の粘性に調整できるようにすることを考慮すると、化合物(A)と化合物(B)とを杭工法用水硬性組成物の構成水硬性粉体に予め表面処理しない使用方法が好ましい。
【0053】
本発明の杭工法用水硬性組成物は、取扱いやすさ及び硬化物性の観点から水/水硬性粉体比30〜300%、好ましくは50〜250%、より好ましくは60〜200%で適用できる。この組成物に含有される水硬性粉体としては、水和反応により硬化する物性を有する水硬性粉体を用いる。例えば普通ポルトランドセメント、中庸熱セメント、早強セメント、超早強セメント、高ビーライト含有セメント、高炉セメント、フライアッシュセメント、アルミナセメント、シリカフュームセメントなどの水硬性粉体セメントや石膏が挙げられる。また、フィラーも水硬性粉体と併用して用いることができ、例えば炭酸カルシウム、フライアッシュ、高炉スラグ、シリカフューム、ベントナイト、クレー(含水珪酸アルミニウムを主成分とする天然鉱物:カオリナイト、ハロサイト等)が挙げられる。これらの粉体は単独でも、混合されたものでもよい。更に、必要に応じてこれらの粉体に骨材として砂や砂利、及びこれらの混合物が添加されてもよい。また、土に適用することもできる。
【0054】
更に、本発明に係る化合物(A)及び/又は化合物(B)と水硬性粉体とをプレミクスし、本発明の杭工法用水硬性組成物を調製する為の水硬性粉体組成物を調製することができる。
【0055】
また、本発明の杭工法用水硬性組成物においては、化合物(A)と化合物(B)と水硬性粉体のスラリー中の有効分濃度は、目的とする増粘の程度に応じて適宜決めればよいが、化合物(A)と化合物(B)を、予め調製されたスラリーに添加する、スラリー製造時に添加する、等の方法により、本発明の杭工法用水硬性組成物が得られる。特に、化合物(A)又は化合物(B)の一方の化合物と水硬性粉体と、水硬性粉体と水とを含むスラリーを調製し、次いで該スラリーに前記化合物(A)又は化合物(B)の他方の化合物を添加する方法は、作業性から好ましい。
【0056】
本発明の杭工法用水硬性組成物は膨張材を含有することが好ましい。本発明で使用する膨張材とは、セメントと水を混合した場合、水和反応によりエトリンガイト(3CaO・Al2O3・3CaSO4・32H2O)や水酸化カルシウム(CaOH2)などの結晶を生成してセメントペースト、モルタル及びコンクリートを膨張させる作用のある混和材であって、主にエトリンガイト系及び石灰系が使用される。本発明において、膨張材は、地盤中の地下水や海水等により杭工法用水硬性組成物のペースト成分が、若干の希釈流出を受けても、その膨張作用により杭とその周囲の地盤との間に隙間を作らずに、密着させる効果がある。
【0057】
本発明の杭工法用水硬性組成物における膨張材の使用量は、膨張性と強度の点から、水硬性粉体100重量部に対して5〜50重量部、更に10〜30重量部が好ましい。
【0058】
本発明の杭工法用水硬性組成物は分散剤を含有しても良い。分散剤は、減水剤としてリグニンスルホン酸塩及びその誘導体、オキシカルボン酸塩、ポリオール誘導体、高性能減水剤及び高性能AE減水剤として、ナフタレン系(花王(株)製:マイテイ150)、メラミン系(花王(株)製:マイテイ150V−2)、ポリカルボン酸系(花王(株)製:マイテイ3000、NMB社製:レオビルドSP、日本触媒社製:アクアロックFC600、アクアロックFC900)、アニオン界面活性剤系として、ポリカルボン酸型界面活性剤(花王(株)製:ポイズシリーズ)等が挙げられる。その中でも、ポリカルボン酸系高性能減水剤及びポリカルボン酸型界面活性剤が杭工法用水硬性組成物の流動性と粘性を両立出来るという点で好適である。
【0059】
本発明の杭工法用水硬性組成物における分散剤の含有量は、一般に水硬性粉体に対して有効成分で0.01〜5重量%、更に0.05〜3重量%が好ましい。
【0060】
本発明の杭工法用水硬性組成物に含有される化合物(A)と化合物(B)の他に、他の既存の増粘剤をすることができる。他の既存の増粘剤としては、例えばセルロース誘導体、ポリアクリル系ポリマー、ポリエチレンオキシド、ポリビニールアルコール、ガム系多糖類、微生物発酵多糖類等が挙げられる。
【0061】
本発明の杭工法用水硬性組成物は、本剤の性能に支障がなければ他の成分、例えば、AE剤、遅延剤、早強剤、促進剤、気泡剤、発泡剤、消泡剤、防錆剤、着色剤、防黴剤、ひび割れ低減剤、染料、顔料等を含有していてよい。
【0062】
本発明の杭工法用水硬性組成物には骨材を混合することができ、骨材には細骨材や粗骨材が使用でき、特に限定されるものではないが、吸水率が低くて骨材強度が高いものが好ましい。粗骨材としては、川、陸、山、海、石灰砂利、これらの砕石、高炉スラグ粗骨材、フェロニッケルスラグ粗骨材、軽量粗骨材(人工及び天然)及び再生粗骨材等が挙げられる。細骨材としては、川、陸、山、海、石灰砂、珪砂及びこれらの砕砂、高炉スラグ細骨材、フェロニッケルスラグ細骨材、軽量細骨材(人工及び天然)及び再生細骨材等が挙げられる。
【0063】
本発明の杭工法用水硬性組成物に骨材を混合して硬化されてなる硬化組成物は、例えば、現場で杭を製造する場所打ちコンクリート杭、モルタル柱列等にも使用できる。
【0064】
本発明の杭工法用水硬性組成物を用いる工法の例として、地盤を、掘削攪拌ロッドを用いて支持層まで掘削した後、掘削孔に根固め液を注入し、次いで本発明の杭工法用水硬性組成物を注入しながら掘削攪拌ロッドを引き上げた後、杭工法用水硬性組成物で満たされた孔中に、既製コンクリートパイルを沈設し、地盤と杭を一体化させる杭の埋込み工法が挙げられる。
【0065】
【発明の効果】
本発明の杭工法用水硬性組成物を用いた杭周固定液は、逸水防止効果に優れる。
【0066】
【実施例】
実施例
(1)杭工法用水硬性組成物の調製
表1の化合物(A)及び化合物(B)の水溶液の混合前後の粘度を表2に示した。ただし、比較例1−2〜1−4では、水溶液SA又は水溶液SBの代替として等量の水を用いた。
表1の化合物(A)及び化合物(B)を、表3又は表4の配合に対して用いて、以下の方法で杭工法用水硬性組成物を調製した。すなわち、水、セメント(普通ポルトランドセメント、比重3.16)と、表5又は表6に示す量の化合物(A)を攪拌翼付攪拌機(ナショナルハンドミキサーMK−H3、松下電器産業株式会社製)で30秒間攪拌した後、表5又は表6に示す量の化合物(B)を添加し60秒間攪拌し、調製した。なお、表5中の添加量は組成物中の水相(水、化合物(A)及び化合物(B)の合計量)における濃度である(以下同様)。
【0067】
(2)評価
(2−1)貯蔵弾性率(G’及びG’max
化合物(A)と化合物(B)とを含有する杭工法用水硬性組成物の貯蔵弾性率G’を測定した。貯蔵弾性率G’は、ARES粘弾性測定装置(レオメトリック・サイエンティフィック製)で、コーンプレート(直径:50mm、角度:0.0398rad、GAP:0.0508mm)を用い、ひずみ1.0%、測定範囲0.0628〜62.8rad/s、20℃の条件で測定した。その結果から角速度ωが1〜10rad/sにおけるG’maxを下記の基準で評価した。
(G’maxの評価)
◎;G’maxが800〜4000Pa
○:G’maxが400〜7000Pa(ただし、◎の範囲のものを除く)
△:G’maxが50〜10000Pa(ただし、◎及び○の範囲のものを除く)
×:G’maxが50Pa未満又は10000Pa超
【0068】
(2−2)逸水防止試験方法
13Lバケツに砂(表面水1%)をスコップで2杯入れ、手で軽く押し固め、内径28.5mm外径34.0mm長さ300mmの塩ビ管を1cm埋める。さらに、スコップで砂を2杯、塩ビ管の内部に入らないようにバケツに投入し、手で軽く押し固める。この操作を繰返し、砂上面から塩ビ管が10cm出るようにする。塩ビ管の開口から調製した杭工法用水硬性組成物172.4mL(砂中塩ビ管の体積)を入れ、塩ビ管を砂の壁面が崩壊しないようにゆっくりと引き抜く。その後、杭工法用水硬性組成物の沈降が完全に停止した時点で沈下深さ(cm)を測定し、下記の基準で評価した。(沈下深さの評価)
◎:沈下深さが6cm未満
○:沈下深さが6cm以上8cm未満
△:沈下深さが8cm以上16cm未満
×:沈下深さが16cm以上
【0069】
また、杭工法用水硬性組成物が沈降すると共に追加投入し、沈降が停止した時点までに投入した最終投入量を必要投入量(mL)として測定し、下記の基準で評価した。
(必要投入量の評価)
◎:必要投入量が50mL未満
○:必要投入量が50mL以上150mL未満
△:必要投入量が150mL以上250mL未満
×:必要投入量が250mL以上
【0070】
(2−3)膨張性試験方法
JIS A 6202「コンクリート用膨張材」に準じる。すなわち、杭工法用水硬性組成物から、一軸拘束器具と4cm×4cm×16cm型枠を用いて供試体を作り、材令24時間で脱型し、長さL1を測定する。材令7日まで水中養生を行い、材令7日の長さL2を測定し、養生前後の長さの変化率〔(L2−L1)/L1〕を求め、以下の基準で評価した。尚、化合物(A)と化合物(B)のモル比は1:1、合計添加量は0.5重量%とした。
(膨張性の評価)
○:長さの変化率が7×10-4
△:長さの変化率が3×10-4超7×10-4以下
×:長さの変化率が3×10-4以下
【0071】
【表1】

Figure 0003973990
【0072】
【表2】
Figure 0003973990
【0073】
【表3】
Figure 0003973990
【0074】
【表4】
Figure 0003973990
【0075】
表3、4中の配合成分は以下のものである。
・水:水道水
・セメント:普通ポルトランドセメント、市販品、密度3.16g/cm3
・ベントナイト:豊潤工業製
・膨張材:エトリンガイト系膨張材(市販品)
【0076】
【表5】
Figure 0003973990
【0077】
*実施例1−13では、比較品1を0.05重量%併用した。
**混合水溶液の増粘は、化合物(A)の水溶液SA(20℃での粘度が100mPa・s以下のもの)と化合物(B)の水溶液SB(20℃での粘度が100mPa・s以下のもの)とを50/50の重量比で混合した水溶液の20℃における粘度を測定したものであり、混合前のいずれの水溶液の粘度よりも少なくとも2倍高くできるものを表2に示した結果から「○」とした(以下同様)。
【0078】
【表6】
Figure 0003973990
【0079】
実施例2−1〜2−11の杭工法用水硬性組成物は、何れもG’maxが50〜10000Paの範囲にあった。[0001]
BACKGROUND OF THE INVENTION
The present invention uses a hydraulic composition for a pile construction method containing water, hydraulic powder, and the composition used in an embedded concrete pile embedding method, a cast-in-place pile construction method, a mortar column method, and the like. The present invention relates to a curing composition and a method for embedding piles.
[0002]
[Prior art]
In the typical method of embedding concrete piles for foundation construction of structures, etc., after excavating the ground to the support layer using the excavation stirring rod, injecting the rooting liquid into the excavation hole, and then to the predetermined hydraulic properties The drilling agitation rod is slowly pulled up while injecting slurry (hereinafter referred to as a pile circumference fixing solution). Then, a ready-made concrete pile is set in the hole filled with the pile periphery fixing liquid. However, when the ground to be excavated is constructed in a highly permeable geology (permeable ground) such as a sand layer, gravel layer, or gravel layer, the above-mentioned pile circumference fixing liquid is sucked into the ground (hereinafter referred to as “water loss”). There are cases where construction becomes difficult. Moreover, in the above-mentioned concrete pile embedding method, cast-in-place pile method and mortar column method, if there is groundwater discharge or tides in the ground, Many troubles have occurred, such as the mortar part being diluted and washed away and thinning. On the other hand, attempts have been made to prevent water loss and solve the above problems by adding a water-swellable polymer material (water-absorbing polymer) or adding an anionic water-soluble polymer such as carboxymethylcellulose. In addition, it is difficult to control water absorption, and in the case of a water-soluble polymer, there is a problem that the hydraulic property of the pile periphery fixing liquid is inhibited and water is discharged to the ground before it is cured. Further, as a measure for preventing water loss or preventing collapse, a material (Japanese Patent Laid-Open No. 7-41764) in which paper such as newspaper and an alkaline aqueous solution are mixed and further neutralized has been proposed. It was difficult to produce a simple suspension in a short time. Also, from the viewpoint of inorganic materials, cement powder is mixed with low-activity siliceous powder, and the fineness (brain value) is 10,000 cm.2/ G or more of a cement for preventing water loss (Japanese Patent Laid-Open No. 6-24819) has been proposed, but there are problems such as an increase in pulverization cost and lack of versatility, which are not practical. In addition, there are techniques for mixing concentrated cement milk, concentrated cement milk combined with clay minerals such as bentonite, soybeans, and red beans, but none of them has a sufficient effect of preventing water loss.
[0003]
[Problems to be solved by the invention]
It is an object of the present invention to provide a hydraulic composition for a pile construction method that is excellent in water loss prevention performance in a pile periphery fixing liquid used for an embedded concrete pile embedding method, a cast-in-place pile method, a mortar column method, etc. And
[0004]
[Means for Solving the Problems]
The present inventors have found that the above problems can be solved by using a hydraulic composition for a pile construction method containing two different water-soluble low molecular weight compounds satisfying specific properties and a hydraulic powder. .
[0005]
The present invention contains a first water-soluble low-molecular compound (hereinafter referred to as compound (A)) and a second water-soluble low-molecular compound (hereinafter referred to as compound (B)) different from compound (A). A slurry rheology modifier that comprises an aqueous solution S of compound (A)A(Viscosity at 20 ° C. of 100 mPa · s or less) and aqueous solution S of compound (B)BThe viscosity at 20 ° C. of an aqueous solution obtained by mixing (with a viscosity at 20 ° C. of 100 mPa · s or less) at a weight ratio of 50/50 should be at least twice as high as that of any aqueous solution before mixing. The present invention relates to a hydraulic composition for a pile construction method, which contains a slurry rheology modifier, a hydraulic powder, and water and satisfies the following property 1.
<Characteristic 1>
With respect to the composition at 20 ° C., the maximum value G ′ of the storage elastic modulus measured at an angular velocity ω of a cone plate (diameter 50 mm, angle 0.0398 rad, GAP 0.0508 mm) in the range of 1 to 10 rad / s.maxIs 50 to 10,000 Pa.
[0006]
Moreover, this invention relates to the cast-in-place concrete pile which hardens the hydraulic composition for pile construction methods of the said invention.
[0007]
In addition, the present invention excavates the ground to the support layer using the excavation stirring rod, then injects the root hardening liquid into the excavation hole, and then injects the hydraulic composition for the pile method of the present invention while excavating the stirring rod It is related with the embedding method of the pile which sinks a ready-made concrete pile in the hole satisfy | filled with the hydraulic composition for pile construction methods, and unifies a ground and a pile.
[0008]
In the hydraulic composition of the present invention, the water-soluble low-molecular compound is formed in water at a room temperature in the form of a single molecule or a structure such as an aggregate, micelle, or liquid crystal, or a mixture thereof. Does not cause phase separation. A phase has a macro size and is a region where statistical physical quantities such as temperature and pressure are clearly defined (colloid chemistry, volume 1, first edition, pages 89 to 90, October 12, 1995). Published by Tokyo Chemical Doujin).
[0009]
In particular, the combination of the compound (A) and the compound (B) in the hydraulic composition for the pile method of the present invention is a compound selected from (1) a compound (A) selected from amphoteric surfactants and an anionic surfactant Combination of (B), (2) Combination of compound (A) selected from cationic surfactant and compound (B) selected from anionic aromatic compound, (3) Selected from cationic surfactant It is selected from the combination of compound (B) selected from compound (A) and bromide compound.
[0010]
The compound (A) and the compound (B) according to the present invention are each in a single aqueous solution, in a state in which structures such as single molecules or aggregates, micelles, and liquid crystals are formed in water, and in a mixed state thereof. It is preferable that the viscosity of the mixed solution can be greatly increased by mixing the aqueous solution of the compound (A) and the aqueous solution of the compound (B), thereby imparting a specific storage elastic modulus to the hydraulic composition. There is a feature in the point. The composition within this specific storage modulus range is not diluted or discharged by groundwater, etc., and does not penetrate into the surrounding ground. It is done.
[0011]
Therefore, the compound (A) and the compound (B) according to the present invention are an aqueous solution S of the compound (A).A(Viscosity at 20 ° C. of 100 mPa · s or less) and aqueous solution S of compound (B)BThe viscosity at 20 ° C. of an aqueous solution obtained by mixing (with a viscosity at 20 ° C. of 100 mPa · s or less) at a weight ratio of 50/50 should be at least twice as high as that of any aqueous solution before mixing. It must be possible.
[0012]
The hydraulic composition of the present invention satisfies the above-mentioned property 1. Particularly, the compound (A) or the compound (B) does not exhibit the property 1 when added alone, and the compound (A) and the compound (B). By adding both of these, characteristic 1 is developed.
[0013]
When the combination of the compound (A) and the compound (B) is specified, either may be used as the compound (A). Below, when either is made into a compound (A), the other is made into a compound (B) and it distinguishes for convenience.
[0014]
Each of the aqueous solutions of the compound (A) and the compound (B), which are essential components of the hydraulic composition for a pile method according to the present invention, has a lower viscosity than an aqueous solution in which both are mixed, and slurry rheology modification containing these compounds By using the agent, the operability of addition to the slurry system becomes extremely good.
[0015]
When a slurry rheology modifier comprising a combination of the compound (A) and the compound (B) is added, an aggregate that is a so-called low-molecular compound higher-order structure is formed in the aqueous phase of the slurry, It is considered that the viscosity of the entire slurry increases because the periphery is covered with this aggregate. In addition, the rheological properties of the aggregate are considered to have high viscoelasticity, and it is considered that the aggregates are entangled with each other in the aqueous phase in the slurry to form a three-dimensional network aggregate. Due to this feature, the hydraulic powder particles in the slurry of the present invention are covered with this highly viscoelastic network-like aggregate, so that even when water is present in the use site, it can be charged and filled without being diluted. Therefore, for example, compared with the conventional pile circumference fixing liquid, the amount of slurry diffusing due to groundwater or the like is much smaller, and the thinning of the construction site can be reduced.
[0016]
Further, since a network aggregate is formed by molecular association in the slurry, high viscosity can be imparted to the slurry. General water-soluble polymers are linked by covalent bonds, so when subjected to shearing forces such as stirring, the bonds are broken and the molecular weight is reduced. Since the structure is formed, it is considered that the aggregate is easily recombined and re-fused even if the aggregate is cut by receiving a shearing force, and the aggregate of the original shape is reconstructed. This feature is particularly effective for slurry systems in which hydraulic powder particles, sand, gravel and the like are present. For example, since the aggregates are broken and the viscosity is significantly reduced at the time of injection where hydraulic powder particles, sand, gravel, etc. are uniformly mixed or internal friction occurs during the manufacture of the pile circumference fixing liquid, the above work can be easily performed. At the same time, when these operations are completed and the stress is released, aggregates are formed again, so that an appropriate viscosity is restored, it does not penetrate into the surrounding ground, and material separation resistance is generated, thus preventing water loss. It is considered excellent.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, it is necessary that the hydraulic composition for a pile method containing the compound (A), the compound (B), the hydraulic powder, and water has the following property 1. That is, this rheological property 1 is obtained by using a cone plate (diameter 50 mm, angle 0.0398 rad, GAP 0.0508 mm) with an ARES viscoelasticity measuring apparatus (manufactured by Rheometric Scientific) for a composition at 20 ° C. and an angular velocity ω. Is measured in the range of 1 to 10 rad / s, and the maximum value G ′ of G ′ obtained in the range of ω is measured.maxIs in the range of 50 to 10,000 Pa. Storage elastic modulus G 'maxIs preferably 100 to 10,000 Pa, more preferably 400 to 7000 Pa, and still more preferably 800 to 4000 Pa from the viewpoint of workability.
[0018]
The compound (A) and the compound (B) used in the present invention are an aqueous solution S of the compound (A) having a viscosity of 100 mPa · s or less.AAnd an aqueous solution S of the compound (B) having a viscosity of 100 mPa · s or lessBIs required to have a property that the viscosity can be at least 2 times higher than the viscosity of any aqueous solution before mixing, more preferably at least 5 times, more preferably at least 10 times, It is preferably at least 100 times higher, particularly preferably at least 500 times higher.
[0019]
Here, the viscosity of the aqueous solution means that measured with a B-type viscometer (No. 3 rotor, from 1.5 rpm to 12 rpm) at 20 ° C. In this case, the viscosity behavior is 1.5 r. p. m. To 12r. p. m. It may be expressed at any of the number of rotations.
[0020]
The concentration of the compound (A) and the compound (B) can be determined within a range where the viscosity of the aqueous solution of the compound (A) and the compound (B) at 20 ° C. and the viscosity when both are mixed satisfy the above requirements. A preferable range can be determined when the compound (A) and the compound (B) are specified, but considering that the concentration range when added to the composition can be widely selected, each is 0.01 to It is preferable to select the compound (A) and the compound (B) whose concentration can be determined in the range of 50% by weight.
[0021]
The compound (A) and the compound (B) according to the present invention can impart good rheological properties even with a hydraulic composition for a pile construction method having a high ionic strength.
[0022]
The weight ratio of the effective component of the compound (A) and the compound (B) contained in the hydraulic composition for pile construction method of the present invention is preferably (A) / (B) = 5/95 to 95/5. 20/80 to 80/20 are more preferable. Moreover, it is preferable that content of hydraulic powder is 0.01 to 80 weight% in a composition, and 25 to 70 weight% is especially preferable.
[0023]
In the hydraulic composition for a pile method of the present invention, the total content of the effective components of the compound (A) and the compound (B) is 0.01 to 20 parts by weight, further 0.1 to 15 parts by weight with respect to 100 parts by weight of water. Part, particularly in the range of 0.3 to 10 parts by weight, from the viewpoint of preventing water loss.
[0024]
As long as the compound (A) and the compound (B) according to the present invention satisfy the behavior defined in the present invention, any combination may be combined, but the workability and the stability of the dispersibility of the composition system are stable. From the viewpoint of properties, the compound (A) and the compound (B) each have a molecular weight (formula weight in the case of an inorganic compound) of 1000 or less, preferably 700 or less, more preferably 500 or less, and in the case of a polymer, a weight average. The molecular weight (for example, gel permeation chromatography method / polyethylene oxide conversion) is less than 500, preferably 400 or less, more preferably 300 or less. Further, the aqueous solution of the compound (A) and the aqueous solution of the compound (B) are also mixed with water at room temperature in a state in which structures such as single molecules or aggregates, micelles, and liquid crystals are formed in the water and in a state in which they are mixed. It is preferable not to separate.
[0025]
The compound (A) and the compound (B) according to the present invention may be combined with each other as long as the hydraulic composition for a pile method exhibits the behavior described above. ) And a compound (B) is a combination of (1) a compound (A) selected from amphoteric surfactants and a compound (B) selected from anionic surfactants, (2) a cationic surfactant A combination of a compound selected from (A) and an anionic aromatic compound (B), (3) a compound selected from a cationic surfactant (A) and a compound selected from a bromide (B) A combination selected from the above.
[0026]
As the amphoteric surfactant, a betaine-type amphoteric surfactant is preferable, and examples include dodecanoic acid amidopropyl betaine, octadecanoic acid amidopropyl betaine, dodecyldimethylaminoacetic acid betaine, and the like. Betaine is preferred.
[0027]
As an anionic surfactant, an ethylene oxide addition type alkyl sulfate salt type surfactant is preferable. POE (3) dodecyl ether sulfate ester, POE (2) dodecyl ether sulfate ester, POE (4) Examples thereof include dodecyl ether sulfate ester salts. Examples of the salts include metal salts such as sodium salts and alkanolamine salts such as triethanolamine salts.
[0028]
Among these, dodecanoic acid amidopropyl betaine and POE (3) dodecyl ether sulfate triethanolamine which are effective even when the solid content (effective content) concentration in the aqueous phase of the hydraulic composition for the pile method is 20% by weight or less A combination of POE (3) sodium dodecyl ether sulfate is preferred. POE is an abbreviation for polyoxyethylene, and the numbers in parentheses are the average number of moles of ethylene oxide added (the same applies hereinafter).
[0029]
A quaternary salt type cationic surfactant is preferred as the one selected from the cationic surfactants, and the quaternary salt type cationic surfactant is a saturated compound containing 10 to 26 carbon atoms in the structure. Alternatively, those having at least one unsaturated linear or branched alkyl group are preferred. For example, alkyl (10 to 26 carbon atoms) trimethylammonium salt, alkyl (10 to 26 carbon atoms) pyridinium salt, alkyl (10 to 26 carbon atoms) imidazolinium salt, alkyl (10 to 26 carbon atoms) dimethylbenzylammonium salt Specifically, hexadecyltrimethylammonium chloride, hexadecyltrimethylammonium bromide, octadecyltrimethylammonium chloride, octadecyltrimethylammonium bromide, tallow trimethylammonium chloride, tallow trimethylammonium bromide, hydrogenated tallow trimethylammonium chloride, hydrogen Tallow trimethylammonium bromide, hexadecylethyldimethylammonium chloride, octadecylethyldimethyl Examples include ruammonium chloride, hexadecylpropyldimethylammonium chloride, hexadecylpyridinium chloride, 1,1-dimethyl-2-hexadecylimidazolinium chloride, hexadecyldimethylbenzylammonium chloride, and the like. Also good. Specifically, from the viewpoint of water solubility and thickening effect, hexadecyltrimethylammonium chloride, octadecyltrimethylammonium chloride, hexadecylpyridinium chloride and the like are preferable. From the viewpoint of the temperature stability of the thickening effect, it is preferable to use two or more kinds of cationic surfactants having different alkyl group carbon numbers as one of the compound (A) or the compound (B).
[0030]
In particular, it is preferable to use a quaternary ammonium salt that does not contain a halogen such as chlorine from the viewpoint of preventing corrosion of the reinforcing steel and deterioration of the concrete due to salt damage.
[0031]
Examples of quaternary salts that do not contain halogen such as chlorine include ammonium salts and imidazolinium salts. Specific examples include hexadecyltrimethylammonium methosulfate, hexadecyldimethylethylammonium etosulphate, octadecyltrimethylammonium methosulfate, octadecyl. Dimethylethylammonium ethosulphate, tallow trimethylammonium methosulphate, tallow dimethylethylammonium ethosulphate, 1,1-dimethyl-2-hexadecylimidazolinium methosulphate, hexadecyldimethylhydroxyethylammonium acetate, octadecyldimethylhydroxyethylammonium acetate, Hexadecyldimethylhydroxyethylammonium propionate, oct Decyl dimethyl hydroxyethyl ammonium propionate, tallow dimethyl hydroxyethyl ammonium acetate, tallow dimethyl hydroxyethyl ammonium propionate, and the like. A quaternary ammonium salt containing no halogen such as chlorine can be obtained, for example, by quaternizing a tertiary amine with dimethyl sulfate, diethyl sulfate, or dimethyl carbonate.
[0032]
Examples of those selected from anionic aromatic compounds include carboxylic acids having an aromatic ring and salts thereof, phosphonic acids and salts thereof, sulfonic acids and salts thereof, and specifically include salicylic acid, p-toluenesulfonic acid, sulfone. Salicylic acid, benzoic acid, m-sulfobenzoic acid, p-sulfobenzoic acid, 4-sulfophthalic acid, 5-sulfoisophthalic acid, p-phenolsulfonic acid, m-xylene-4-sulfonic acid, cumenesulfonic acid, methylsalicylic acid, Examples thereof include styrene sulfonic acid and chlorobenzoic acid, which may form a salt, and two or more of these may be used in combination. However, in the case of a polymer, the weight average molecular weight (for example, gel permeation chromatography method / polyethylene oxide conversion) is preferably less than 500.
[0033]
As a material selected from brominated compounds, inorganic salts are preferable, and examples thereof include NaBr, KBr, and HBr.
[0034]
In the present invention, the compound (A) and the compound (B) that easily form an aggregate are low in viscosity even in a concentrated aqueous solution, and the compound (A in the aqueous phase of the hydraulic composition for pile construction method) ) And the compound (B) are effective even if the effective component concentrations are low, and each of the concentrated aqueous solutions has low viscosity, which is preferable from the viewpoint of workability at the time of addition. In the present invention, the thickening of the hydraulic composition for pile construction method can be achieved with an extremely low addition amount of 10% by weight or less of the effective component concentration of the compound (A) and the compound (B), particularly in contact with the aqueous phase. The compound (A) is a quaternary ammonium salt type cationic surfactant in that it exhibits rheological properties that the material separation resistance is very stable, which cannot be obtained by using conventional thickeners. A combination in which the compound (B) is selected from an anionic aromatic compound or a brominated compound is particularly preferable.
[0035]
Further, a combination in which the compound (A) is an alkyl (10 to 26 carbon atoms) trimethylammonium salt and the compound (B) is a sulfonate having an aromatic ring is particularly preferable, and the effective component concentration in the aqueous phase of the composition Even if it is 5% by weight or less, the effect is exhibited. In particular, from the viewpoint of preventing curing delay, the compound (B) is preferably toluenesulfonic acid, xylenesulfonic acid, cumenesulfonic acid, styrenesulfonic acid or a salt thereof, and particularly preferably p-toluenesulfonic acid or a salt thereof. .
[0036]
As the hydraulic composition for the pile method according to the present invention, the characteristic slurry rheological properties can be obtained by using the compound (A), the compound (B) and the hydraulic powder in combination. It is done.
[0037]
When the compound (A) and the compound (B) are mixed, an aggregate is formed in the aqueous phase in a short time, and viscosity can be efficiently imparted. Further, this aggregate formation is a hydraulic composition for a pile method. In order to supplement the hydraulic powder by being uniformly formed therein, it is considered that there is little thinning after pouring into the ground.
[0038]
Since the compound (A) and the compound (B) are low molecular compounds and form a large polymer network aggregate by causing molecular association in the hydraulic composition for a pile method, the hydraulic property for a pile method It is considered that high viscosity and separation resistance can be imparted to the composition.
[0039]
Among these, when used in combination with a quaternary ammonium salt type cationic surfactant and a compound selected from anionic aromatic compounds or bromide compounds, it is considered that finely branched aggregates are formed in the aqueous phase of the slurry. It is done.
[0040]
In addition, since general water-soluble polymers are connected by covalent bonds, the bond breaks and the molecular weight decreases when subjected to repeated shearing force, whereas such an aggregate has a strong stress in the aqueous phase. Since the aggregate structure is destroyed, excessive stress is suppressed, and when the stress decreases, an aggregate is considered to be formed again. Thereby, it has the characteristic of providing moderate viscosity to the hydraulic composition for pile construction methods.
[0041]
By taking advantage of these characteristics, piles can be highly shear resistant because the aggregates will re-form when released from the shearing, even when subjected to strong shearing, injection, and pumping of the hydraulic composition for piles. It can be given to the composition. For example, manufacturing and transporting the hydraulic composition for pile construction method, pumping while suppressing the occurrence of excessive internal friction, giving moderate viscosity to the hydraulic composition for pile construction method after production or transportation it can.
[0042]
Furthermore, since the hydraulic powder particles in the hydraulic composition for a pile construction method containing the compound (A) and the compound (B) are covered with a network assembly having high viscoelasticity, water is present at the use site. Even in this case, it can be filled and filled without dilution, and the thinning of the pile periphery fixing liquid can be prevented.
[0043]
A compound (A) selected from amphoteric surfactants, a compound (B) selected from anionic surfactants, or a compound (A) selected from cationic surfactants In the case where a compound selected from an anionic aromatic compound or a compound selected from a bromide compound is used as the compound (B), since the viscosity is low even in a concentrated aqueous solution of each compound alone, the aqueous solution before addition to the slurry system The production of the storage tank can be reduced in size by setting the effective concentration of the oil to preferably 10% by weight or more, more preferably 20% by weight or more, further preferably 30% by weight or more, and most preferably 40% by weight or more. Can be improved.
[0044]
If the compound (A) and the compound (B) are added to the slurry, a hydraulic composition for a pile method with a modified rheology can be obtained, and the method for preparing the hydraulic composition for a pile method according to the present invention is not particularly limited. However, the preferable preparation method of the hydraulic composition for pile construction methods of this invention is demonstrated below.
[0045]
Since the compound (A) and the compound (B) according to the present invention are each in the state of an extremely low viscosity aqueous solution, those that exhibit a large viscosity when mixed are preferably used. When added to the system, each is preferably used in the form of an aqueous solution having a viscosity of 100 mPa · s or less, preferably 50 mPa · s or less, more preferably 10 mPa · s or less at the temperature used.
[0046]
In the present invention, it is preferable to use two kinds of compounds having a specific storage elastic modulus as the rheology modifier of the slurry, in which the hydraulic composition for the pile method is used. When these two compounds are the compound (A) and the compound (B), either one of the compound (A) and the compound (B) is added to a slurry containing hydraulic powder and water, and the slurry The other compound can be added to.
[0047]
In addition, since compound (A) or compound (B) can be mixed in any order in a slurry containing hydraulic powder and water, one compound is added to the slurry at an appropriate stage and viscosity is required. From the viewpoint of workability, it is preferable to add the other to the slurry at this stage. Moreover, the state of the compound (A) or the compound (B) when added may be liquid or powder.
[0048]
When the hydraulic composition for a pile method according to the present invention is used in a combination of one selected from a cationic surfactant and one selected from an anionic aromatic compound or bromide compound, the water of the hydraulic powder particles is used. It is preferable to add an anionic aromatic compound or bromide compound into the slurry first and then add a cationic surfactant from the viewpoint of controlling the sum reaction and suppressing entrained bubbles during slurry stirring. It is.
[0049]
The hydraulic composition for pile construction method of the present invention can be specified by a specific storage elastic modulus, but each of the compound (A) and the compound (B) is not a mixture derived from a natural product (for example, a compound derived from beef tallow). In the case of a single compound, it is preferable that the molar ratio is defined and mixed from the viewpoint of efficiently forming an association product of the compound (A) and the compound (B).
[0050]
In the hydraulic composition for a pile method of the present invention, the molar ratio (effective molar ratio) of the compound (A) and the compound (B) is a region having a high thickening effect depending on the combination of the compound (A) and the compound (B). However, the combination of the compound (A) and the compound (B) may be selected from (1) the compound (A) and the anion selected from amphoteric surfactants. A combination of compounds (B) selected from anionic surfactants, (2) a combination of compounds (A) selected from cationic surfactants and compounds (B) selected from anionic aromatic compounds, (3) When selected from the combination of the compound (A) selected from the cationic surfactants and the compound (B) selected from the bromide compounds, from the viewpoint of the resulting viscosity and the shape of the aggregate, the compound (A) / Compound (B) = 1 20-20 / 1, preferably 1 / 20-4 / 1, more preferably 1 / 3-2 / 1, particularly preferably 1 / 1-2 / 3 are suitable.
[0051]
Furthermore, since the hydraulic composition for a pile method according to the present invention can maintain good rheological properties even in a slurry system having a high ionic strength, the electric conductivity of the aqueous phase is in the range of 0.01 to 80 mS / cm, preferably 0.8. The slurry is preferably 1 to 60 mS / cm, particularly preferably 1 to 40 mS / cm.
[0052]
The compound (A) and the compound (B) according to the present invention may be used in either an aqueous solution or a powder state, and in particular, in any form of the hydraulic composition for a pile method according to the present invention, a good slurry is used. Rheological properties can be imparted. If the compound (A) and the compound (B) are used in a powder form in advance, workability in premix applications and the like is improved. However, in consideration of enabling the slurry to be adjusted to a desired viscosity, it is preferable to use a method in which the compound (A) and the compound (B) are not surface-treated in advance on the constituent hydraulic powder of the pile construction method hydraulic composition. .
[0053]
The hydraulic composition for a pile method according to the present invention can be applied at a water / hydraulic powder ratio of 30 to 300%, preferably 50 to 250%, more preferably 60 to 200% from the viewpoint of ease of handling and cured properties. As the hydraulic powder contained in the composition, a hydraulic powder having physical properties that are cured by a hydration reaction is used. Examples thereof include hydraulic powder cement and gypsum such as ordinary Portland cement, moderately hot cement, early strong cement, very early strong cement, high belite-containing cement, blast furnace cement, fly ash cement, alumina cement, and silica fume cement. Fillers can also be used in combination with hydraulic powders, such as calcium carbonate, fly ash, blast furnace slag, silica fume, bentonite, clay (natural minerals mainly composed of hydrous aluminum silicate: kaolinite, halosite, etc. ). These powders may be used alone or in combination. Furthermore, sand, gravel, and a mixture thereof may be added as aggregate to these powders as necessary. It can also be applied to soil.
[0054]
Further, the compound (A) and / or the compound (B) according to the present invention and a hydraulic powder are premixed to prepare a hydraulic powder composition for preparing the hydraulic composition for a pile method according to the present invention. be able to.
[0055]
Moreover, in the hydraulic composition for the pile method of the present invention, the effective component concentration in the slurry of the compound (A), the compound (B) and the hydraulic powder can be appropriately determined according to the intended degree of thickening. Although good, the hydraulic composition for a pile construction method of the present invention is obtained by a method such as adding the compound (A) and the compound (B) to a slurry prepared in advance or adding the compound (B) at the time of slurry production. In particular, a slurry containing one compound (A) or compound (B), a hydraulic powder, a hydraulic powder, and water is prepared, and then the compound (A) or compound (B) is added to the slurry. The method of adding the other compound is preferable from the viewpoint of workability.
[0056]
It is preferable that the hydraulic composition for a pile method of the present invention contains an expansion material. The expansion material used in the present invention is ettringite (3CaO · Al) by hydration reaction when cement and water are mixed.2OThree・ 3CaSOFour・ 32H2O) or calcium hydroxide (CaOH2) And the like, and is an admixture having an action of expanding cement paste, mortar and concrete, and mainly ettringite and lime. In the present invention, even if the paste component of the hydraulic composition for pile construction method receives a slight dilution and spillage due to groundwater or seawater in the ground, the expansion material is between the pile and the surrounding ground due to its expansion action. There is an effect to adhere without creating a gap.
[0057]
The amount of the expansion material used in the hydraulic composition for a pile method according to the present invention is preferably 5 to 50 parts by weight, more preferably 10 to 30 parts by weight with respect to 100 parts by weight of the hydraulic powder, from the viewpoints of expandability and strength.
[0058]
The hydraulic composition for a pile method according to the present invention may contain a dispersant. Dispersants include lignin sulfonate and its derivatives as water reducing agents, oxycarboxylates, polyol derivatives, high-performance water reducing agents and high-performance AE water reducing agents such as naphthalene (manufactured by Kao Corporation: Mighty 150), melamine (Kao Co., Ltd .: Mighty 150V-2), polycarboxylic acid type (Kao Co., Ltd .: Mighty 3000, NMB Co., Ltd .: Leo Build SP, Nippon Shokubai Co., Ltd .: Aqualock FC600, Aqualock FC900), anion interface Examples of the activator system include polycarboxylic acid type surfactants (manufactured by Kao Corporation: Poise Series). Among them, the polycarboxylic acid-based high-performance water reducing agent and the polycarboxylic acid type surfactant are preferable in that both the fluidity and viscosity of the pile construction hydraulic composition can be achieved.
[0059]
In general, the content of the dispersant in the hydraulic composition for a pile method according to the present invention is preferably 0.01 to 5% by weight, more preferably 0.05 to 3% by weight as an active ingredient with respect to the hydraulic powder.
[0060]
In addition to the compound (A) and the compound (B) contained in the hydraulic composition for a pile method of the present invention, other existing thickeners can be used. Examples of other existing thickeners include cellulose derivatives, polyacrylic polymers, polyethylene oxide, polyvinyl alcohol, gum polysaccharides, and microbial fermentation polysaccharides.
[0061]
The hydraulic composition for pile construction method of the present invention has other components such as AE agent, retarder, early strength agent, accelerator, foaming agent, foaming agent, antifoaming agent, anti-foaming agent as long as the performance of this agent is not impaired. It may contain a rusting agent, a coloring agent, an antifungal agent, a crack reducing agent, a dye, a pigment and the like.
[0062]
Aggregates can be mixed in the hydraulic composition for the pile construction method of the present invention, and fine aggregates and coarse aggregates can be used as the aggregates. High material strength is preferred. Coarse aggregates include rivers, land, mountains, sea, lime gravel, crushed stones, blast furnace slag coarse aggregate, ferronickel slag coarse aggregate, lightweight coarse aggregate (artificial and natural), recycled coarse aggregate, etc. Can be mentioned. Fine aggregates include rivers, land, mountains, sea, lime sand, quartz sand and crushed sand, blast furnace slag fine aggregates, ferronickel slag fine aggregates, lightweight fine aggregates (artificial and natural) and recycled fine aggregates. Etc.
[0063]
The hardened composition obtained by mixing aggregate with the hydraulic composition for pile construction method of the present invention can be used for, for example, cast-in-place concrete piles and mortar columns that produce piles in the field.
[0064]
As an example of the construction method using the hydraulic composition for pile construction method of the present invention, after excavating the ground to the support layer using the excavation stirring rod, the rooting liquid is injected into the excavation hole, and then the hydraulic property for the pile construction method of the present invention An example is a pile embedding method in which after the excavation stirring rod is pulled up while injecting the composition, a ready-made concrete pile is set in the hole filled with the hydraulic composition for the pile method, and the ground and the pile are integrated.
[0065]
【The invention's effect】
The pile periphery fixing liquid using the hydraulic composition for a pile construction method of the present invention is excellent in a water loss prevention effect.
[0066]
【Example】
Example
(1) Preparation of hydraulic composition for pile method
Table 2 shows the viscosities before and after mixing the aqueous solutions of the compound (A) and the compound (B) in Table 1. However, in Comparative Examples 1-2 to 1-4, the aqueous solution SAOr aqueous solution SBAn equivalent amount of water was used as an alternative to
Using the compound (A) and compound (B) in Table 1 for the formulation in Table 3 or Table 4, a hydraulic composition for a pile method was prepared by the following method. That is, water, cement (ordinary Portland cement, specific gravity 3.16) and the compound (A) in an amount shown in Table 5 or Table 6 were mixed with a stirring blade (National Hand Mixer MK-H3, manufactured by Matsushita Electric Industrial Co., Ltd.) After stirring for 30 seconds, the amount of compound (B) shown in Table 5 or Table 6 was added and stirred for 60 seconds to prepare. In addition, the addition amount of Table 5 is the density | concentration in the water phase (The total amount of water, a compound (A), and a compound (B)) in a composition (hereinafter the same).
[0067]
(2) Evaluation
(2-1) Storage elastic modulus (G ′ and G ′max)
The storage elastic modulus G 'of the hydraulic composition for pile construction method containing the compound (A) and the compound (B) was measured. The storage elastic modulus G ′ is an ARES viscoelasticity measuring device (manufactured by Rheometric Scientific) using a cone plate (diameter: 50 mm, angle: 0.0398 rad, GAP: 0.0508 mm), and a strain of 1.0%. The measurement range was 0.0628 to 62.8 rad / s at 20 ° C. From the result, G ′ at an angular velocity ω of 1 to 10 rad / s.maxWas evaluated according to the following criteria.
(G ’maxEvaluation of)
◎; G ’maxIs 800-4000Pa
○: G ’maxIs 400 to 7000 Pa (excluding those in the range of ◎)
Δ: G 'maxIs 50 to 10000 Pa (excluding those in the range of ◎ and ○)
X: G 'maxIs less than 50 Pa or more than 10,000 Pa
[0068]
(2-2) Water loss prevention test method
Put two cups of sand (1% surface water) in a 13L bucket with a scoop and press lightly with a hand. In addition, with a scoop, add 2 glasses of sand into the bucket so that they do not get inside the PVC tube, and lightly press and harden it with your hands. Repeat this procedure until the PVC pipe comes out 10cm above the sand. Put 172.4mL of the hydraulic composition for pile construction prepared from the opening of the PVC pipe (the volume of the PVC pipe in the sand), and slowly pull out the PVC pipe so that the wall of the sand does not collapse. Then, when the sedimentation of the hydraulic composition for pile construction method was completely stopped, the settlement depth (cm) was measured and evaluated according to the following criteria. (Evaluation of settlement depth)
A: Subsidence depth is less than 6cm
○: Subsidence depth is 6 cm or more and less than 8 cm
Δ: Subsidence depth of 8 cm or more and less than 16 cm
×: Subsidence depth of 16 cm or more
[0069]
Moreover, the hydraulic composition for the pile construction method was settled and added further, and the final input amount added until the time when the settling stopped was measured as the required input amount (mL) and evaluated according to the following criteria.
(Evaluation of required input)
A: Required input is less than 50 mL
○: Required input amount is 50 mL or more and less than 150 mL
Δ: Required input is 150 mL or more and less than 250 mL
×: Required input amount is 250 mL or more
[0070]
(2-3) Expansibility test method
Conforms to JIS A 6202 “Expanding material for concrete”. That is, from the hydraulic composition for the pile construction method, a specimen is made using a uniaxial restraint device and a 4 cm × 4 cm × 16 cm formwork, demolded in 24 hours, and length L1Measure. Underwater curing until the 7th day of the material age, length L of the material age 7 days2The rate of change in length before and after curing [(L2-L1) / L1] And was evaluated according to the following criteria. The molar ratio of the compound (A) to the compound (B) was 1: 1, and the total addition amount was 0.5% by weight.
(Evaluation of expandability)
○: Length change rate is 7 × 10-FourSuper
Δ: Length change rate is 3 × 10-FourSuper 7 × 10-FourLess than
×: Length change rate is 3 × 10-FourLess than
[0071]
[Table 1]
Figure 0003973990
[0072]
[Table 2]
Figure 0003973990
[0073]
[Table 3]
Figure 0003973990
[0074]
[Table 4]
Figure 0003973990
[0075]
The compounding components in Tables 3 and 4 are as follows.
・ Water: Tap water
Cement: Ordinary Portland cement, commercially available, density 3.16 g / cmThree
・ Bentonite: manufactured by Hojun Kogyo
・ Expansion material: Ettlingite expansion material (commercially available)
[0076]
[Table 5]
Figure 0003973990
[0077]
* In Example 1-13, 0.05% by weight of Comparative Product 1 was used in combination.
** Thickening of the mixed aqueous solution is caused by the aqueous solution S of compound (A).A(Viscosity at 20 ° C. of 100 mPa · s or less) and aqueous solution S of compound (B)B(The viscosity at 20 ° C. is 100 mPa · s or less) is mixed at a weight ratio of 50/50, and the viscosity at 20 ° C. is measured, and at least 2 than the viscosity of any aqueous solution before mixing. Those that can be doubled are determined as “◯” from the results shown in Table 2 (the same applies hereinafter).
[0078]
[Table 6]
Figure 0003973990
[0079]
The hydraulic compositions for the pile construction method of Examples 2-1 to 2-11 are all G ′.maxWas in the range of 50-10000 Pa.

Claims (6)

第1の水溶性低分子化合物〔以下、化合物(A)という〕と、化合物(A)とは異なる第2の水溶性低分子化合物〔以下、化合物(B)という〕とを含有するスラリーレオロジー改質剤であって、化合物(A)及び化合物(B)の組合わせが、(1)両性界面活性剤から選ばれる化合物(A)及びアニオン性界面活性剤から選ばれる化合物(B)の組合わせ、(2)カチオン性界面活性剤から選ばれる化合物(A)及びアニオン性芳香族化合物から選ばれる化合物(B)の組合わせ、(3)カチオン性界面活性剤から選ばれる化合物(A)及び臭化化合物から選ばれる化合物(B)の組合わせ、から選択され、化合物(A)の水溶液SA(20℃での粘度が100mPa・s以下のもの)と化合物(B)の水溶液SB(20℃での粘度が100mPa・s以下のもの)とを50/50の重量比で混合した水溶液の20℃における粘度が、混合前のいずれの水溶液の粘度よりも少なくとも2倍高くすることができるスラリーレオロジー改質剤と、水硬性粉体と、水とを含有し、以下の特性1を満足する杭工法用水硬性組成物。
<特性1>
20℃の該組成物について、コーンプレート(直径50mm、角度0.0398rad、GAP0.0508mm)の角速度ωが1〜10rad/sの範囲で測定した貯蔵弾性率の最大値G’maxが50〜10000Paである。
Slurry rheology modification containing a first water-soluble low-molecular compound (hereinafter referred to as compound (A)) and a second water-soluble low-molecular compound (hereinafter referred to as compound (B)) different from compound (A). The combination of the compound (A) and the compound (B) is a combination of the compound (A) selected from (1) an amphoteric surfactant and a compound (B) selected from an anionic surfactant. (2) a combination of a compound (A) selected from cationic surfactants and a compound (B) selected from anionic aromatic compounds, (3) a compound (A) selected from cationic surfactants and an odor A combination of the compound (B) selected from the chemical compounds, an aqueous solution S A of the compound (A) (having a viscosity at 20 ° C. of 100 mPa · s or less) and an aqueous solution S B of the compound (B) (20 Viscosity at 10 ° C is 10 a slurry rheology modifier capable of making the viscosity at 20 ° C. of an aqueous solution mixed with a 50/50 weight ratio of at least 2 times higher than the viscosity of any aqueous solution before mixing, A hydraulic composition for a pile construction method containing hydraulic powder and water and satisfying the following property 1.
<Characteristic 1>
With respect to the composition at 20 ° C., the maximum value G ′ max of the storage elastic modulus measured in the range where the angular velocity ω of the cone plate (diameter 50 mm, angle 0.0398 rad, GAP 0.0508 mm) is 1 to 10 rad / s is 50 to 10,000 Pa. It is.
化合物(A)と化合物(B)との有効分のモル比が化合物(A)/化合物(B)=1/20〜20/1である請求項1記載の杭工法用水硬性組成物。Compound (A) and the compound (B) molar ratio of the active component is a compound of the (A) / compound (B) = 1/20 to 20/1 a is claim 1 Symbol placement of Pile water hydraulic composition. さらに、膨張材を含有する請求項1又は2記載の杭工法用水硬性組成物。Furthermore, the hydraulic composition for pile construction methods according to claim 1 or 2 , further comprising an expansion material. 化合物(A)と化合物(B)の有効分合計の含有量が水100重量部に対して0.01〜20重量部の範囲である請求項1〜いずれか記載の杭工法用水硬性組成物。The hydraulic composition for a pile method according to any one of claims 1 to 3, wherein the total content of the effective components of the compound (A) and the compound (B) is in the range of 0.01 to 20 parts by weight with respect to 100 parts by weight of water. . 請求項1〜いずれか記載の杭工法用水硬性組成物を硬化させてなる場所打ちコンクリート杭。A cast-in-place concrete pile obtained by curing the hydraulic composition for a pile construction method according to any one of claims 1 to 4 . 地盤を、掘削攪拌ロッドを用いて支持層まで掘削した後、掘削孔に根固め液を注入し、次いで請求項1〜いずれか記載の杭工法用水硬性組成物を注入しながら掘削攪拌ロッドを引き上げた後、杭工法用水硬性組成物で満たされた孔中に、既製コンクリートパイルを沈設し、地盤と杭を一体化させる杭の埋込み工法。After excavating the ground to the support layer using the excavation stirring rod, the rooting liquid is injected into the excavation hole, and then the excavation stirring rod is inserted while injecting the hydraulic composition for pile construction method according to any one of claims 1 to 4. A pile embedding method in which a ready-made concrete pile is submerged in a hole filled with a hydraulic composition for the pile method after pulling up, and the ground and the pile are integrated.
JP2002229811A 2002-08-07 2002-08-07 Hydraulic composition for pile method Expired - Fee Related JP3973990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229811A JP3973990B2 (en) 2002-08-07 2002-08-07 Hydraulic composition for pile method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229811A JP3973990B2 (en) 2002-08-07 2002-08-07 Hydraulic composition for pile method

Publications (3)

Publication Number Publication Date
JP2004067887A JP2004067887A (en) 2004-03-04
JP2004067887A5 JP2004067887A5 (en) 2007-07-12
JP3973990B2 true JP3973990B2 (en) 2007-09-12

Family

ID=32016077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229811A Expired - Fee Related JP3973990B2 (en) 2002-08-07 2002-08-07 Hydraulic composition for pile method

Country Status (1)

Country Link
JP (1) JP3973990B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832845B2 (en) * 2005-10-04 2011-12-07 花王株式会社 Slurry production method
JP4896486B2 (en) * 2005-10-14 2012-03-14 花王株式会社 Hydraulic composition
JP5695300B2 (en) * 2009-04-02 2015-04-01 前田製品販売株式会社 Ready-made pile rooting solution and embedding method of ready-made pile using this root-setting solution
JP5864517B2 (en) * 2013-11-20 2016-02-17 株式会社ポラス暮し科学研究所 Column building equipment
JP7044535B2 (en) * 2017-12-14 2022-03-30 花王株式会社 Hydraulic composition for pile construction method

Also Published As

Publication number Publication date
JP2004067887A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP3875137B2 (en) Slurry rheology modifier
JP4056757B2 (en) Additive for hydraulic composition
JP4197102B2 (en) slurry
CN1863888B (en) Surfactant composition
JP4197122B2 (en) Rheology modifier
JP4503403B2 (en) Rheology modifier
JP3973990B2 (en) Hydraulic composition for pile method
JP4056828B2 (en) Hydraulic composition
JP4896486B2 (en) Hydraulic composition
JP6495668B2 (en) Hydraulic material admixture for cast-in-place concrete piles, hydraulic material for cast-in-place concrete piles and cast-in-place concrete piles
JP4832845B2 (en) Slurry production method
JP4439904B2 (en) Hydraulic composition
JP4407939B2 (en) Composition for void filler
JP4097965B2 (en) Injection material for submerged ground improvement
JP4216061B2 (en) Rheology modifier kit
JP4056868B2 (en) Air grout material
JP2004211078A (en) Rheology modifier
JP5335230B2 (en) One-component liquid rheology modifier
JP6710195B2 (en) Rheology modifier
JP4094417B2 (en) Additive for permeable concrete
JP2008273775A (en) Hydraulic composition for filler
JP7044535B2 (en) Hydraulic composition for pile construction method
JP7391485B2 (en) soil cement
JP2006160577A (en) Hydraulic composition
JP6752845B2 (en) Excavation method and excavation stabilizer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

R151 Written notification of patent or utility model registration

Ref document number: 3973990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees