JP3973884B2 - Optical pickup and recorded information reproducing apparatus - Google Patents

Optical pickup and recorded information reproducing apparatus Download PDF

Info

Publication number
JP3973884B2
JP3973884B2 JP2001361921A JP2001361921A JP3973884B2 JP 3973884 B2 JP3973884 B2 JP 3973884B2 JP 2001361921 A JP2001361921 A JP 2001361921A JP 2001361921 A JP2001361921 A JP 2001361921A JP 3973884 B2 JP3973884 B2 JP 3973884B2
Authority
JP
Japan
Prior art keywords
optical head
recording medium
light
information
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001361921A
Other languages
Japanese (ja)
Other versions
JP2003162840A (en
Inventor
伸朗 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001361921A priority Critical patent/JP3973884B2/en
Publication of JP2003162840A publication Critical patent/JP2003162840A/en
Application granted granted Critical
Publication of JP3973884B2 publication Critical patent/JP3973884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、記録媒体に対して情報の記録あるいは再生、又は記録と再生の両方の動作が可能な光ピックアップ及び情報記録再生装置に関するものである。
【0002】
【従来の技術】
光ディスク等の光メモリに対する情報の記録や再生に使用するため現在実用化されている情報記録再生装置は、光の波長と対物レンズの開口数で定まる光の回折限界にまで集光したレーザ光を記録媒体へ照射して記録層に熱的・磁気的変調を与えて情報を記録し、情報を記録した記録ピットによって変調される反射光強度および偏光を検出して情報の再生を行っている。この情報記録再生装置を使用した場合、光メモリの記録密度は光の回折限界で決定されてしまい、近年のコンピュータ等の情報機器を取り巻く情報量の増大に対応していくためには限度があり、光の回折限界を超えるような記録密度を達成する大容量光メモリが要求されている。
【0003】
このような大容量光メモリとして有望視されているものとして、近接場光を用いて情報の記録と再生を行ういわゆる近接場光を利用した情報記録再生装置が、例えば特開平5−250708号公報や特開平11−259902号公報,特開平11−265520号公報等に提案されている。近接場とは、屈折率の異なる2つの媒体の一方から全反射条件以上で入射した光が、反射境界面ですべて反射されるが、一部境界面を越え非伝播の電磁場成分のみが染み出した領域ができ、この非伝播の電磁場領域のことをいう。この近接場は、入射する光の波長よりも微小な開口近傍にのみ染み出し、開口寸法とほぼ同じ程度しか横方向の広がりを持たないといわれている。そのため、開口寸法を小さくすることにより、光の回折限界を超えた解像度を得ることができる。
【0004】
この近接場光プローブを使用した情報記録再生装置は、図19に示すように半導体レーザ素子(LD)41から出射されたレーザ光はコリメータレンズ42により平行光となり、この光は偏光ビームスプリッタ43と1/4波長板44を透過した後、対物レンズ45で集光されて近接場光プローブ46に照射される。近接場光プローブ46は、ガラス基板等の透光性基板上に透光性基板より屈折率の高いシリコン等の高屈折材料で形成された円錐台形状の突起部を設け、この側面を金や銀あるいはアルミなどの金属でコーティングして構成される。そして対物レンズ45で集光された光は近接場光プローブ46の先端で微小なサイズの近接場光に変換される。この変換された近接場光により記録媒体47の近接場光プローブ46と対向する面に設けられた記録層48に情報を記録し、対物レンズ45で集光させただけの場合より高密度な記録を実現することができる。また記録媒体47に記録された情報を再生するときは、記録層38から反射した光が対物レンズ45と1/4波長板44を通り、偏光ビームスプリッタ43で反射し、集光レンズ49により光検出器50に集光し、光検出器50により光強度が検出され情報を再生する。
【0005】
【発明が解決しようとする課題】
一般に、近接場光を発生させるための近接場光プローブでは、近接場の発生領域を小さくすることと強度を上げることを両立させることは原理的に困難である。また、近接場光プローブを作製するためには、半導体プロセスに匹敵する高精度な加工プロセスや組付け作業などを必要とするという短所がある。
【0006】
この発明は係る短所を改善し、比較的簡単な構造で、記録媒体上の回折限界以下の微小領域に強力な電磁場を発生させ、そこでの電磁相互作用を通じて高密度に情報を記録するとともに記録した情報を良好に再生することができる光ピックアップ及び情報記録再生装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
この発明に係る光ピックアップは、記録媒体に近接して配置され、照射された光により記録媒体に情報を記録するとともに記録媒体に記録された情報を再生する光ピックアップにおいて、記録媒体上を走査させるためのスライダーには、記録媒体表面近傍にレーザ光の波長より狭い幅の微小間隙を有し、且つ、レーザ光が照射される側の表面が記録媒体表面に対して略垂直である金属部材を有し、微小間隙の近傍に照射されたレーザ光により局所的な領域に電磁場を発生させる光ヘッドと、光ヘッドの微小間隙に対して照射するレーザ光の偏光方向が記録媒体表面及び金属部材のレーザ光が照射される表面に対して平行で、照射方向が記録媒体表面に垂直な入射法線に対して傾斜させた斜入射の照射光学系とを有することを特徴とする。
【0008】
上記光ヘッドは、レーザ光の照射によって局所的な領域に電磁場を発生させる微小間隙を、照射するレーザ光の波長より薄い誘電体を挟んで両側に配置した金属部材で形成して、所望の微小間隙を容易に作製する。
【0009】
また、誘電体を挟んだ金属部材の誘電体と接する面と反対側の面に金属部材と異なる材質の部材を接触させて配置し、微小間隙が記録媒体に接触して破損することを防ぐ。
【0010】
さらに、微小間隙を有する光ヘッドのレーザ光のレーザ光が入射する面に、レーザ光が入射する面が曲面で形成された透明部材を一体化して、微小間隙の領域に集光するレーザ光の集光スポットをより小さくし、レーザ光のエネルギを有効に利用する。
【0011】
この発明に係る情報記録再生装置は、上記光ピックアップを有し、光ヘッドの微小間隙の近傍の局所的な領域に発生した電磁場により記録媒体の記録層に情報を記録して、情報を高密度に記録することを特徴とする。
【0012】
上記記録媒体を透過した光を光検出器で検出して記録媒体に記録された情報を再生したり、記録媒体から光ヘッドの内部に伝搬する光を、光ヘッドを走査するためのアーム又は光ヘッドに装着された光検出器で検出して記録媒体に記録された情報を再生し、高密度で記録された情報を安定して再生する。
【0013】
また、光ヘッドの内部に伝搬する光を検出する光検出器を、光ヘッドに照射するレーザ光の主光線のレーザ光が入射する面と交差しない位置に設け、再生した情報だけを含む光を光検出器に入射し、情報再生のS/Nを向上させる。
【0014】
さらに、光ヘッドに装着された光検出器から電気信号を光ヘッド以外の場所に設けられた信号処理回路へと導くための配線をサスペンションと一体化して、サスペンションの動きが損なわれることを防ぐ。
【0015】
また、記録媒体からの光が伝搬して光ヘッドのスライダーを透過して出射する部分に反射防止膜を形成し、記録媒体の情報を含む光を効率良く光検出器に入射させる。
【0016】
【発明の実施の形態】
図1はこの発明の情報記録再生装置の構成図である。図に示すように、情報記録再生装置1は、ガラスやポリカーボネイトなどの透明基板2上に相変化材料などで記録層3を設けた円形の記録媒体4を図示しないスピンドルモータで回転させた状態で記録媒体4に情報を記録したり再生するものであり、アーム5にサスペンション6を介して取り付けられた光ヘッド7と、光ヘッド7に記録、再生用のレーザ光を照射する光学系8と、記録媒体4の透明基板2側に配置されたアーム9に設けられ、記録媒体4の透過散乱光を受光するフォトダイオード等からなる光検出器10を有し、光ヘッド7を、回転している記録媒体4の記録層3に対して波長以下の距離まで近接させて配置している。
【0017】
アーム5は、記録媒体4に対する光ヘッド7の浮上量を安定させるサスペンション6を介して光ヘッド7を支持するとともに、図示しない駆動機構によって光ヘッド7を記録媒体4上で位置決めして走査させる。光ヘッド7は、ガラスや合成樹脂などで形成されたスライダー11のyz面に平行な側面に、例えば金や銀、アルミなどで形成された厚さが50〜300nm程度の金属面12を有する。この光ヘッド7の金属面12は、図2の側面図と図3の斜視図に示すように、記録媒体4の記録層3に近接する部分を細くして3角形状の溝12aを有する。この3角形状の溝12aの記録層3に近接する端部の間隙12bの幅dは、照射するレーザ光の波長の1/5などと充分小さくなるように形成されている。
【0018】
光学系8はアーム5上に配置された半導体レーザ素子からなる光源13とコリメートレンズ14及び凹面反射鏡15を有し、光源13から出射した例えば波長405nmのレーザ光16をコリメートレンズ13と凹面反射鏡15及びアーム5に設けた透過穴17を介して光ヘッド7の金属面12の記録媒体4表面に最も近い端部の金属面12の微小間隙12bの近傍に集光して照射する。この光ヘッド7に照射するレーザ光16は、記録媒体4の表面に対して平行な方向、すなわち図2,図3においてY方向に偏光方向(電界の振動方向)を持つようにしている。また、照射方向は光ヘッド7を上方から見たときに、金属面12に垂直となっている。光検出器10は、アーム5と連動して動作するアーム9に取り付けられており、常に記録媒体4を挟んで光ヘッド7と反対側に位置するようになっている。
【0019】
この情報記録再生装置1で記録媒体4に情報を記録するときは、光源13から放射されたレーザ光16をコリメートレンズ13と凹面反射鏡15及びアーム5に設けた透過穴17を介して、図4に示すように、光ヘッド7の金属面12の記録媒体4の表面に最も近い微小間隙12bの近傍18に集光して照射する。この金属面12の微小間隙12bの近傍18に偏光させたレーザ光16が照射されると、金属の導電性によって、微小間隙12bを隔てた金属面12の先端部12cと12dの間に電界が集中して局所的に強い電磁場19が発生する。この電磁場19は、光ヘッド7に近接する記録層3における照射レーザ光16の回折以下の微小領域、すなわち、レーザ光16を対物レンズで集光させた場合よりも小さな領域に電磁場のエネルギを与える。したがって記録層3に例えば相変化材料を用いた場合などにおいては、記録層3に加わる電磁場のエネルギによって局所的に加熱されて相変化を生じ、記録マークが形成される。この記録層3の加熱は、レーザ光16を対物レンズで集光して記録媒体4に直接照射する従来の光メモリ装置より局所的に行われるので、形成する記録マークも従来の光メモリ装置よりも微小にすることができな高密度な記録を行うことができる。
【0020】
また、記録媒体4に記録された情報を再生するときは、光源13から放射されたレーザ光16を光ヘッド7の金属面12の微小間隙12bの近傍18に照射する。このレーザ光16の照射により生じた電磁場19と記録層3の記録マークと電磁相互作用して強度や偏光の変化を受けた後に記録媒体4を透過する側へ伝搬する光を光検出器10で検出することにより、記録媒体4に記録された情報を再生する。
【0021】
このように情報記録再生装置1を構成することにより、従来のCDやDVDより高密度で記録媒体4に情報を記録するとともに記録媒体4に記録した情報を再生することができる。
【0022】
上記説明では記録媒体4の記録層3として相変化材料を用いた場合について示したが、相変化材料に限らず電磁場のエネルギを局所的に与えることによって記録または再生することが可能な材料であればいかなる材料であっても良い。また、レーザ光16を集光して光ヘッド7に照射する光学系8に凹面鏡15を使用した場合について説明したが、図5の構成図に示すように、反射ミラー20と対物レンズ21を組み合わせてレーザ光16を集光して光ヘッド7に照射するようにしても良い。
【0023】
また、光ヘッド7の金属面12に3角形状の溝12aを形成して記録媒体4の記録層3に近接する端部に微小間隙12bを形成した場合について説明したが、図6の(a)に示すように、金属面12に微小スリット12eを形成してレーザ光16の波長以下の幅を有する微小間隙12bを形成したり、(b)に示すように、金属面12の記録層3に近接する端部に角溝12fを形成したり、(c)に示すように、円形溝12gを形成して微小間隙12bを形成するようにしても良い。
【0024】
また、図7の斜視図と図8の側面図の(a)に示すように、光ヘッド7のレーザ光16が入射する側面と直交するスライダー11の側面のXZ面に金や銀,アルミなど金属膜22と酸化ケイ素や窒化ケイ素などの誘電体膜23を交互に堆積させて、レーザ光16が入射するYZ面の金属面12に微小間隙12bを形成するようにしても良い。この場合は誘電体膜23の厚さにより微小間隙12bの幅dを制御することができるので、微小間隙12bを溝により形成する場合と比べて金属面12の微細加工を必要とせず、微小間隙12bを容易に作製することができるとともに、例えば微小間隙12bの幅dを0.1μm以下に形成するような場合においては、所定の幅dの微小間隙12を高精度に作製することができる。
【0025】
さらに、図8(b)に示すように、誘電体膜23の外側に堆積された金属膜22に誘電体層24を積層しても良い。このように金属膜22の外面に誘電体層24を形成した光ヘッド7においては、記録媒体4を回転させて光ヘッド7で走査しているときに、記録媒体4の面ぶれなどや光ヘッド7の傾きによって、図9に示すように、光ヘッド7が記録媒体4の表面と接触した場合、光ヘッド7の誘電体層24が記録媒体4に接触し、金属面12や微小間隙12bは記録媒体4に接触しないですむから、微小間隙12bの部分に損傷が生じることを防ぐことができる。したがって光ヘッド7の耐久性を向上させることができる。
【0026】
また、各種の溝や金属膜22と誘電体膜23を交互に堆積して形成した微小間隙12bを有する光ヘッド7のレーザ光16のレーザ光が入射する面に、図10の構成図と図11の斜視図に示すように、ガラスや透明樹脂でレーザ光が入射する面が球面で形成された透明部材25を設け、透明部材25を介してレーザ光16を微小間隙12bの近傍に入射するようにしても良い。この透明部材25の球面を例えば1/4球面形状として、球面部分に入射するレーザ光の波面が球面とほぼ一致するように入射させた場合には、凹面反射鏡15だけで集光した場合よりも透明部材25の屈折率分だけ開口数の値を高くすることができ、光ヘッド7の微小間隙12bの近傍に入射する集光スポットの大きさを小さくすることができる。したがって、微小間隙12bにパワー密度が高くてより局所的な電磁場を発生させることができ、記録密度をより向上させることができる。
【0027】
上記説明では透明基板2上に記録層3を設けた記録媒体4を使用し、記録媒体4に記録した情報を再生するとき、記録媒体4を透過した光を検出して記録情報を再生する場合について説明したが、図12の構成図に示すように、透明基板2と記録層3の間に金や銀あるいはアルミなどの金属膜30を設けた記録媒体4aの場合も、記録媒体4aからの反射光を利用して再生することができる。この記録媒体4aに情報を記録し、記録した情報を再生する情報記録再生装置1aは、図12に示すように、光検出器10を、光ヘッド7をサスペンション6を介して取り付けたアーム5に光ヘッド7と対向して設けたこと以外は情報記録再生装置1と全く同じ構成である。光検出器10はアーム5に沿って設けられた配線31により信号処理回路の増幅回路に接続されている。
【0028】
この情報記録再生装置1aで記録媒体4aに情報を記録するときは、前記情報記録再生装置1で記録媒体4に情報を記録するときと全く同じ動作で情報を記録する。記録媒体4aに記録された情報を再生するときは、光源13から放射されたレーザ光16を光ヘッド7の金属面12の微小間隙12bの近傍に照射する。このレーザ光16の照射により生じた電磁場19と記録層3の記録マークと電磁相互作用により強度や偏光の変化を受けた後に記録媒体4から反射した光は光ヘッド7の内部へ伝搬し、この伝搬した光の強度をアーム5に設けた光検出器10で検出して、記録媒体4aに記録された情報を再生する。このように光ヘッド7をサスペンション6を介して取り付けたアーム5に光検出器10を設けることにより、光ヘッド7を記録媒体4aに対して走査したときに、光検出器10は光ヘッド7と同期して動くから、光ヘッド7と光検出器10の走査機構を簡略化することができる。
【0029】
このように記録媒体4aで反射した再生用の光を光ヘッド7を透過させて光検出器10で検出する場合、金属膜22と誘電体膜23を交互に堆積して形成した微小間隙12bを有する光ヘッド7を使用した場合、凹面反射鏡15で反射して光ヘッド7の微小間隙12bの近傍に集光して照射した光の一部は、記録媒体4aの表面で反射したり、あるいは金属膜22の側面で反射・散乱して放射状に伝播する。一方、微小間隙12nの近傍に集光・照射されることによって発生する局所的な電磁場は、記録層3中の記録マークによって変調を受けた後、微小間隙12bの部分を中心に球面状に反射・散乱される。したがって凹面反射鏡15で集光するレーザ光の集光スポットの波面に垂直で最も強度の強い位置を通る軸である中心軸の位置に光検出器10を配置した場合、光検出器10は記録マークからの反射・散乱光とともに、再生したい情報と無関係な光を一緒に検出してしまい、再生信号のS/Nが低下してしまう。そこで、図13に示すように、光検出器10をレーザ光の集光スポットの波面に垂直で最も強度の強い位置を通る中心軸を通る面と交差しない位置に配置し、再生情報と無関係な光を受光しないようにして再生信号を含む光だけを検出するようにして再生信号のS/Nを高める。
【0030】
また、記録媒体4aで反射した光が透過する光ヘッド7の透過した光の出射面に反射防止膜32を設け、記録情報を反映した光が光ヘッド7から出射するときの内部反射や散乱を防止すると良い。この反射防止膜32としては、例えば光ヘッド7のスライダー11の材料として屈折率が1.5のガラスを使用し、照射レーザ光の波長が405nm、記録マークから光検出器10へ向かって伝搬する再生信号を含む光の最も強度の強い光線である主光線が反射防止膜32に対して45度の入射角で入射される場合には、105nm程度の厚さを有したフッ化マグネシウムの膜で形成すれば良い。このように光ヘッド7に反射防止膜32を設けることにより、記録情報を反映した光が光ヘッド7を透過するときの内部反射や散乱を防止を低減して光検出器10に入射する光量を増加することができ、検出した光強度信号を電気信号に変換した後のS/Nを向上して良好な再生を行うことができる。
【0031】
また、光検出器10をアーム5に設けずに、図15に示すように、光ヘッド7に直接設けても良い。このように光検出器10を光ヘッド7に設けることにより、記録媒体4aを回転させたときの面ぶれなどに追従することによってアーム5と光ヘッド7との距離が変化するような場合でも、光ヘッド7の微小間隙12bや記録媒体4aと光検出器10との位置関係を一定に保持することができ、安定した再生動作を行うことができる。
【0032】
また、金属膜22と誘電体膜23を交互に堆積して形成した微小間隙12bを有する光ヘッド7を使用した場合、光ヘッド7に設けた光検出器10で記録マークからの反射・散乱光や再生したい情報と無関係な光を再生信号を含む光と一緒に検出することを防ぎ、再生信号を含む光だけを検出するために、図16に示すように、光検出器10を記録媒体4の表面に対して垂直となる光ヘッド7の側面に設けると良い。
【0033】
このように光検出器10を光ヘッド7に設けた場合、光検出器10からの配線31をサスペンション6とは別にアーム5に連結すると、記録媒体4a上で光ヘッド7を走査させたときに光ヘッド7と記録媒体4aとの距離や光ヘッド7の姿勢を一定に保つサスペンション6の働きに不具合が発生する。これを防ぐために、図17(a)の側面図と(b)の平面図に示すように、光検出器10の配線31をサスペンション6に設けた連結配線33に接続する。このように配線31をサスペンション6に設けた連結配線33接続することにより、サスペンション6の働きに不具合が発生することを防ぎ、安定した光ヘッド7の走査を実現することができる。
【0034】
さらに、光源13の半導体レーザ素子の駆動回路を、図18の回路図に示すように、交流電源34とコンデンサ35に対して並列に直流電源36を設け、直流電源36は、交流電源34によって光源13の半導体レーザ素子に流れる電流が変調されたときに、半導体レーザ素子に流れる電流が常に発振するための閾値電流以上になるように設定しておく。また、交流電源34による変調周波数は、例えば記録情報の再生が30Mbps(1秒間に30メガビットのデータを読み出す速度)で行われる場合には、これより充分高速な800MHzの周波数に設定して半導体レーザ素子を強度変調させる。これにより光ヘッド7と記録媒体4の表面の境界付近から光源13への戻り光があった場合においても発光強度を一定に保つことができ、安定した記録・再生動作を行うことができる。
【0035】
【発明の効果】
この発明は以上説明したように、記録媒体上を走査させるためのスライダーに設けられ、記録媒体表面近傍にレーザ光の波長より狭い幅の微小間隙を有し、且つ、レーザ光が照射される側の表面が記録媒体表面に対して略垂直である金属部材を有し、微小間隙の近傍に照射されたレーザ光により局所的な領域に電磁場を発生させる光ヘッドと、光ヘッドの微小間隙に対して照射するレーザ光の偏光方向が記録媒体表面及び金属部材のレーザ光が照射される表面に対して平行で、照射方向が記録媒体表面に垂直な入射法線に対して傾斜させた斜入射の照射光学系とで光ピックアップを構成することにより、レーザ光のエネルギを効率よく利用して局在化した電磁場を発生させ、この電磁場を利用して記録と再生を行うことにより、簡単な構成で従来にない高密度な記録を実現することができる。
【0036】
また、光ヘッドのレーザ光の照射によって局所的な領域に電磁場を発生させる微小間隙を、照射するレーザ光の波長より薄い誘電体を挟んで両側に配置した金属部材で形成することにより、所望の微小間隙を容易に作製することができる。
【0037】
また、誘電体を挟んだ金属部材の誘電体と接する面と反対側の面に金属部材と異なる材質の部材を接触させて配置することにより、微小間隙が記録媒体に接触して破損することを防ぐことができる。
【0038】
さらに、微小間隙を有する光ヘッドのレーザ光のレーザ光が入射する面に、レーザ光が入射する面が曲面で形成された透明部材を一体化することにより、微小間隙の領域に集光するレーザ光の集光スポットをより小さくすることができ、レーザ光のエネルギを有効に利用して安定した記録を行うことができる。
【0039】
また、光ヘッドの微小間隙の近傍の局所的な領域に発生した電磁場により記録媒体の記録層に情報を記録することにより、記録媒体に情報を高密度で安定して記録すること画できる。
【0040】
また、記録媒体を透過した光を光検出器で検出して記録媒体に記録された情報を再生したり、記録媒体から光ヘッドの内部に伝搬する光を、光ヘッドを走査するためのアーム又は光ヘッドに装着された光検出器で検出することにより、簡単な構成で記録媒体に高密度で記録された情報を安定して再生することができる。
【0041】
また、光ヘッドの内部に伝搬する光を検出する光検出器を、光ヘッドに照射するレーザ光の主光線のレーザ光が入射する面と交差しない位置に設け、再生した情報だけを含む光を光検出器に入射することにより、情報再生のS/Nを向上させることができる。
【0042】
さらに、光ヘッドに装着された光検出器から電気信号を光ヘッド以外の場所に設けられた信号処理回路へと導くための配線をサスペンションと一体化することにより、サスペンションの動きが損なわれることを防ぎ、記録媒体に対する情報の記録と再生を安定して行うことができる。
【0043】
また、記録媒体からの光が伝搬して光ヘッドのスライダーを透過して出射する部分に反射防止膜を形成し、記録媒体の情報を含む光を効率良く光検出器に入射させて、良好な記録情報の再生を実現することができる。
【図面の簡単な説明】
【図1】この発明の情報記録再生装置の構成図である。
【図2】光ヘッドの微小間隙を示す側面図である。
【図3】光ヘッドの構成を示す斜視図である。
【図4】光ヘッドの微小間隙に生じた電磁場を示す模式図である。
【図5】第2の情報記録再生装置の構成図である。
【図6】各種の溝で形成された微小間隙を示す側面図である。
【図7】誘電体を挟んだ金属部材で微小間隙を形成した光ヘッドの斜視図である。
【図8】誘電体を挟んだ金属部材で形成した微小間隙を示す側面図である。
【図9】光ヘッドが記録媒体と接触した状態を示す模式図である。
【図10】第3の情報記録再生装置の構成図である。
【図11】レーザ光が入射する面に曲面を有する透明部材が設けられた光ヘッドの斜視図である。
【図12】記録媒体の反射光を利用して再生する情報記録再生装置の構成図である。
【図13】光ヘッドに対する光検出器の配置位置を示す模式図である。
【図14】反射防止膜を設けた光ヘッドを有する情報記録再生装置の構成図である。
【図15】光検出器を取付けた光ヘッドを有する情報記録再生装置の構成図である。
【図16】誘電体を挟んだ金属部材で微小間隙を形成した光ヘッドに取付けた光検出器の配置図である。
【図17】光ヘッドに取付けた光検出器の配線を示す構成図である。
【図18】光源の駆動回路を示す回路図である。
【図19】従来例の構成図である。
【符号の説明】
1;情報記録再生装置、2;透明基板3;記録層、4;記録媒体、
5;アーム、6;サスペンション、7;光ヘッド、8;光学系、
9;アーム、10;光検出器、11;スライダー、12;金属面、
12b;微小間隙、13;光源、14;コリメートレンズ、
15;凹面反射鏡、16;レーザ光。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical pickup and an information recording / reproducing apparatus capable of recording or reproducing information with respect to a recording medium, or both recording and reproducing operations.
[0002]
[Prior art]
An information recording / reproducing apparatus currently in practical use for recording and reproducing information to and from an optical memory such as an optical disk records a laser beam condensed to the diffraction limit of light determined by the wavelength of the light and the numerical aperture of the objective lens. Information is recorded by irradiating the medium and applying thermal / magnetic modulation to the recording layer, and detecting reflected light intensity and polarization modulated by the recording pits on which the information is recorded, thereby reproducing the information. When this information recording / reproducing apparatus is used, the recording density of the optical memory is determined by the diffraction limit of light, and there is a limit to cope with the increase in the amount of information surrounding information devices such as computers in recent years. There is a demand for a large-capacity optical memory that achieves a recording density that exceeds the diffraction limit of light.
[0003]
Promising as such a large-capacity optical memory is an information recording / reproducing apparatus using so-called near-field light that records and reproduces information using near-field light, for example, Japanese Patent Laid-Open No. 5-250708, Japanese Laid-Open Patent Publication Nos. 11-259902 and 11-265520 have been proposed. Near-field means that light incident from one of two media with different refractive indexes above the total reflection condition is totally reflected at the reflection boundary surface, but only a non-propagating electromagnetic field component oozes out partially across the boundary surface. This is a non-propagating electromagnetic field region. This near field is said to ooze out only in the vicinity of an aperture that is smaller than the wavelength of incident light, and has a lateral extent that is almost the same as the aperture size. Therefore, the resolution exceeding the diffraction limit of light can be obtained by reducing the aperture size.
[0004]
In the information recording / reproducing apparatus using this near-field optical probe, as shown in FIG. 19, the laser light emitted from the semiconductor laser element (LD) 41 is converted into parallel light by the collimator lens 42, and this light is converted into the polarization beam splitter 43. After passing through the quarter-wave plate 44, the light is condensed by the objective lens 45 and applied to the near-field optical probe 46. The near-field optical probe 46 is provided with a frustoconical protrusion formed of a high refractive material such as silicon having a refractive index higher than that of the translucent substrate on a translucent substrate such as a glass substrate. Coated with metal such as silver or aluminum. Then, the light condensed by the objective lens 45 is converted into near-field light of a minute size at the tip of the near-field light probe 46. The information is recorded on the recording layer 48 provided on the surface of the recording medium 47 facing the near-field optical probe 46 by the converted near-field light, and the recording is performed at a higher density than the case where the information is simply collected by the objective lens 45. Can be realized. When reproducing information recorded on the recording medium 47, the light reflected from the recording layer 38 passes through the objective lens 45 and the quarter wavelength plate 44, is reflected by the polarization beam splitter 43, and is reflected by the condenser lens 49. The light is condensed on the detector 50, the light intensity is detected by the light detector 50, and the information is reproduced.
[0005]
[Problems to be solved by the invention]
In general, in a near-field optical probe for generating near-field light, it is theoretically difficult to achieve both reduction in the near-field generation region and increase in strength. In addition, in order to produce a near-field optical probe, there is a disadvantage that a highly accurate processing process and assembly work comparable to a semiconductor process are required.
[0006]
The present invention improves such disadvantages, generates a strong electromagnetic field in a minute region below the diffraction limit on a recording medium with a relatively simple structure, and records and records information at high density through electromagnetic interaction therewith. An object of the present invention is to provide an optical pickup and an information recording / reproducing apparatus capable of reproducing information satisfactorily.
[0007]
[Means for Solving the Problems]
An optical pickup according to the present invention is arranged in the vicinity of a recording medium, and scans the recording medium in the optical pickup that records information on the recording medium with irradiated light and reproduces the information recorded on the recording medium. Slider for In the vicinity of the recording medium surface, there is a metal member having a minute gap with a width narrower than the wavelength of the laser beam, and the surface on the side irradiated with the laser beam is substantially perpendicular to the recording medium surface, An optical head that generates an electromagnetic field in a local area by laser light irradiated in the vicinity of the minute gap, and a polarization direction of the laser light irradiated to the minute gap of the optical head Obliquely incident on the surface of the recording medium and the metal member that is parallel to the surface irradiated with the laser beam and inclined with respect to the incident normal perpendicular to the surface of the recording medium. And an irradiation optical system.
[0008]
In the optical head, a minute gap that generates an electromagnetic field in a local region by laser light irradiation is formed by a metal member disposed on both sides of a dielectric that is thinner than the wavelength of the laser light to be irradiated. Create gaps easily.
[0009]
In addition, a member made of a material different from the metal member is placed in contact with the surface opposite to the surface in contact with the dielectric of the metal member sandwiching the dielectric so as to prevent the minute gap from coming into contact with the recording medium and being damaged.
[0010]
Furthermore, a transparent member in which the laser light incident surface is formed into a curved surface is integrated with the surface on which the laser light of the optical head having a minute gap is incident, so that the laser beam focused on the minute gap region is integrated. The focused spot is made smaller and the energy of the laser beam is used effectively.
[0011]
An information recording / reproducing apparatus according to the present invention has the above optical pickup, records information on a recording layer of a recording medium by an electromagnetic field generated in a local region in the vicinity of a minute gap of an optical head, and It is characterized by recording.
[0012]
An arm or light for detecting light transmitted through the recording medium with a photodetector to reproduce information recorded on the recording medium, or for scanning the optical head with light propagating from the recording medium into the optical head Information recorded on the recording medium detected by the photodetector mounted on the head is reproduced, and information recorded at a high density is stably reproduced.
[0013]
In addition, a photodetector that detects light propagating inside the optical head is provided at a position that does not intersect the surface on which the chief ray of the laser beam that irradiates the optical head is incident, and light that contains only reproduced information is provided. The light is incident on the photodetector to improve the S / N of information reproduction.
[0014]
Furthermore, wiring for guiding an electrical signal from a photodetector mounted on the optical head to a signal processing circuit provided at a place other than the optical head is integrated with the suspension to prevent the suspension from being damaged.
[0015]
In addition, an antireflection film is formed in a portion where light from the recording medium propagates and passes through and exits the slider of the optical head so that light including information on the recording medium is efficiently incident on the photodetector.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram of an information recording / reproducing apparatus according to the present invention. As shown in the figure, the information recording / reproducing apparatus 1 is in a state where a circular recording medium 4 having a recording layer 3 made of a phase change material or the like on a transparent substrate 2 such as glass or polycarbonate is rotated by a spindle motor (not shown). An optical head 7 that records and reproduces information on the recording medium 4 and is attached to the arm 5 via a suspension 6, an optical system 8 that irradiates the optical head 7 with laser light for recording and reproduction, Provided on an arm 9 disposed on the transparent substrate 2 side of the recording medium 4, has a photodetector 10 made of a photodiode or the like for receiving the transmitted scattered light of the recording medium 4, and rotates the optical head 7. The recording layer 4 of the recording medium 4 is arranged close to the wavelength or less.
[0017]
The arm 5 supports the optical head 7 via a suspension 6 that stabilizes the flying height of the optical head 7 with respect to the recording medium 4, and positions the optical head 7 on the recording medium 4 and scans it by a driving mechanism (not shown). The optical head 7 has a metal surface 12 made of, for example, gold, silver, or aluminum having a thickness of about 50 to 300 nm on a side surface parallel to the yz surface of the slider 11 formed of glass or synthetic resin. As shown in the side view of FIG. 2 and the perspective view of FIG. 3, the metal surface 12 of the optical head 7 has a triangular groove 12 a by narrowing the portion of the recording medium 4 that is close to the recording layer 3. The width d of the gap 12b at the end of the triangular groove 12a adjacent to the recording layer 3 is formed to be sufficiently small such as 1/5 of the wavelength of the laser beam to be irradiated.
[0018]
The optical system 8 includes a light source 13 composed of a semiconductor laser element disposed on the arm 5, a collimating lens 14, and a concave reflecting mirror 15. Laser light 16 having a wavelength of, for example, 405 nm emitted from the light source 13 is reflected on the collimating lens 13 and concavely. The light is condensed and irradiated in the vicinity of the minute gap 12 b of the metal surface 12 at the end closest to the surface of the recording medium 4 of the metal surface 12 of the optical head 7 through the transmission hole 17 provided in the mirror 15 and the arm 5. The laser beam 16 applied to the optical head 7 has a polarization direction (electric field oscillation direction) in a direction parallel to the surface of the recording medium 4, that is, in the Y direction in FIGS. The irradiation direction is perpendicular to the metal surface 12 when the optical head 7 is viewed from above. The photodetector 10 is attached to an arm 9 that operates in conjunction with the arm 5, and is always located on the opposite side of the optical head 7 with the recording medium 4 interposed therebetween.
[0019]
When the information recording / reproducing apparatus 1 records information on the recording medium 4, the laser light 16 emitted from the light source 13 is transmitted through the collimating lens 13, the concave reflecting mirror 15, and the transmission hole 17 provided in the arm 5. As shown in FIG. 4, the light is condensed and irradiated on the vicinity 18 of the minute gap 12 b closest to the surface of the recording medium 4 on the metal surface 12 of the optical head 7. When the polarized laser beam 16 is irradiated to the vicinity 18 of the minute gap 12b of the metal surface 12, an electric field is generated between the front end portions 12c and 12d of the metal surface 12 across the minute gap 12b due to the conductivity of the metal. Concentrated and locally strong electromagnetic field 19 is generated. The electromagnetic field 19 gives the energy of the electromagnetic field to a minute region below the diffraction of the irradiation laser beam 16 in the recording layer 3 adjacent to the optical head 7, that is, a region smaller than the case where the laser beam 16 is condensed by the objective lens. . Accordingly, when a phase change material is used for the recording layer 3, for example, the recording layer 3 is locally heated by the energy of the electromagnetic field applied to the recording layer 3 to cause a phase change, and a recording mark is formed. The heating of the recording layer 3 is locally performed by a conventional optical memory device that condenses the laser beam 16 with an objective lens and directly irradiates the recording medium 4, so that the recording mark to be formed is also smaller than that of the conventional optical memory device. It is possible to perform high-density recording that cannot be achieved.
[0020]
Further, when reproducing the information recorded on the recording medium 4, the laser beam 16 emitted from the light source 13 is irradiated to the vicinity 18 of the minute gap 12 b of the metal surface 12 of the optical head 7. Light that propagates through the recording medium 4 after undergoing electromagnetic interaction between the electromagnetic field 19 generated by the irradiation of the laser beam 16 and the recording mark of the recording layer 3 and undergoing changes in intensity and polarization is detected by the photodetector 10. By detecting, the information recorded on the recording medium 4 is reproduced.
[0021]
By configuring the information recording / reproducing apparatus 1 in this way, it is possible to record information on the recording medium 4 and reproduce information recorded on the recording medium 4 at a higher density than conventional CDs and DVDs.
[0022]
In the above description, the case where a phase change material is used as the recording layer 3 of the recording medium 4 is described. However, the recording medium 4 is not limited to the phase change material, and any material that can be recorded or reproduced by locally applying energy of an electromagnetic field. Any material may be used. Further, the case where the concave mirror 15 is used in the optical system 8 that condenses the laser beam 16 and irradiates the optical head 7 has been described. As shown in the block diagram of FIG. The reflection mirror 20 and the objective lens 21 may be combined to collect the laser beam 16 and irradiate the optical head 7.
[0023]
Further, the case where the triangular groove 12a is formed in the metal surface 12 of the optical head 7 and the minute gap 12b is formed in the end portion close to the recording layer 3 of the recording medium 4 has been described. As shown in (b), a minute slit 12e is formed on the metal surface 12 to form a minute gap 12b having a width equal to or smaller than the wavelength of the laser beam 16, or as shown in (b), the recording layer 3 on the metal surface 12 is formed. Alternatively, a square groove 12f may be formed at an end portion close to, or a minute groove 12b may be formed by forming a circular groove 12g as shown in FIG.
[0024]
Further, as shown in the perspective view of FIG. 7 and the side view of FIG. 8A, gold, silver, aluminum or the like is formed on the XZ plane of the side surface of the slider 11 orthogonal to the side surface on which the laser beam 16 of the optical head 7 is incident. The metal film 22 and dielectric films 23 such as silicon oxide and silicon nitride may be alternately deposited to form the minute gap 12b on the metal surface 12 on the YZ surface where the laser light 16 is incident. In this case, since the width d of the minute gap 12b can be controlled by the thickness of the dielectric film 23, fine processing of the metal surface 12 is not required as compared with the case where the minute gap 12b is formed by a groove. 12b can be easily manufactured, and when the width d of the minute gap 12b is formed to be 0.1 μm or less, for example, the minute gap 12 having a predetermined width d can be manufactured with high accuracy.
[0025]
Further, as shown in FIG. 8B, a dielectric layer 24 may be laminated on the metal film 22 deposited outside the dielectric film 23. In the optical head 7 in which the dielectric layer 24 is formed on the outer surface of the metal film 22 in this way, when the recording medium 4 is rotated and scanned with the optical head 7, the surface blur of the recording medium 4 or the optical head is detected. 9, when the optical head 7 comes into contact with the surface of the recording medium 4 as shown in FIG. 9, the dielectric layer 24 of the optical head 7 comes into contact with the recording medium 4, and the metal surface 12 and the minute gap 12 b are Since it is not necessary to contact the recording medium 4, it is possible to prevent the minute gap 12b from being damaged. Therefore, the durability of the optical head 7 can be improved.
[0026]
Further, a configuration diagram and a diagram of FIG. 10 are formed on the surface on which the laser beam 16 of the optical head 7 having the minute gap 12b formed by alternately depositing various grooves and the metal film 22 and the dielectric film 23 is incident. As shown in the perspective view of FIG. 11, a transparent member 25 having a spherical surface made of glass or transparent resin on which a laser beam is incident is provided, and the laser beam 16 enters the vicinity of the minute gap 12b via the transparent member 25. You may do it. When the spherical surface of the transparent member 25 is, for example, a ¼ spherical shape and is incident so that the wavefront of the laser light incident on the spherical surface substantially coincides with the spherical surface, the light is collected by the concave reflecting mirror 15 alone. In addition, the numerical aperture can be increased by the refractive index of the transparent member 25, and the size of the focused spot entering the vicinity of the minute gap 12b of the optical head 7 can be reduced. Accordingly, the power density is high in the minute gap 12b and a more local electromagnetic field can be generated, and the recording density can be further improved.
[0027]
In the above description, when the recording medium 4 provided with the recording layer 3 on the transparent substrate 2 is used and information recorded on the recording medium 4 is reproduced, the light transmitted through the recording medium 4 is detected and the recorded information is reproduced. In the case of the recording medium 4a in which the metal film 30 such as gold, silver, or aluminum is provided between the transparent substrate 2 and the recording layer 3 as shown in the configuration diagram of FIG. It can be reproduced using reflected light. As shown in FIG. 12, an information recording / reproducing apparatus 1a for recording information on the recording medium 4a and reproducing the recorded information has a photodetector 10 and an arm 5 to which an optical head 7 is attached via a suspension 6, as shown in FIG. Except for being provided opposite to the optical head 7, it has the same configuration as the information recording / reproducing apparatus 1. The photodetector 10 is connected to an amplifier circuit of a signal processing circuit by a wiring 31 provided along the arm 5.
[0028]
When the information recording / reproducing apparatus 1a records information on the recording medium 4a, the information recording / reproducing apparatus 1 records information on the recording medium 4 in exactly the same operation. When reproducing the information recorded on the recording medium 4 a, the laser beam 16 emitted from the light source 13 is irradiated in the vicinity of the minute gap 12 b of the metal surface 12 of the optical head 7. The light reflected from the recording medium 4 after undergoing a change in intensity or polarization due to electromagnetic interaction between the electromagnetic field 19 generated by the irradiation of the laser beam 16 and the recording mark of the recording layer 3 propagates into the optical head 7. The intensity of the propagated light is detected by the photodetector 10 provided on the arm 5, and information recorded on the recording medium 4a is reproduced. By providing the photodetector 10 on the arm 5 to which the optical head 7 is attached via the suspension 6 in this way, when the optical head 7 is scanned with respect to the recording medium 4a, the photodetector 10 and the optical head 7 are connected. Since it moves synchronously, the scanning mechanism of the optical head 7 and the photodetector 10 can be simplified.
[0029]
When the reproducing light reflected by the recording medium 4a is transmitted through the optical head 7 and detected by the photodetector 10, the minute gap 12b formed by alternately depositing the metal film 22 and the dielectric film 23 is formed. When the optical head 7 is used, a part of the light reflected by the concave reflecting mirror 15 and condensed and irradiated in the vicinity of the minute gap 12b of the optical head 7 is reflected on the surface of the recording medium 4a, or The light is reflected and scattered by the side surface of the metal film 22 and propagates radially. On the other hand, the local electromagnetic field generated by focusing and irradiating in the vicinity of the minute gap 12n is reflected by the spherical shape around the minute gap 12b after being modulated by the recording mark in the recording layer 3. -Scattered. Therefore, when the photodetector 10 is arranged at the position of the central axis that is perpendicular to the wavefront of the focused spot of the laser beam condensed by the concave reflecting mirror 15 and passes through the strongest position, the photodetector 10 records. Together with the reflected / scattered light from the mark, the light unrelated to the information to be reproduced is detected together, and the S / N of the reproduced signal is lowered. Therefore, as shown in FIG. 13, the photodetector 10 is arranged at a position that is perpendicular to the wavefront of the focused spot of the laser beam and does not intersect the plane passing through the central axis passing through the strongest position, and is irrelevant to the reproduction information. The S / N of the reproduction signal is increased by detecting only the light including the reproduction signal without receiving light.
[0030]
Further, an antireflection film 32 is provided on the light outgoing surface of the light head 7 through which the light reflected by the recording medium 4a passes, and internal reflection and scattering when the light reflecting the recording information is emitted from the optical head 7 are provided. It is good to prevent. As the antireflection film 32, for example, glass having a refractive index of 1.5 is used as the material of the slider 11 of the optical head 7, the wavelength of the irradiation laser light is 405 nm, and the light propagates from the recording mark toward the photodetector 10. When the chief ray, which is the most intense light of the light including the reproduction signal, is incident on the antireflection film 32 at an incident angle of 45 degrees, it is a magnesium fluoride film having a thickness of about 105 nm. What is necessary is just to form. By providing the antireflection film 32 on the optical head 7 in this way, the amount of light incident on the photodetector 10 can be reduced by reducing the internal reflection and scattering when the light reflecting the recorded information is transmitted through the optical head 7. It is possible to increase the S / N after the detected light intensity signal is converted into an electric signal, and good reproduction can be performed.
[0031]
Further, the photodetector 10 may be provided directly on the optical head 7 as shown in FIG. By providing the optical detector 10 in the optical head 7 in this way, even when the distance between the arm 5 and the optical head 7 changes by following the surface blurring when the recording medium 4a is rotated, The positional relationship between the minute gap 12b of the optical head 7 or the recording medium 4a and the photodetector 10 can be kept constant, and a stable reproducing operation can be performed.
[0032]
When the optical head 7 having the minute gap 12b formed by alternately depositing the metal film 22 and the dielectric film 23 is used, the reflected / scattered light from the recording mark is detected by the photodetector 10 provided in the optical head 7. In order to prevent the detection of light irrelevant to the information to be reproduced together with the light including the reproduction signal and to detect only the light including the reproduction signal, as shown in FIG. It may be provided on the side surface of the optical head 7 which is perpendicular to the surface.
[0033]
When the photodetector 10 is provided in the optical head 7 in this way, when the wiring 31 from the photodetector 10 is connected to the arm 5 separately from the suspension 6, the optical head 7 is scanned on the recording medium 4a. Problems occur in the function of the suspension 6 that keeps the distance between the optical head 7 and the recording medium 4a and the attitude of the optical head 7 constant. In order to prevent this, the wiring 31 of the photodetector 10 is connected to the connection wiring 33 provided on the suspension 6 as shown in the side view of FIG. By connecting the wiring 31 to the connecting wiring 33 provided on the suspension 6 in this way, it is possible to prevent the suspension 6 from malfunctioning and to realize stable scanning of the optical head 7.
[0034]
Further, as shown in the circuit diagram of FIG. 18, a drive circuit for the semiconductor laser element of the light source 13 is provided with a DC power supply 36 in parallel with the AC power supply 34 and the capacitor 35. When the current flowing through the 13 semiconductor laser elements is modulated, the current flowing through the semiconductor laser element is set to be equal to or greater than the threshold current for oscillation. The modulation frequency by the AC power supply 34 is set to a frequency of 800 MHz which is sufficiently higher than this when the recorded information is reproduced at 30 Mbps (speed of reading 30 megabits of data per second), for example. The element is intensity modulated. As a result, even when there is a return light from the vicinity of the boundary between the optical head 7 and the surface of the recording medium 4 to the light source 13, the emission intensity can be kept constant, and a stable recording / reproducing operation can be performed.
[0035]
【The invention's effect】
As described above, the present invention is provided in the slider for scanning the recording medium, A metal member having a minute gap with a width narrower than the wavelength of the laser beam in the vicinity of the surface of the recording medium, and a surface irradiated with the laser beam being substantially perpendicular to the surface of the recording medium; An optical head that generates an electromagnetic field in a local area by laser light irradiated in the vicinity of the minute gap, and a polarization direction of the laser light irradiated to the minute gap of the optical head Obliquely incident on the surface of the recording medium and the metal member that is parallel to the surface irradiated with the laser beam and inclined with respect to the incident normal perpendicular to the surface of the recording medium. By constructing an optical pickup with the irradiation optical system, a localized electromagnetic field is generated by efficiently using the energy of the laser beam, and recording and reproduction are performed using this electromagnetic field. It is possible to realize high-density recording that has never existed before.
[0036]
In addition, by forming a minute gap that generates an electromagnetic field in a local region by irradiation of laser light from an optical head with a metal member disposed on both sides with a dielectric thinner than the wavelength of the laser light to be irradiated, a desired gap is formed. A minute gap can be easily produced.
[0037]
In addition, by placing a member of a material different from the metal member on the surface opposite to the surface in contact with the dielectric of the metal member sandwiching the dielectric, the minute gap may contact the recording medium and be damaged. Can be prevented.
[0038]
Furthermore, a laser that focuses light on the area of the minute gap by integrating a transparent member having a curved surface on which the laser beam is incident on the surface on which the laser beam of the optical head having the minute gap is incident. The light condensing spot can be made smaller, and stable recording can be performed by effectively utilizing the energy of the laser beam.
[0039]
Further, by recording information on the recording layer of the recording medium by an electromagnetic field generated in a local region near the micro gap of the optical head, it is possible to stably record information on the recording medium at a high density.
[0040]
Further, an arm for scanning the optical head for reproducing the information recorded on the recording medium by detecting the light transmitted through the recording medium by a photodetector or scanning the optical head with the light propagating from the recording medium to the inside of the optical head, or By detecting with a photodetector mounted on the optical head, it is possible to stably reproduce information recorded at a high density on a recording medium with a simple configuration.
[0041]
In addition, a photodetector that detects light propagating inside the optical head is provided at a position that does not intersect the surface on which the chief ray of the laser beam that irradiates the optical head is incident, and light that contains only reproduced information is provided. By entering the photodetector, the S / N of information reproduction can be improved.
[0042]
Further, by integrating the wiring for guiding the electrical signal from the photodetector mounted on the optical head to the signal processing circuit provided at a place other than the optical head, the suspension movement is impaired. Thus, it is possible to stably record and reproduce information on the recording medium.
[0043]
In addition, an antireflection film is formed on the portion where the light from the recording medium propagates and passes through the slider of the optical head and is emitted, and the light containing the information on the recording medium is efficiently incident on the photodetector. Reproduction of recorded information can be realized.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an information recording / reproducing apparatus of the present invention.
FIG. 2 is a side view showing a minute gap of an optical head.
FIG. 3 is a perspective view showing a configuration of an optical head.
FIG. 4 is a schematic diagram showing an electromagnetic field generated in a minute gap of an optical head.
FIG. 5 is a configuration diagram of a second information recording / reproducing apparatus.
FIG. 6 is a side view showing minute gaps formed by various grooves.
FIG. 7 is a perspective view of an optical head in which a minute gap is formed by a metal member sandwiching a dielectric.
FIG. 8 is a side view showing a minute gap formed by a metal member sandwiching a dielectric.
FIG. 9 is a schematic diagram showing a state where an optical head is in contact with a recording medium.
FIG. 10 is a configuration diagram of a third information recording / reproducing apparatus.
FIG. 11 is a perspective view of an optical head in which a transparent member having a curved surface is provided on a surface on which laser light is incident.
FIG. 12 is a configuration diagram of an information recording / reproducing apparatus that reproduces information using reflected light of a recording medium.
FIG. 13 is a schematic diagram showing an arrangement position of the photodetector with respect to the optical head.
FIG. 14 is a configuration diagram of an information recording / reproducing apparatus having an optical head provided with an antireflection film.
FIG. 15 is a configuration diagram of an information recording / reproducing apparatus having an optical head to which a photodetector is attached.
FIG. 16 is a layout view of photodetectors attached to an optical head in which a minute gap is formed by a metal member sandwiching a dielectric.
FIG. 17 is a configuration diagram showing wiring of a photodetector attached to the optical head.
FIG. 18 is a circuit diagram showing a light source driving circuit;
FIG. 19 is a configuration diagram of a conventional example.
[Explanation of symbols]
1; information recording / reproducing apparatus, 2; transparent substrate 3; recording layer, 4; recording medium,
5; arm, 6; suspension, 7; optical head, 8; optical system,
9; arm, 10; photodetector, 11; slider, 12; metal surface,
12b; micro gap, 13; light source, 14; collimating lens,
15: concave reflecting mirror, 16: laser beam.

Claims (10)

記録媒体に近接して配置され、照射された光により記録媒体に情報を記録するとともに記録媒体に記録された情報を再生する光ピックアップにおいて、
記録媒体上を走査させるためのスライダーには、記録媒体表面近傍にレーザ光の波長より狭い幅の微小間隙を有し、且つ、レーザ光が照射される側の表面が記録媒体表面に対して略垂直である金属部材を有し、微小間隙の近傍に照射されたレーザ光により局所的な領域に電磁場を発生させる光ヘッドと、光ヘッドの微小間隙に対して照射するレーザ光の偏光方向が記録媒体表面及び金属部材のレーザ光が照射される表面に対して平行で、照射方向が記録媒体表面に垂直な入射法線に対して傾斜させた斜入射の照射光学系とを有することを特徴とする光ピックアップ。
In an optical pickup that is arranged in the vicinity of a recording medium and records information on the recording medium by irradiated light and reproduces the information recorded on the recording medium,
The slider for scanning the recording medium has a minute gap with a width narrower than the wavelength of the laser beam in the vicinity of the recording medium surface, and the surface irradiated with the laser beam is substantially the same as the recording medium surface. An optical head that has a metal member that is vertical and generates an electromagnetic field in a local area by laser light irradiated in the vicinity of the minute gap, and the polarization direction of the laser light irradiated to the minute gap of the optical head is recorded. And an obliquely incident irradiation optical system that is parallel to the surface of the medium and the surface of the metal member irradiated with the laser beam, and whose irradiation direction is inclined with respect to an incident normal perpendicular to the surface of the recording medium. Optical pickup to be used.
上記光ヘッドは、レーザ光の照射によって局所的な領域に電磁場を発生させる微小間隙を、照射するレーザ光の波長より薄い誘電体を挟んで両側に配置した金属部材で形成した請求項1記載の光ピックアップ。2. The optical head according to claim 1, wherein a minute gap that generates an electromagnetic field in a local region by laser light irradiation is formed by a metal member disposed on both sides of a dielectric that is thinner than the wavelength of the laser light to be irradiated. Optical pickup. 上記誘電体を挟んだ金属部材の誘電体と接する面と反対側の面に金属部材と異なる材質の部材を接触させて配置した請求項2記載の光ピックアップ。The optical pickup according to claim 2, wherein a member made of a material different from the metal member is placed in contact with a surface opposite to the surface in contact with the dielectric of the metal member sandwiching the dielectric. 上記微小間隙を有する光ヘッドのレーザ光が入射する面に、レーザ光が入射する面が曲面で形成された透明部材を一体化した請求項1,2又は3記載の光ピックアップ。4. The optical pickup according to claim 1, wherein a transparent member having a curved surface on which a laser beam is incident is integrated with a surface on which the laser beam of the optical head having the minute gap is incident. 請求項1乃至4のいずれかに記載の光ピックアップを有し、光ヘッドの微小間隙の近傍の局所的な領域に発生した電磁場により記録媒体の記録層に情報を記録することを特徴とする情報記録再生装置。5. An information recording apparatus comprising: the optical pickup according to claim 1, wherein information is recorded on a recording layer of a recording medium by an electromagnetic field generated in a local region near a minute gap of the optical head. Recording / playback device. 上記記録媒体を透過した光を光検出器で検出して記録媒体に記録された情報を再生する請求項5記載の情報記録再生装置。6. An information recording / reproducing apparatus according to claim 5, wherein light recorded on the recording medium is reproduced by detecting light transmitted through the recording medium with a photodetector. 上記記録媒体から光ヘッドの内部に伝搬する光を、光ヘッドを走査するためのアーム又は光ヘッドに装着された光検出器で検出して記録媒体に記録された情報を再生する請求項5記載の情報記録再生装置。6. The information propagating from the recording medium to the inside of the optical head is detected by an arm for scanning the optical head or a photodetector attached to the optical head to reproduce information recorded on the recording medium. Information recording / reproducing apparatus. 上記光ヘッドの内部に伝搬する光を検出する光検出器を、光ヘッドに照射するレーザ光の主光線のレーザ光が入射する面と交差しない位置に設けた請求項7記載の情報記録再生装置。8. An information recording / reproducing apparatus according to claim 7, wherein the photodetector for detecting the light propagating inside the optical head is provided at a position not intersecting with a surface on which a principal beam of the laser beam irradiated to the optical head is incident. . 上記光ヘッドに装着された光検出器から電気信号を光ヘッド以外の場所に設けられた信号処理回路へと導くための配線を、サスペンションと一体化した請求項7又は8記載の情報記録再生装置。9. The information recording / reproducing apparatus according to claim 7 or 8, wherein wiring for guiding an electrical signal from a photodetector attached to the optical head to a signal processing circuit provided at a place other than the optical head is integrated with a suspension. . 上記記録媒体からの光が伝搬して光ヘッドのスライダーを透過して出射する部分に反射防止膜を形成した請求項7,8又は9に記載の情報記録再生装置。10. The information recording / reproducing apparatus according to claim 7, 8 or 9, wherein an antireflection film is formed in a portion where light from the recording medium propagates and transmits through the slider of the optical head.
JP2001361921A 2001-11-28 2001-11-28 Optical pickup and recorded information reproducing apparatus Expired - Fee Related JP3973884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361921A JP3973884B2 (en) 2001-11-28 2001-11-28 Optical pickup and recorded information reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361921A JP3973884B2 (en) 2001-11-28 2001-11-28 Optical pickup and recorded information reproducing apparatus

Publications (2)

Publication Number Publication Date
JP2003162840A JP2003162840A (en) 2003-06-06
JP3973884B2 true JP3973884B2 (en) 2007-09-12

Family

ID=19172510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361921A Expired - Fee Related JP3973884B2 (en) 2001-11-28 2001-11-28 Optical pickup and recorded information reproducing apparatus

Country Status (1)

Country Link
JP (1) JP3973884B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101405799B (en) * 2006-03-29 2012-12-12 松下电器产业株式会社 Proximity field optical head, proximity field optical head device, proximity field optical information device, and proximity field optical information system

Also Published As

Publication number Publication date
JP2003162840A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
JP3545233B2 (en) Spherical aberration detection device and optical pickup device
JP4230087B2 (en) Optical reproduction recording method and optical apparatus
US6992968B2 (en) Optical head and disk unit
KR100690229B1 (en) Optical recording medium, Optical pickup and Optical recording and/or reproducing apparatus
JP3442296B2 (en) Magneto-optical head device and recording / reproducing device
JP4038336B2 (en) Information recording and playback method
RU2427931C2 (en) Near-field optical head, near-field optical head device, near-field optical information device and near-field optical information system
JP4220153B2 (en) Recording head, recording head manufacturing method, and information recording apparatus
JP3973884B2 (en) Optical pickup and recorded information reproducing apparatus
JP4201929B2 (en) Information recording medium, information reproducing apparatus, and information recording / reproducing apparatus
JP2001236685A (en) Optical head, magneto-optical head, disk device, and manufacturing method of optical head
JP3522487B2 (en) Polarized near-field light detection head and optical information recording / reproducing device using the same
JP2003077165A (en) Optical pickup and information recording/reproducing device
JP2001250260A (en) Optical head, magneto-optical head, disk device, and method for manufacturing optical head
JP4537628B2 (en) Optical pickup device and optical disk device
JP2002109769A (en) High function and high density optical head equipped with semiconductor laser
JP2003109241A (en) Optical probe and optical pickup device
JP2002074729A (en) Optical pickup device, information reproducing device, and information recording and reproducing device
JP4254989B2 (en) Optical memory device
KR20020072459A (en) Lens for optical recording and reproducing system
JPH09245391A (en) Recorder and its method
JP2002074728A (en) Optical pickup device, information reproducing device, and information recording and reproducing device
KR20010104018A (en) optical pick-up head and method for fabricating the same and apparatus for record/playback of optical information using those
JP2005322330A (en) Optical recording medium, optical recording and reproducing method, and optical recording and reproducing apparatus
JP2004241099A (en) Recording media, and information recording and reproducing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees