JP3973312B2 - Method for producing hyaluronic acid by fermentation - Google Patents
Method for producing hyaluronic acid by fermentation Download PDFInfo
- Publication number
- JP3973312B2 JP3973312B2 JP3335399A JP3335399A JP3973312B2 JP 3973312 B2 JP3973312 B2 JP 3973312B2 JP 3335399 A JP3335399 A JP 3335399A JP 3335399 A JP3335399 A JP 3335399A JP 3973312 B2 JP3973312 B2 JP 3973312B2
- Authority
- JP
- Japan
- Prior art keywords
- hyaluronic acid
- culture
- culture solution
- producing
- producing hyaluronic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、発酵法によるヒアルロン酸の製造方法に関する。更に詳しくは、培養液中の炭酸水素イオン濃度を5〜500ppmに維持しながらヒアルロン酸産生能を有する微生物を培養して、発酵法によりヒアルロン酸を製造する方法に関する。
【0002】
【従来の技術】
従来、ヒアルロン酸はニワトリのトサカや牛の眼の硝子体等より抽出によって得られていた。しかしながら抽出法による生体からのヒアルロン酸製造においては、多量のヒアルロン酸に類似したムコ多糖類や蛋白質等の夾雑物との煩雑な分離が必要であり、また、組織内に含まれるヒアルロニダーゼ等による低分子化等の問題点を有しているため、高収量で高純度かつ高分子量のヒアルロン酸を得ることは不可能である。その問題点を改良するために、ヒアルロン酸産生能を有する微生物であるストレプトコッカス属の微生物を培養して、その培養液からヒアルロン酸を分離、精製する方法が開示されている(特公平4−12960号)。
【0003】
さらに、ヒアルロン酸生産性の安定化及び生産収率の向上を目的として、変異株を利用する方法(特公平4−39998号、特公平4−43637号、特公平4−55675号)、有効成分を添加する方法(特開昭62−289198号、特開平4−18839号)等が開示されている。
【0004】
培養槽に供給するガスに関しては、生産収率の向上を目的として、二酸化炭素増強嫌気性条件下で培養する方法(特公平4−64679号)、通気撹拌のコントロールにより酸化還元電位を制御しながら培養する方法(特開昭62−51999号)、指数増殖点まで好気性条件下で培養しその後低い溶存酸素濃度で培養する方法(特開平3−35788号)等が開示されている。
【0005】
【発明が解決しようとする課題】
微生物によるヒアルロン酸生産培養における、培養液中の炭酸水素イオン濃度が培養に及ぼす影響については知られていなかった。
【0006】
本発明者らはこの課題を解決すべく、培養液中の炭酸水素イオン濃度について、ヒアルロン酸生産菌の生育及びヒアルロン酸生産性を指標に検討した結果、培養液中の炭酸水素イオン濃度が5〜500ppmになるように維持しながらヒアルロン酸産生能を有する微生物を培養することにより高収率でヒアルロン酸を生産することが可能であることを見出し、本発明を完成するに至った。
【0007】
【課題を解決するための手段】
すなわち、本発明は、(1)ヒアルロン酸産生能を有する微生物の培養によりヒアルロン酸を生産するに際し、培養槽に炭酸塩を添加することにより培養液中の炭酸水素イオン濃度を5〜500ppmに維持しながら培養することを特徴とする発酵法によるヒアルロン酸の製造方法、(2)炭酸塩の添加方法が、一括添加、分割添加、及び連続添加から選ばれた一種であることを特徴とする(1)記載のヒアルロン酸の製造方法、(3)ヒアルロン酸産生能を有する微生物がストレプトコッカス属細菌であることを特徴とする(1)または(2)記載のヒアルロン酸の製造方法である。
【0008】
【発明の実施の形態】
以下、本発明について具体的に説明する。
本発明に用いられる微生物としては、ストレプトコッカス・エキ(Streptococcus equi)、ストレプトコッカス.ズーエピデミカス(Streptococcus zooepidemicus)、ストレプトコッカス・エキシミリス(Streptococcus equisimilis)、ストレプトコッカス・ディスガラクテイエ(Streptococcus dysgalactiae)、ストレプトコッカス・ピオゲネス(Streptococcus pyogenes)およびこれらの変異株などが挙げられるが、なかでもストレプトコッカス・エキが好ましく、特にストレプトコッカス・エキの変異株FM−100(微工研条寄第9027号)又はストレプトコッカス・エキの変異株FM−300(微工研条寄第2319号)が好ましい。
【0009】
本発明に用いる培地はグルコース,フラクトース,ガラクトース,シュークロース等の糖成分からなる炭素源、リン酸第1カリウム,リン酸第2カリウム,硝酸マグネシウム,亜硫酸ナトリウム,チオ硫酸ナトリウム,リン酸アンモニウム等の無機塩類、ポリペプトン,カザミノ酸,酵母エキス,コーンスティープリカー,大豆加水分解液等の有機栄養源、他必要に応じて各種ビタミン類等が好適に用いられる。
【0010】
本発明の培養は、培養槽に供給されるガスを培地にバブリングしながら行い、撹拌等は公知の方法を用いることができる。使用するガスとしては、空気を用いることが好ましいが、酸素,窒素,二酸化炭素,空気等を混合して用いることも可能である。使用するガスの無菌化は公知の方法を用いて行い、その他必要に応じて除湿等の前処理を行ってもよい。二酸化炭素を含むガスを培地にバブリングすることにより、培養液中に溶け込んだ二酸化炭素の一部は炭酸水素イオンとして存在する。
ガスを培地にバブリングすることによる炭酸水素イオン濃度が5ppmより低くなるような培養条件下においても、炭酸塩を添加することにより炭酸水素イオン濃度が高められ、高収率でヒアルロン酸を生産することが可能である。
尚、炭酸塩の添加の方法は、一括添加、分割添加、連続添加のいづれの方法でもかまわない。
【0011】
用いる炭酸塩としては、培養液中で炭酸水素イオンとして一部存在するものであればよい。例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム炭酸カリウム、炭酸リチウム等が用いられる。
培養液中の炭酸水素イオン濃度が5ppmより低いと、ヒアルロン酸生産菌の増殖が遅くなる、もしくは全く増殖しないため工業的な生産を行う際に大きな障害となる。また、培養液中の炭酸水素イオン濃度を500ppmより高くすることは、設備及び供給ガスまたは培地コスト増大をまねき、実用上現実的ではない。安定してヒアルロン酸を生産するためには、培養液中の炭酸水素イオン濃度を5〜500ppmに維持すること好ましく、10〜100ppmに維持することが特に好ましい。通気量は、特に制限は無いが、0.1〜1vvm程度が好ましい。
【0012】
培養温度は30〜35℃が好ましい。培養液のpHは菌の生育と共に低下するため、水酸化ナトリウム,水酸化カリウム,アンモニア等のpH調整剤を添加しpH6.0〜9.0にコントロールする。好ましくはpH7.0〜8.5にコントロールする。
このようにして培養すると、ヒアルロン酸の生成と共に培養液の粘度が次第に上昇してくる。任意の時点で培養を停止し、除菌後、アルコール等の有機溶剤による析出、限外濾過による脱塩等の公知精製法により高純度ヒアルロン酸を得ることができる。
【0013】
【実施例】
以下、本発明を実施例及び比較例により更に具体的に説明するが、本発明はこれらに限定されない。
実施例1
グルコース5%、リン酸第1カリウム0.2%、ポリペプトン1.0%、酵母エキス0.5%からなる培地1リットルを加熱殺菌後、ストレプトコッカス・エキFM−100(微工研条寄第9027号)を接種し、空気を1vvmで通気しながら、撹拌200回転/分、温度33℃、pH8.5(20%水酸化ナトリウムの自動滴下によるコントロール)で21時間培養した。培養開始時の培養液中の炭酸水素イオン濃度を、イオンクロマトグラフィーを用いて下記に示す条件で測定したところ、25ppmであった。培養液の660nmにおける吸光度(菌体の生育度の指標)を測定した結果、8.0であった。また、培養液1リットルを塩酸でpH4に調整後、蒸留水で2倍希釈し、活性炭を加え、濾過により除菌した。得られた除菌液にエチルアルコールを加え、析出物を濾過により得た。これを水に溶解し、セチルピリジニウムクロライドを加え、生じた沈澱を濾取し、2%食塩水に再溶解後、エチルアルコールによる析出を2回繰り返した。この白色析出物を室温で減圧乾燥して得られた精製ヒアルロン酸ナトリウムの重量(ヒアルロン酸生産性の指標)を測定した結果、7.0gであった。
【0014】
【0015】
実施例2
窒素80%と酸素20%の混合ガスを培養槽に供給し、培養液中の炭酸水素イオン濃度を、イオンクロマトグラフィーを用いて実施例1に示す条件で測定したところ、0ppmであった。培養液に炭酸水素イオン濃度が100ppmになるように無菌濾過した炭酸水素ナトリウム溶液を添加して培養を開始した。添加した炭酸水素塩は二酸化炭素ガスとして一部存在し、供給ガスのバブリングにより減少していく。培養開始後3時間毎にサンプリングし、炭酸水素イオン濃度が100ppmとなるように減少分に相当する炭酸水素ナトリウム溶液を無菌濾過して添加した。それ以外は実施例1と同じ条件で培養及びヒアルロン酸の精製を行った。培養液の660nmにおける吸光度を測定した結果、8.2であった。また、精製ヒアルロン酸の重量を測定した結果、培養液1リットルあたり6.7gであった。
【0016】
比較例1
窒素80%と酸素20%の混合ガスを培養槽に供給した以外は、実施例1と同じ条件で培養を行った。培養液中の炭酸水素イオン濃度を、イオンクロマトグラフィーを用いて実施例1に示す条件で測定したところ、0ppmであり、接種菌はまったく増殖しなかった。
【0017】
【発明の効果】
本発明によれば、ヒアルロン酸を安定に高収率で生産することができるので、ヒアルロン酸の工業的な製造方法として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing hyaluronic acid by a fermentation method. More specifically, the present invention relates to a method for producing hyaluronic acid by a fermentation method by culturing a microorganism having hyaluronic acid producing ability while maintaining a bicarbonate ion concentration in a culture solution at 5 to 500 ppm.
[0002]
[Prior art]
Conventionally, hyaluronic acid has been obtained by extraction from chicken crest or vitreous body of cattle eyes. However, in the production of hyaluronic acid from a living body by an extraction method, complicated separation from a large amount of hyaluronic acid-like mucopolysaccharides and proteins and other contaminants is necessary. Due to problems such as molecularization, it is impossible to obtain hyaluronic acid with high yield and high purity and high molecular weight. In order to improve the problem, a method of culturing a microorganism belonging to the genus Streptococcus, which is a microorganism having hyaluronic acid producing ability, and separating and purifying hyaluronic acid from the culture solution is disclosed (Japanese Patent Publication No. 4-12960). issue).
[0003]
Furthermore, for the purpose of stabilizing hyaluronic acid productivity and improving production yield, a method using a mutant strain (Japanese Patent Publication No. 4-39998, Japanese Patent Publication No. 4-43637, Japanese Patent Publication No. 4-55675), active ingredients (Japanese Patent Laid-Open No. 62-289198, Japanese Patent Laid-Open No. 4-18839) and the like are disclosed.
[0004]
Regarding the gas supplied to the culture tank, a method of culturing under carbon dioxide enhanced anaerobic conditions (Japanese Patent Publication No. 4-64679) for the purpose of improving the production yield, while controlling the redox potential by controlling aeration and stirring. A method of culturing (Japanese Patent Laid-Open No. 62-51999), a method of culturing under an aerobic condition up to the exponential growth point, and then culturing at a low dissolved oxygen concentration (Japanese Patent Laid-Open No. 3-35788) are disclosed.
[0005]
[Problems to be solved by the invention]
In the hyaluronic acid production culture by microorganisms, the effect of the bicarbonate ion concentration in the culture solution on the culture has not been known.
[0006]
In order to solve this problem, the present inventors examined the bicarbonate ion concentration in the culture solution with the growth of hyaluronic acid-producing bacteria and hyaluronic acid productivity as indicators. As a result, the bicarbonate ion concentration in the culture solution was 5%. It was found that hyaluronic acid can be produced in a high yield by culturing a microorganism having hyaluronic acid-producing ability while maintaining it at ˜500 ppm, and the present invention has been completed.
[0007]
[Means for Solving the Problems]
That is, the present invention ( 1 ) When producing hyaluronic acid by culturing microorganisms capable of producing hyaluronic acid, by adding carbonate to the culture tank, the bicarbonate ion concentration in the culture solution is maintained at 5 to 500 ppm. ( 2 ) The method of adding hyaluronic acid by fermentation, characterized by culturing while being added, and ( 2 ) the method of adding carbonate is one selected from batch addition, divided addition, and continuous addition ( 1) method for producing a hyaluronic acid according a (3) a microorganism having a hyaluronic acid-producing ability is characterized in that it is a Streptococcus bacterium (1) or (2) the method of producing hyaluronic acid according.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
Examples of the microorganism used in the present invention include Streptococcus equi, Streptococcus. Streptococcus zooepidemicus, Streptococcus excisimis, s. In particular, a Streptococcus equi mutant FM-100 (Mikoken Joyo No. 9027) or Streptococcus equi mutant FM-300 (Miken Kenjo No. 2319) is preferred.
[0009]
The medium used in the present invention is a carbon source composed of sugar components such as glucose, fructose, galactose, sucrose, etc., such as monopotassium phosphate, dipotassium phosphate, magnesium nitrate, sodium sulfite, sodium thiosulfate, ammonium phosphate, etc. Inorganic salts, polypeptone, casamino acids, yeast extract, corn steep liquor, organic nutrient sources such as soybean hydrolysate, and various vitamins, etc. are used as needed.
[0010]
The culture of the present invention is performed while bubbling the gas supplied to the culture tank to the culture medium, and a known method can be used for stirring and the like. As the gas to be used, air is preferably used, but oxygen, nitrogen, carbon dioxide, air, and the like can also be mixed and used. The gas to be used is sterilized by a known method, and other pretreatment such as dehumidification may be performed as necessary. By bubbling a gas containing carbon dioxide in the culture medium, a part of the carbon dioxide dissolved in the culture solution exists as bicarbonate ions.
Producing hyaluronic acid in a high yield by adding bicarbonate to increase the bicarbonate ion concentration even under culture conditions where the bicarbonate ion concentration by gas bubbling into the medium is lower than 5 ppm. Is possible.
The method for adding carbonate may be any of batch addition, divided addition, and continuous addition.
[0011]
Any carbonate may be used as long as it is partially present as bicarbonate ions in the culture solution. For example, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium potassium carbonate, lithium carbonate and the like are used.
If the bicarbonate ion concentration in the culture solution is lower than 5 ppm, the growth of hyaluronic acid-producing bacteria slows down or does not grow at all, which is a major obstacle in industrial production. Further, increasing the bicarbonate ion concentration in the culture solution to more than 500 ppm leads to an increase in equipment and supply gas or medium costs, and is not practical in practice. In order to produce hyaluronic acid stably, the bicarbonate ion concentration in the culture solution is preferably maintained at 5 to 500 ppm, and particularly preferably 10 to 100 ppm. The air flow rate is not particularly limited, but is preferably about 0.1 to 1 vvm.
[0012]
The culture temperature is preferably 30 to 35 ° C. Since the pH of the culture solution decreases with the growth of the bacteria, a pH adjuster such as sodium hydroxide, potassium hydroxide, or ammonia is added to control the pH to 6.0 to 9.0. The pH is preferably controlled to 7.0 to 8.5.
When cultured in this manner, the viscosity of the culture solution gradually increases with the production of hyaluronic acid. High-purity hyaluronic acid can be obtained by a known purification method such as precipitation at an organic solvent such as alcohol and desalting by ultrafiltration after sterilization at an arbitrary time point and sterilization.
[0013]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to these.
Example 1
One liter of medium consisting of 5% glucose, 0.2% monopotassium phosphate, 1.0% polypeptone, and 0.5% yeast extract was heat sterilized, and then Streptococcus ex FM-100 (90th Kyokuken Jojo No. 9027). No.) was inoculated and cultured for 21 hours at 200 rpm with stirring, at a temperature of 33 ° C., and at pH 8.5 (control by automatic addition of 20% sodium hydroxide) with aeration of air at 1 vvm. The bicarbonate ion concentration in the culture solution at the start of the culture was measured under the conditions shown below using ion chromatography and found to be 25 ppm. As a result of measuring the absorbance at 660 nm of the culture solution (an index of the growth degree of bacterial cells), it was 8.0. Further, 1 liter of the culture solution was adjusted to pH 4 with hydrochloric acid, diluted twice with distilled water, added with activated carbon, and sterilized by filtration. Ethyl alcohol was added to the obtained sterilization solution, and a precipitate was obtained by filtration. This was dissolved in water, cetylpyridinium chloride was added, the resulting precipitate was collected by filtration, redissolved in 2% brine, and then precipitated with ethyl alcohol twice. The weight of purified sodium hyaluronate obtained by drying this white precipitate at room temperature under reduced pressure (an index of hyaluronic acid productivity) was 7.0 g.
[0014]
[0015]
Example 2
A mixed gas of 80% nitrogen and 20% oxygen was supplied to the culture tank, and the bicarbonate ion concentration in the culture solution was measured under the conditions shown in Example 1 using ion chromatography, and found to be 0 ppm. The culture was started by adding aseptically filtered sodium bicarbonate solution so that the bicarbonate ion concentration was 100 ppm. The added bicarbonate is partially present as carbon dioxide gas, and decreases due to bubbling of the supply gas. Sampling was performed every 3 hours after the start of the culture, and a sodium hydrogen carbonate solution corresponding to the decreased amount was added by aseptic filtration so that the hydrogen carbonate ion concentration became 100 ppm. Other than that, culture and hyaluronic acid were purified under the same conditions as in Example 1. The absorbance at 660 nm of the culture solution was measured and found to be 8.2. Moreover, as a result of measuring the weight of refined hyaluronic acid, it was 6.7 g per liter of culture solution.
[0016]
Comparative Example 1
Culturing was performed under the same conditions as in Example 1 except that a mixed gas of 80% nitrogen and 20% oxygen was supplied to the culture tank. When the bicarbonate ion concentration in the culture solution was measured under the conditions shown in Example 1 using ion chromatography, it was 0 ppm, and the inoculum did not grow at all.
[0017]
【The invention's effect】
According to the present invention, hyaluronic acid can be stably produced at a high yield, and thus it is useful as an industrial production method of hyaluronic acid.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3335399A JP3973312B2 (en) | 1999-01-01 | 1999-01-01 | Method for producing hyaluronic acid by fermentation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3335399A JP3973312B2 (en) | 1999-01-01 | 1999-01-01 | Method for producing hyaluronic acid by fermentation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000189185A JP2000189185A (en) | 2000-07-11 |
JP3973312B2 true JP3973312B2 (en) | 2007-09-12 |
Family
ID=12384227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3335399A Expired - Fee Related JP3973312B2 (en) | 1999-01-01 | 1999-01-01 | Method for producing hyaluronic acid by fermentation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3973312B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004016771A1 (en) | 2002-08-19 | 2004-02-26 | Kolon Ind. Inc. | Microorganism producing hyaluronic acid and purification method of hyaluronic acid |
-
1999
- 1999-01-01 JP JP3335399A patent/JP3973312B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000189185A (en) | 2000-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK173681B1 (en) | Process for producing hyaluronic acid from a hyaluronic acid-producing streptococ bacterium | |
US9347079B2 (en) | Production of highly purified sodium hyaluronate (HANa) with controlled molecular weight | |
JPH0630605B2 (en) | Method for producing sodium hyaluronate aqueous solution | |
Marqués et al. | Production and rheological properties of the extracellular polysaccharide synthesized by Pseudomonas sp. strain EPS-5028 | |
JPH02234689A (en) | Production of hyaluronic acid | |
EP0045569B1 (en) | Method for improving specific xanthan productivity during continuous fermentation | |
JP3973312B2 (en) | Method for producing hyaluronic acid by fermentation | |
JPS6394988A (en) | Production of hyaluronic acid | |
US4377637A (en) | Method for producing a low viscosity xanthan gum | |
JP4742475B2 (en) | Method for producing D-lactic acid | |
JPS6328398A (en) | Production of hyaluronic acid | |
JP3632197B2 (en) | Method for producing high molecular weight hyaluronic acid or salt thereof | |
JP3915505B2 (en) | Process for producing ε-poly-L-lysine | |
JP2000189186A (en) | Production of hyaluronic acid through fermentation | |
JP2009284826A (en) | Method for producing hyaluronic acid | |
US4301247A (en) | Method for improving xanthan yield | |
JPH0746992A (en) | Production of hyaluronic acid | |
JP2009028032A (en) | Process for producing hyaluronic acid | |
JPS6251999A (en) | Production of hyaluronic acid | |
JPH0698787A (en) | Production of hyaluronic acid | |
JPH062073B2 (en) | Hyaluronic acid manufacturing method | |
JPH05276972A (en) | Production of hyaluronic acid | |
JPH0331439B2 (en) | ||
CN1196781C (en) | Preparation method of D-amino acid oxidase | |
JPH046356B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070410 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070612 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070612 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110622 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110622 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120622 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130622 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |