JP3972986B2 - Contrast X-ray tube, X-ray contrast apparatus and X-ray contrast method using the same - Google Patents

Contrast X-ray tube, X-ray contrast apparatus and X-ray contrast method using the same Download PDF

Info

Publication number
JP3972986B2
JP3972986B2 JP2003144054A JP2003144054A JP3972986B2 JP 3972986 B2 JP3972986 B2 JP 3972986B2 JP 2003144054 A JP2003144054 A JP 2003144054A JP 2003144054 A JP2003144054 A JP 2003144054A JP 3972986 B2 JP3972986 B2 JP 3972986B2
Authority
JP
Japan
Prior art keywords
ray
contrast
cathode
ray tube
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003144054A
Other languages
Japanese (ja)
Other versions
JP2004349083A (en
Inventor
英一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003144054A priority Critical patent/JP3972986B2/en
Priority to PCT/JP2004/007049 priority patent/WO2004103180A1/en
Publication of JP2004349083A publication Critical patent/JP2004349083A/en
Application granted granted Critical
Publication of JP3972986B2 publication Critical patent/JP3972986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/081Target material

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、医療分野等において用いる造影用X線管及びそれを用いたX線造影装置とX線造影方法に関する。
【0002】
【従来の技術】
血管造影用透過X線装置は、低コスト、利便性の高い病気診断装置として、臨床医療分野でなくてはならない医療用分析装置である。しかしながら、近年、医療技術の進歩と共に、高分解能の血管造影用X線装置が求められるようになってきている。例えば、狭心症の診断には微細な心臓の環動脈を観察することが必要であり、また、再生医療研究においては10μm以下といった高分解能の血管造影用X線装置が必要である。
非特許文献1に解説されているように、再生医療とは、従来は人工関節、輸血、皮膚移植、臓器移植等を意味するものであったが、近年、幹細胞を所望の臓器に分化させ、この臓器により難病を治療するという再生医療が注目されている。この再生医療における臓器は自分自身の細胞から再生される臓器であるため、従来の他人の臓器の移植のように拒絶反応の心配がない。このように幹細胞分化による再生医療は、遺伝子治療と共に将来のもっとも注目される医療技術であり、世界中で熾烈な研究開発競争が行われている。
【0003】
幹細胞分化による再生医療は、まだ研究の途についたばかりであり、治療に生かされるためには今後極めて膨大な研究開発を必要とする。特に分化の過程が十分に解明されておらず、この過程を解明するためには分化過程中の微細な血管の成長過程を観測することが必須である。
【0004】
しかしながら従来の透過X線による血管造影方法は、生体安全性の観点からヨウ素を血管造影剤に使用するが、使用するX線の波長を適切に選択できないために血管部分と血管以外の部分との透過X線の強度比、すなわちコントラストが十分でなく、特に組織の深部にある血管像は組織を透過するにつれてコントラストが低下し、人体においては、せいぜい100μm程度の分解能しか得られない。このため従来は、上記のような微細な血管像を観測する必要がある場合には、シンクロトロン放射光を用いざるを得なかった。
【0005】
しかしながら周知のように、シンクロトロン放射光は電子を高エネルギーに加速し、この電子の制動に伴う輻射光を利用するものであるので、適切な波長のX線を選択できるものの、巨大な設備と膨大なエネルギーを必要とし、コストが高くまた利便性が悪い。例えば、シンクロトロン放射光設備はコストが高いため、一つの設備を多目的に共同利用するが、このため一人に割り当てられるマシンタイムが短く、また電力の不足する夏季には全く稼動できない。このため再生医療の研究開発が遅延する原因になっている。
【0006】
【非特許文献1】
http://cont.trc−net.ne.jp/basics/01_02.html 2003/05/14
【特許文献1】
特願2001−110783号公報
【0007】
【発明が解決しようとする課題】
上記課題に鑑み本発明は透過X線による造影を高分解能で造影できる、低コスト且つ簡便なX線造影方法を提供することを一目的とする。またこの方法に必要な、低コスト、且つ利便性が高造影用X線管及びそれを用いたX線造影装置を提供することを他の目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明造影用X線管は、ヨウ素を造影剤としてドープした被写体を造影用X線源とX線撮像器とで挟んで高分解能被写体造影に用いる造影用X線管であって、環状の炭素冷陰極と、セリウムからなる棒状の対陰極と、環状の炭素冷陰極と対陰極とを含む空間を満たす放電用の気体と、を有し、気体放電により上記対陰極物質を蒸発させてプラズマを形成し、このプラズマから特性X線を発生させ、上記特性X線により上記被写体を透過させ、その際得られる透過X線強度のコントラストの解像度が50μm未満となることを特徴とする。
このX線管によれば、セリウムのKα特性X線が極めて低コスト、且つ簡便に発生できる。セリウムのKα特性X線のフォトンエネルギーは、血管造影剤であるヨウ素のK吸収端エネルギーの近傍にあり、且つわずかに大きいので極めて良くヨウ素に吸収される。従って、本発明のX線管を、ヨウ素を造影剤とするX線透過血管造影法に用いれば、極めて微細な血管の造影が可能になる。
【0010】
また、本発明の造影用X線管は、気体放電を生起するために一定圧力の気体を必要とするが、陰極と対陰極とを内包する容器に一定圧力の気体を導入して使用する組立型であってもよい。
このX管によれば、電子の加速方向と反対方向にX線を取り出せるので、制動X線が少なくなり、X線の単色性が高く、且つ極めて強度の高いX線パルスが得られる。
【0011】
また、本発明は、ヨウ素を造影剤としてドープした被写体を挟んで配置される造影用X線管とX線撮像器とからなるX線造影装置であって、造影用X線管が、環状の炭素冷陰極と、セリウムからなる棒状の対陰極と、環状の炭素冷陰極と対陰極とを含む空間を満たす放電用の気体とを有し、気体放電により対陰極物質を蒸発させてプラズマを形成し、このプラズマからセリウムの特性X線を発生させるようになっており、造影用X線管からの特性X線は被写体を透過し、透過X線強度のコントラストにより被写体にドープされている造影剤を、50μm以下の解像度で造影できることを特徴とする。
【0012】
上記構成において、好ましくは、造影用X線管は、陰極と対陰極を内包する真空容器を真空引きして使用する組立型である。X線撮像器は、好ましくはX線写真フィルムである。
【0013】
また、本発明のX線造影方法は、ヨウ素を造影剤としてドープした被写体を挟んで配置される造影用X線管とX線撮像器とを用い、造影用X線源が、環状の炭素冷陰極と、セリウムからなる棒状の対陰極と、環状の炭素冷陰極と対陰極とを含む空間を満たす放電用の気体とを有し、気体放電により対陰極物質を蒸発させてプラズマを形成し、このプラズマからセリウムの特性X線を発生させるようになっており、被写体に対して造影用X線管からの特性X線を透過させ、透過X線強度のコントラストにより被写体にドープされている造影剤を、50μm以下の解像度で造影することを特徴とする。
【0014】
上記構成において、好ましくは、X線撮像器はX線写真フィルムである。
【0015】
上記のように、本発明造影用X線管及びそれを用いたX線造影装置とX線造影方法を用いれば、50μm以下といった微細な血管の造影が可能となり、臨床医療現場、あるいは再生医療等の研究分野において有用である。特に、再生医療の研究分野においては、装置が低コスト、且つ利便性が高いことから、装置のマシンタイム等の制約を受けずに多くの研究者が同時並列的に研究を進めることができ、もって再生医療研究の速度を速めることができる。
【0016】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を詳細に説明する。
図1は、本発明の高分解能血管造影方法を模式的に示す図である。本発明の高分解能血管造影方法は、従来の透過X線による血管造影方法と比べて、X線源にセリウムKα特性X線を使用することだけが異なり、他は同様である。すなわち図に示すように、本発明法は、血液中にヨウ素を造影剤としてドープした被写体1を挟んで、X線源2とX線写真フィルム等のX線撮像器3を配置し、透過X線強度のコントラストを利用して血管を造影するものである。
【0017】
図2は、ヨウ素のK吸収端近傍の質量吸収係数のX線フォトンエネルギー依存性を示す図である。一般に、単一原子からなる物質の質量吸収係数は、フォトンエネルギーの増加に対し、原子に特有なフォトンエネルギーで急激に立ち上がり(K殻電子の励起に対応する場合にK吸収端と呼ばれる)、その後指数関数的に減少する。従って、造影剤の吸収端エネルギーよりも大きく、且つ、できるだけ造影剤の吸収端に近いエネルギーを有するX線を使用すれば、造影剤に吸収されるX線の割合が高まり、血管部分と血管部分以外との透過X線のコントラストが高くなるため、高分解能の血管造影を得ることができる。
【0018】
図に示すように、セリウムKα特性X線(34.6keV)は、ヨウ素のK吸収端エネルギー(33.2keV)に極めて近いので、本発明の方法によれば、透過X線のコントラストが高くなる。
従来のタングステンを対陰極物質とした測定方法は図に示すように、タングステンKα特性X線(58.7keV)が、ヨウ素のK吸収端から離れているためにコントラストが小さい。また従来、モリブデンを対陰極物質としたX線源も使用されているが、モリブデンのKα線はヨウ素の吸収端よりエネルギーが低いためにほとんど吸収されず、もっぱら制動X線によるコントラスト像である。制動X線は波長が連続したX線源であるため十分なコントラストが得られない。
【0019】
次に、本発明の方法に用いる高分解能血管造影用X線管を説明する。
図3は、本発明の高分解能血管造影用X線管の主要部の構成を示す図である。図3(a)は、熱陰極と、熱陰極から発生する熱電子が加速されて衝突するセリウムからなる板状の対陰極とを有するX線管を示している。図3(b)は、環状熱陰極と、環状熱陰極から発生する熱電子が加速されて衝突するセリウムからなる棒状の対陰極とを有するX線管を示している。また、図3(c)は、環状の炭素冷陰極と、セリウムからなる棒状の対陰極と、放電用気体とを有するX線管であって、セリウムからなる棒状の対陰極物質を気体放電により蒸発させてプラズマを形成し、このプラズマから特性X線を発生させるプラズマX線管を示している。
【0020】
図3(a)において、X線管31は、熱陰極32と、フィラメントである熱陰極32から発生する熱電子が加速されて衝突するセリウムからなる板状の対陰極33とを有している。セリウムからなる対陰極33は、導電性が良く、且つ熱伝導性の良い金属ブロック34、あるいは水冷パイプを有する金属ブロック34に埋め込まれて固定されている。熱陰極32と金属ブロック34との間に高電圧を印加し、熱電子をセリウムのK吸収端以上のエネルギーに加速してセリウムKα特性X線を発生する。X線は熱電子の加速方向に対して横方向(35)に取り出す。このX線管31は、若干の制動X線も生じるが、必要とされる分解能が10μm程度であれば、血管造影に支障はない。
【0021】
図3(b)において、X線管36は、環状のフィラメントである環状熱陰極37と、環状熱陰極37から発生する熱電子が加速されて衝突するセリウムからなる棒状の対陰極38とを有している。熱陰極32と金属ブロック34との間に高電圧を印加し、熱電子をセリウムのK吸収端以上のエネルギーに加速してセリウムKα特性X線を発生する。
このX線管36は、熱電子の加速方向と反対方向(39)からX線を取り出すので、制動X線が少なくなり、単色性が高い。
【0022】
図3(c)において、プラズマX線管40は、環状の炭素冷陰極41と、セリウムからなる棒状の対陰極42と、炭素冷陰極41と対陰極42を含む空間に充填した気体放電用の気体とを有している。炭素冷陰極41と対陰極42との間にコンデンサを接続し、このコンデンサに電荷を蓄え、炭素冷陰極41の近傍で気体放電を起こすことにより、コンデンサに蓄えた電荷を瞬時に放電し、セリウムからなる棒状の対陰極42を蒸発させ、セリウムからなる弱電離プラズマを生起する。このプラズマに電子が衝突、及び制動されてX線が発生する。プラズマの長軸方向(符号43で示す)に沿って伝搬するセリウムのKα特性X線は誘導放出によって強度が強くなり、プラズマの長軸方向(43)に沿って伝搬する制動X線はプラズマに吸収されて強度が減衰する。このため、強度が極めて強く、且つ単色性に優れたセリウムKα特性X線パルスが発生する。プラズマをX線発生媒質とするこのタイプのX線管はプラズマX線管と呼ばれている(特許文献1参照)。
【0023】
次に、実施例1を説明する。
この実施例1は、本発明の方法及び本発明のX線管によって、高分解能な血管造影ができることを実証するものである。
ヨウ素のプラスチック被覆微少球またはセリウムのプラスチック被覆微少球を血管造影剤としたウサギの心臓の血管造影を比較した。X線源として図3(a)に示したX線管を用いた。
図4は、血管造影剤の異なるウサギの心臓の血管造影を示す透過X線写真である。(a)はヨウ素のプラスチック被覆微少球を用いた場合、(b)はセリウムのプラスチック被覆微少球を用いた場合を示している。
図4(a)から明らかなように、ヨウ素を造影剤とした場合には、セリウムKα特性X線がヨウ素に良く吸収されるために、細い冠状動脈を明瞭に造影することができる。なお、図の左下の白い線は分解能を確認するために、心臓に挿入した100μm径のタングステン線による造影である。
一方、図4(b)から明らかなように、セリウムを造影剤とした場合には、セリウムKα特性X線のフォトンエネルギーがセリウムの吸収端エネルギーより低く、セリウムKα特性X線がセリウムにほとんど吸収されないために、環状動脈はほとんど造影できない。
この実施例から、ヨウ素を造影剤とした場合には、セリウムKα特性X線を使用することによって極めてコントラストの高い血管造影ができることがわかる。
【0024】
次に、実施例2を説明する。
この実施例2は、本発明の方法及びX線管によって、生体深部の血管であっても鮮明に造影できることを実証するものである。
ヨウ素のプラスチック被覆微少球を血管造影剤として犬の心臓の血管造影を行い、生体のX線の吸収、散乱を模擬する媒質としてアクリル板(50mm厚)を使用した。他の実施条件は実施例1と同様である。
図5は生体中の血管の深さを模擬した犬の心臓の血管造影を示す透過X線写真である。図5(a)は摘出した犬の心臓を直接血管造影した場合、(b)は摘出した犬の心臓とX線撮像器との間に、厚さ50mmのアクリル板を挿入した場合を示している。
図5(a)から明らかなように、微細な冠状動脈が鮮明に造影できる。また、図5(b)から明らかなように、アクリル板を挿入しても微細な冠状動脈が鮮明に造影することができる。なお、図5の(a)及び(b)の左下の白い線は分解能を確認するために、心臓に挿入した100μm径のタングステン線による造影である。また右上の棒状の造影は、撮影に際し犬の心臓を固定するために用いた支持棒の造影である。
アクリル板を挿入しても、すなわち造影する血管が生体深部の血管であってもコントラストの減衰無しに造影できることがわかる。これはX線の波長が単色であるためである。
【0025】
次に、実施例3を説明する。
この実施例3は、本発明の方法及びX線管によれば、径が数十μm以下の血管造影が可能であることを実証するものである。
ウサギの下肢の微細血管を造影した。他の実施条件は実施例1と同様である。
図6はウサギの耳の微細血管の造影を示す透過X線写真である。図において、右上の白い線は50μm径のタングステン線の造影である。このタングステン線の造影と比較することにより、数十μm径以下の血管の造影が可能であることがわかる。
図7はウサギの下肢の微細血管の造影を示す透過X線写真である。図7(a)はウサギの下肢の微細血管の造影を示す図であり、(b)は(a)を拡大した図である。中央やや下の白い線は100μm径のタングステン線の造影である。このタングステン線の造影と比較することにより、数十μm径以下の血管の造影が可能であることがわかる。
【0026】
なお、上記実施例で用いたX線管は、図3(a)に示した構成のX線管であるが、図3(b)及び図3(c)に示した構成のX線管はさらにX線の単色性が高いので、これらのX線管を用いた場合にはさらに10μm以下の高解像度の造影が得られることは明かである。
【0027】
【発明の効果】
上記説明から理解されるように、本発明によれば、高分解能の血管造影ができる。従って、本発明は、微細な血管の観察を必要とする、臨床医療分野、あるいは再生医療等の医療研究分野に用いれば極めて有用である。
【図面の簡単な説明】
【図1】本発明の高分解能血管造影方法を模式的に示す図である。
【図2】ヨウ素のK吸収端近傍の質量吸収係数のX線フォトンエネルギー依存性を示す図である。
【図3】本発明の高分解能血管造影用X線管の主要部の構成を示す概略図である。
【図4】血管造影剤の異なるウサギの心臓の血管造影を示す透過X線写真である。
【図5】生体中の血管の深さを模擬した犬の心臓の血管造影を示す透過X線写真で、(a)は摘出した犬の心臓を直接血管造影したもの、(b)は摘出した犬の心臓とX線撮像器との間に、厚さ50mmのアクリル板を挿入した場合を示している。
【図6】ウサギの耳の微細血管の造影を示す透過X線写真である。
【図7】ウサギの下肢の微細血管の造影を示す透過X線写真である。
【符号の説明】
1 被写体
2 X線源
3 X線撮像器
31 X線管
32 熱陰極
33 セリウムからなる対陰極
34 金属ブロック
35 X線取出し方向
36 X線管
37 環状熱陰極
38 セリウムからなる棒状対陰極
39 X線取出し方向
40 X線管
41 環状の炭素冷陰極
42 セリウムからなる棒状対陰極
43 X線取出し方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a contrast X-ray tube used in the medical field and the like, an X-ray contrast apparatus using the same, and an X-ray contrast method .
[0002]
[Prior art]
An angiographic transmission X-ray apparatus is a medical analyzer that must be in the clinical medical field as a low-cost and highly convenient disease diagnosis apparatus. However, in recent years, with the advancement of medical technology, a high-resolution angiographic X-ray apparatus has been demanded. For example, it is necessary to observe minute arterial arteries in order to diagnose angina pectoris, and regenerative medicine research requires a high-resolution angiographic X-ray apparatus of 10 μm or less.
As explained in Non-Patent Document 1, regenerative medicine has conventionally meant artificial joints, blood transfusions, skin transplants, organ transplants, etc., but in recent years, stem cells have been differentiated into desired organs, Regenerative medicine that treats intractable diseases with this organ has attracted attention. Since the organ in this regenerative medicine is an organ regenerated from its own cells, there is no concern about rejection as in the case of conventional transplantation of another person's organ. As described above, regenerative medicine by stem cell differentiation is the most noticeable medical technology in the future together with gene therapy, and intense research and development competition is conducted all over the world.
[0003]
Regenerative medicine based on stem cell differentiation has only just begun research, and will require an enormous amount of research and development in the future in order to be utilized for treatment. In particular, the process of differentiation has not been fully elucidated, and in order to elucidate this process, it is essential to observe the growth process of minute blood vessels during the differentiation process.
[0004]
However, the conventional angiography method using transmitted X-rays uses iodine as an angiographic contrast agent from the viewpoint of biological safety. However, since the wavelength of the X-ray to be used cannot be appropriately selected, the blood vessel portion and the portion other than the blood vessel are not used. The intensity ratio of transmitted X-rays, that is, the contrast is not sufficient. In particular, the contrast of a blood vessel image in the deep part of the tissue decreases as it passes through the tissue, and the human body can obtain a resolution of about 100 μm at most. For this reason, conventionally, when it is necessary to observe a fine blood vessel image as described above, synchrotron radiation has to be used.
[0005]
However, as is well known, synchrotron radiation accelerates electrons to high energy and uses radiation light accompanying the braking of the electrons, so although X-rays with appropriate wavelengths can be selected, It requires enormous energy, is expensive and is not convenient. For example, synchrotron radiation equipment is expensive, so one equipment is shared for multiple purposes. However, the machine time allocated to one person is short, and it cannot be operated at all in the summer when power is insufficient. For this reason, research and development of regenerative medicine is a cause of delay.
[0006]
[Non-Patent Document 1]
http: // cont. trc-net. ne. jp / basics / 01_02. html 2003/05/14
[Patent Document 1]
Japanese Patent Application No. 2001-110783 [0007]
[Problems to be solved by the invention]
The present invention In view of the above problems, the contrast by transmitting X-rays can contrast with high resolution, it is an object to provide a low-cost and simple X-ray imaging method. Also necessary for this method, a low-cost, and convenience is the X-ray tube for high have imaging and other object to provide an X-ray contrast device using the same.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the contrast X-ray tube of the present invention is a contrast X-ray used for high-resolution subject imaging by sandwiching a subject doped with iodine as a contrast agent between a contrast X-ray source and an X-ray imager. A tubular carbon cold cathode, a rod-shaped counter cathode made of cerium, and a discharge gas that fills a space including the annular carbon cold cathode and the counter cathode. The cathode material is evaporated to form a plasma, a characteristic X-ray is generated from the plasma, the object is transmitted by the characteristic X-ray, and the contrast resolution of the transmitted X-ray intensity obtained at that time is less than 50 μm. It is characterized by.
According to this X-ray tube, the Kα characteristic X-ray of cerium can be easily generated at a very low cost. The photon energy of the Kα characteristic X-ray of cerium is in the vicinity of the K absorption edge energy of iodine, which is an angiographic contrast agent, and is slightly large, so it is absorbed very well by iodine. Therefore, if the X-ray tube of the present invention is used for X-ray transmission angiography using iodine as a contrast agent, extremely fine blood vessels can be imaged.
[0010]
Further, the contrast X-ray tube of the present invention requires a constant pressure gas to cause a gas discharge, but is an assembly in which a constant pressure gas is introduced into a container containing the cathode and the counter cathode. It may be a mold.
According to this X-ray tube, X-rays can be extracted in the direction opposite to the acceleration direction of electrons, so that the number of braking X-rays is reduced, X-ray pulses with high X-ray monochromaticity and extremely high intensity can be obtained.
[0011]
The present invention is also an X-ray contrast apparatus comprising a contrast X-ray tube and an X-ray imager arranged with a subject doped with iodine as a contrast agent, wherein the contrast X-ray tube is annular. It has a carbon cold cathode, a rod-like counter cathode made of cerium, and a discharge gas that fills the space including the annular carbon cold cathode and the counter cathode, and vaporizes the counter cathode material to form plasma. Then, a characteristic X-ray of cerium is generated from this plasma, and the characteristic X-ray from the contrast X-ray tube passes through the subject, and the contrast agent is doped in the subject by the contrast of the transmitted X-ray intensity. Can be imaged with a resolution of 50 μm or less.
[0012]
In the above configuration, the contrast X-ray tube is preferably an assembly type in which a vacuum vessel containing a cathode and a counter cathode is evacuated and used. The X-ray imager is preferably an X-ray photographic film.
[0013]
In addition, the X-ray contrast method of the present invention uses a contrast X-ray tube and an X-ray imager arranged with a subject doped with iodine as a contrast agent, and the contrast X-ray source is an annular carbon A cathode, a rod-like countercathode made of cerium, and a discharge gas that fills the space including the annular carbon cold cathode and the countercathode, evaporating the countercathode material by gas discharge to form plasma; A contrast agent which generates characteristic X-rays of cerium from the plasma, transmits the characteristic X-rays from the contrast X-ray tube to the subject, and is doped in the subject by contrast of transmitted X-ray intensity. Is imaged with a resolution of 50 μm or less.
[0014]
In the above configuration, the X-ray imager is preferably an X-ray photographic film.
[0015]
As described above, using the contrast X-ray tube of the present invention , an X-ray contrast apparatus using the same, and an X-ray contrast method , it is possible to contrast a fine blood vessel of 50 μm or less, and clinical or regenerative medicine. It is useful in research fields such as In particular, in the research field of regenerative medicine, since the device is low-cost and highly convenient, many researchers can proceed with research in parallel without being restricted by the machine time of the device, This can accelerate the speed of regenerative medicine research.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram schematically showing the high-resolution angiography method of the present invention. The high-resolution angiography method of the present invention is different from the conventional angiography method using transmitted X-rays only in using a cerium Kα characteristic X-ray as an X-ray source, and the others are the same. That is, as shown in the figure, in the method of the present invention, an X-ray source 2 and an X-ray imager 3 such as an X-ray photographic film are disposed with a subject 1 doped with iodine as a contrast medium in blood, and transmitted X A blood vessel is imaged using the contrast of the line intensity.
[0017]
FIG. 2 is a graph showing the X-ray photon energy dependence of the mass absorption coefficient near the K absorption edge of iodine. In general, the mass absorption coefficient of a substance consisting of a single atom rises sharply at the photon energy peculiar to the atom with respect to the increase in photon energy (called the K absorption edge when it corresponds to excitation of K-shell electrons), and thereafter Decrease exponentially. Therefore, if X-rays having energy larger than the absorption edge energy of the contrast agent and having energy as close as possible to the absorption edge of the contrast agent are used, the proportion of X-rays absorbed by the contrast agent increases, and the blood vessel portion and the blood vessel portion are increased. Since the contrast of transmitted X-rays other than the above becomes high, high-resolution angiography can be obtained.
[0018]
As shown in the figure, the cerium Kα characteristic X-ray (34.6 keV) is very close to the K absorption edge energy (33.2 keV) of iodine, and according to the method of the present invention, the contrast of the transmitted X-ray is increased. .
As shown in the figure, the conventional measuring method using tungsten as an anti-cathode material has a low contrast because the tungsten Kα characteristic X-ray (58.7 keV) is away from the K absorption edge of iodine. Conventionally, an X-ray source using molybdenum as an anti-cathode material has also been used. However, the Kα ray of molybdenum is hardly absorbed because its energy is lower than the absorption edge of iodine, and is a contrast image by braking X-rays exclusively. Since the braking X-ray is an X-ray source having a continuous wavelength, a sufficient contrast cannot be obtained.
[0019]
Next, a high-resolution angiographic X-ray tube used in the method of the present invention will be described.
FIG. 3 is a diagram showing a configuration of a main part of the X-ray tube for high resolution angiography according to the present invention. FIG. 3A shows an X-ray tube having a hot cathode and a plate-like counter-cathode made of cerium that collides with acceleration of thermoelectrons generated from the hot cathode. FIG. 3B shows an X-ray tube having an annular hot cathode and a rod-like counter cathode made of cerium that collides with thermionic electrons generated from the annular hot cathode being accelerated. FIG. 3C shows an X-ray tube having an annular carbon cold cathode, a rod-like counter cathode made of cerium, and a discharge gas, and a rod-like counter-cathode material made of cerium is removed by gas discharge. A plasma X-ray tube is shown that evaporates to form a plasma and generates characteristic X-rays from the plasma.
[0020]
In FIG. 3A, an X-ray tube 31 has a hot cathode 32 and a plate-like counter cathode 33 made of cerium that collides with the acceleration of thermoelectrons generated from the hot cathode 32, which is a filament. . The counter cathode 33 made of cerium is embedded and fixed in a metal block 34 having good conductivity and heat conductivity or a metal block 34 having a water cooling pipe. A high voltage is applied between the hot cathode 32 and the metal block 34 to accelerate the thermal electrons to an energy higher than the K absorption edge of cerium to generate cerium Kα characteristic X-rays. X-rays are extracted laterally (35) with respect to the acceleration direction of the thermal electrons. This X-ray tube 31 also generates some braking X-rays, but there is no problem in angiography if the required resolution is about 10 μm.
[0021]
In FIG. 3B, an X-ray tube 36 has an annular hot cathode 37 that is an annular filament, and a rod-like counter cathode 38 made of cerium that collides with acceleration of thermoelectrons generated from the annular hot cathode 37. is doing. A high voltage is applied between the hot cathode 32 and the metal block 34 to accelerate the thermal electrons to an energy higher than the K absorption edge of cerium to generate cerium Kα characteristic X-rays.
Since the X-ray tube 36 extracts X-rays from the direction (39) opposite to the acceleration direction of the thermal electrons, the braking X-rays are reduced and the monochromaticity is high.
[0022]
In FIG. 3C, a plasma X-ray tube 40 is used for gas discharge filled in a space including an annular carbon cold cathode 41, a rod-like counter cathode 42 made of cerium, and the carbon cold cathode 41 and the counter cathode 42. Gas. A capacitor is connected between the carbon cold cathode 41 and the counter cathode 42, electric charge is stored in the capacitor, and gas discharge is caused in the vicinity of the carbon cold cathode 41, whereby the electric charge stored in the capacitor is instantaneously discharged, and cerium. The rod-like counter cathode 42 made of is evaporated to generate weakly ionized plasma made of cerium. Electrons collide with the plasma and are braked to generate X-rays. The intensity of the Kα characteristic X-rays of cerium propagating along the long axis direction of the plasma (denoted by reference numeral 43) is increased by stimulated emission, and the braking X-rays propagating along the long axis direction of the plasma (43) Absorbed and attenuates strength. Therefore, a cerium Kα characteristic X-ray pulse having an extremely strong intensity and excellent monochromaticity is generated. This type of X-ray tube using plasma as an X-ray generating medium is called a plasma X-ray tube (see Patent Document 1).
[0023]
Next, Example 1 will be described.
Example 1 demonstrates that high-resolution angiography can be performed by the method of the present invention and the X-ray tube of the present invention.
Rabbit heart angiography was compared with angiographic agents using iodine plastic-coated microspheres or cerium plastic-coated microspheres. The X-ray source shown in FIG. 3A was used as the X-ray source.
FIG. 4 is a transmission X-ray photograph showing angiography of a rabbit heart with different angiographic agents. (A) shows the case where iodine plastic-coated microspheres are used, and (b) shows the case where cerium plastic-coated microspheres are used.
As is apparent from FIG. 4A, when iodine is used as a contrast agent, cerium Kα characteristic X-rays are well absorbed by iodine, so that a thin coronary artery can be clearly imaged. In addition, the white line at the lower left of the figure is a contrast with a tungsten wire having a diameter of 100 μm inserted into the heart in order to confirm the resolution.
On the other hand, as is apparent from FIG. 4B, when cerium is used as the contrast agent, the photon energy of the cerium Kα characteristic X-ray is lower than the absorption edge energy of cerium, and the cerium Kα characteristic X-ray is almost absorbed by cerium. As a result, the annular artery is hardly imaged.
From this example, it can be seen that when iodine is used as a contrast agent, angiography with extremely high contrast can be performed by using cerium Kα characteristic X-rays.
[0024]
Next, Example 2 will be described.
Example 2 demonstrates that the method of the present invention and the X-ray tube can clearly contrast even a deep blood vessel.
Angiography of the dog's heart was performed using plastic microspheres coated with iodine as an angiographic agent, and an acrylic plate (thickness: 50 mm) was used as a medium for simulating the absorption and scattering of X-rays in the living body. Other implementation conditions are the same as in Example 1.
FIG. 5 is a transmission X-ray photograph showing angiography of the heart of a dog simulating the depth of blood vessels in the living body. FIG. 5 (a) shows the case where the extracted dog heart is directly angiographed, and FIG. 5 (b) shows the case where an acrylic plate having a thickness of 50 mm is inserted between the extracted dog heart and the X-ray imager. Yes.
As is clear from FIG. 5A, a fine coronary artery can be clearly imaged. Further, as is clear from FIG. 5B, even when an acrylic plate is inserted, a fine coronary artery can be clearly imaged. In addition, the white line at the lower left in FIGS. 5A and 5B is a contrast image formed by a tungsten wire having a diameter of 100 μm inserted into the heart in order to confirm the resolution. The bar-like contrast in the upper right is a contrast of the support rod used for fixing the dog's heart during photographing.
It can be seen that even if an acrylic plate is inserted, that is, even if the blood vessel to be contrasted is a blood vessel in the deep part of the living body, contrast can be contrasted without attenuation of contrast. This is because the X-ray wavelength is monochromatic.
[0025]
Next, Example 3 will be described.
Example 3 demonstrates that an angiography having a diameter of several tens of μm or less is possible according to the method and the X-ray tube of the present invention.
Microvessels in the lower limbs of rabbits were imaged. Other implementation conditions are the same as in Example 1.
FIG. 6 is a transmission X-ray photograph showing a contrast of a fine blood vessel of a rabbit ear. In the figure, the white line on the upper right is a contrast of a tungsten wire having a diameter of 50 μm. It can be seen that blood vessels with a diameter of several tens of μm or less can be imaged by comparing with this tungsten wire contrast.
FIG. 7 is a transmission X-ray photograph showing the contrast of the microvessel of the lower leg of the rabbit. FIG. 7 (a) is a diagram showing an imaging of a fine blood vessel in a lower leg of a rabbit, and (b) is an enlarged view of (a). The white line slightly below the center is an image of a tungsten wire with a diameter of 100 μm. It can be seen that blood vessels with a diameter of several tens of μm or less can be imaged by comparing with this tungsten wire contrast.
[0026]
The X-ray tube used in the above embodiment is the X-ray tube having the configuration shown in FIG. 3A, but the X-ray tube having the configuration shown in FIGS. 3B and 3C is used. Furthermore, since the monochromaticity of X-rays is high, it is clear that when these X-ray tubes are used, a high-resolution contrast of 10 μm or less can be obtained.
[0027]
【The invention's effect】
As understood from the above description, according to the present invention, high-resolution angiography can be performed. Therefore, the present invention is extremely useful when used in the clinical medical field or the medical research field such as regenerative medicine that requires observation of fine blood vessels.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a high-resolution angiography method of the present invention.
FIG. 2 is a graph showing the X-ray photon energy dependence of the mass absorption coefficient near the K absorption edge of iodine.
FIG. 3 is a schematic view showing a configuration of a main part of the X-ray tube for high resolution angiography according to the present invention.
FIG. 4 is a transmission X-ray photograph showing angiography of a rabbit heart with different angiographic agents.
FIGS. 5A and 5B are transmission X-ray photographs showing angiography of a dog's heart simulating the depth of blood vessels in a living body, wherein FIG. 5A is a direct angiogram of the extracted dog's heart, and FIG. A case where an acrylic plate having a thickness of 50 mm is inserted between the heart of the dog and the X-ray imager is shown.
FIG. 6 is a transmission X-ray photograph showing a contrast of a fine blood vessel of a rabbit ear.
FIG. 7 is a transmission X-ray photograph showing an imaging of a microvessel in the lower leg of a rabbit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Subject 2 X-ray source 3 X-ray imager 31 X-ray tube 32 Hot cathode 33 Counter cathode 34 made of cerium Metal block 35 X-ray extraction direction 36 X-ray tube 37 Annular hot cathode 38 Rod-like counter cathode 39 made of cerium X-ray Extraction direction 40 X-ray tube 41 Annular carbon cold cathode 42 Bar-shaped counter cathode 43 made of cerium X-ray extraction direction

Claims (7)

ヨウ素を造影剤としてドープした被写体を造影用X線源とX線撮像器とで挟んで高分解能被写体造影に用いる造影用X線管であって、
環状の炭素冷陰極と、セリウムからなる棒状の対陰極と、環状の炭素冷陰極と対陰極とを含む空間を満たす放電用の気体と、を有し、
気体放電により上記対陰極物質を蒸発させてプラズマを形成し、このプラズマから特性X線を発生させ、
上記特性X線により上記被写体を透過させ、その際得られる透過X線強度のコントラストの解像度が50μm未満となることを特徴とする、造影用X線管。
A contrast X-ray tube used for high-resolution subject imaging by sandwiching a subject doped with iodine as a contrast agent between a contrast X-ray source and an X-ray imager,
An annular carbon cold cathode, a rod-like counter cathode made of cerium, and a discharge gas that fills a space including the annular carbon cold cathode and the counter cathode,
The counter-cathode material is evaporated by gas discharge to form a plasma, and characteristic X-rays are generated from the plasma.
A contrast X-ray tube, wherein the object is transmitted by the characteristic X-ray, and the contrast resolution of the transmitted X-ray intensity obtained at that time is less than 50 μm.
前記造影用X線管は、前記炭素冷陰極と対陰極とを含む空間に前記気体を導入して使用する組立型であることを特徴とする、請求項に記載の造影用X線管。The angiographic X-ray tube, characterized in that the is an assembly type used by introducing the gas in a space containing carbon cold cathode and the anticathode, X-ray tube for imaging of claim 1. ヨウ素を造影剤としてドープした被写体を挟んで配置される造影用X線管とX線撮像器とからなるX線造影装置であって、
上記造影用X線管が、環状の炭素冷陰極と、セリウムからなる棒状の対陰極と、上記環状の炭素冷陰極と対陰極とを含む空間を満たす放電用の気体とを有し、気体放電により上記対陰極物質を蒸発させてプラズマを形成し、このプラズマからセリウムの特性X線を発生させるようになっており、
上記造影用X線管からの特性X線は上記被写体を透過し、
透過X線強度のコントラストにより上記被写体にドープされている造影剤を、50μm未満の解像度で造影できることを特徴とする、X線造影装置。
An X-ray contrast apparatus comprising a contrast X-ray tube and an X-ray imager arranged with a subject doped with iodine as a contrast agent,
The contrast X-ray tube has an annular carbon cold cathode, a rod-like counter cathode made of cerium, and a discharge gas that fills a space including the annular carbon cold cathode and the counter cathode. The counter-cathode material is evaporated to form a plasma, and cerium characteristic X-rays are generated from the plasma.
Characteristic X-rays from the contrast X-ray tube pass through the subject,
An X-ray contrast apparatus characterized in that a contrast agent doped on the subject can be imaged with a resolution of less than 50 μm by contrast of transmitted X-ray intensity.
前記造影用X線管は、陰極と対陰極を内包する真空容器を真空引きして使用する組立型であることを特徴とする、請求項に記載のX線造影装置。4. The X-ray contrast apparatus according to claim 3 , wherein the contrast X-ray tube is an assembly type in which a vacuum vessel containing a cathode and a counter cathode is evacuated and used. 前記X線撮像器は、X線写真フィルムであることを特徴とする、請求項に記載のX線造影装置。The X-ray imaging apparatus according to claim 3 , wherein the X-ray imager is an X-ray photographic film. ヨウ素を造影剤としてドープした被写体を挟んで配置される造影用X線管とX線撮像器とを用いたX線造影方法であって、
上記造影用X線管が、環状の炭素冷陰極と、セリウムからなる棒状の対陰極と、上記環状の炭素冷陰極と対陰極とを含む空間を満たす放電用の気体と、を有し、
気体放電により上記対陰極物質を蒸発させてプラズマを形成し、このプラズマからセリウムの特性X線を発生させるようになっており、
被写体に対して造影用X線管からの特性X線を透過させ、
透過X線強度のコントラストにより上記被写体にドープされている造影剤を、50μm未満の解像度で造影することを特徴とする、X線造影方法。
An X-ray contrast method using a contrast X-ray tube and an X-ray imager arranged with an object doped with iodine as a contrast agent,
The contrast X-ray tube has an annular carbon cold cathode, a rod-like counter cathode made of cerium, and a discharge gas that fills a space including the annular carbon cold cathode and the counter cathode.
The counter-cathode material is evaporated by gas discharge to form a plasma, and cerium characteristic X-rays are generated from the plasma.
Transmit characteristic X-rays from the contrast X-ray tube to the subject,
An X-ray contrast method characterized by contrasting the contrast agent doped on the subject with a contrast of transmitted X-ray intensity with a resolution of less than 50 μm.
前記X線撮像器は、X線写真フィルムであることを特徴とする、請求項に記載のX線造影方法。The X-ray imaging method according to claim 6 , wherein the X-ray imager is an X-ray photographic film.
JP2003144054A 2003-05-21 2003-05-21 Contrast X-ray tube, X-ray contrast apparatus and X-ray contrast method using the same Expired - Fee Related JP3972986B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003144054A JP3972986B2 (en) 2003-05-21 2003-05-21 Contrast X-ray tube, X-ray contrast apparatus and X-ray contrast method using the same
PCT/JP2004/007049 WO2004103180A1 (en) 2003-05-21 2004-05-18 High-resolution angiography and x-ray tube for high-resolution angiography used for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144054A JP3972986B2 (en) 2003-05-21 2003-05-21 Contrast X-ray tube, X-ray contrast apparatus and X-ray contrast method using the same

Publications (2)

Publication Number Publication Date
JP2004349083A JP2004349083A (en) 2004-12-09
JP3972986B2 true JP3972986B2 (en) 2007-09-05

Family

ID=33475151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144054A Expired - Fee Related JP3972986B2 (en) 2003-05-21 2003-05-21 Contrast X-ray tube, X-ray contrast apparatus and X-ray contrast method using the same

Country Status (2)

Country Link
JP (1) JP3972986B2 (en)
WO (1) WO2004103180A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3848493B2 (en) * 1999-06-30 2006-11-22 英三 盛 X-ray diagnostic system
DE10056623B4 (en) * 1999-11-19 2015-08-20 Panalytical B.V. X-ray tube with a rare earth anode
JP3734019B2 (en) * 2001-04-10 2006-01-11 独立行政法人科学技術振興機構 Plasma X-ray tube
JP2003038475A (en) * 2001-08-01 2003-02-12 Kawasaki Heavy Ind Ltd X-ray diagnostic device and x-ray theraputic device

Also Published As

Publication number Publication date
WO2004103180A1 (en) 2004-12-02
JP2004349083A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
US11903754B2 (en) Monochromatic X-ray methods and apparatus
US6320935B1 (en) Dosimeter for a miniature energy transducer for emitting X-ray radiation
US7180981B2 (en) High quantum energy efficiency X-ray tube and targets
Lee et al. A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging
US7310408B2 (en) System and method for X-ray generation by inverse compton scattering
Kieffer et al. Future of laser-based X-ray sources for medical imaging
US9554767B2 (en) Method and apparatus for controlling X-ray exposure
Neculaes et al. Multisource X-ray and CT: Lessons learned and future outlook
US6463124B1 (en) Miniature energy transducer for emitting x-ray radiation including schottky cathode
US6438206B1 (en) Continuously pumped miniature X-ray emitting device and system for in-situ radiation treatment
Thomlinson Medical applications of synchrotron radiation
Longo Current studies and future perspectives of synchrotron radiation imaging trials in human patients
JP3972986B2 (en) Contrast X-ray tube, X-ray contrast apparatus and X-ray contrast method using the same
Yin et al. Diffraction enhanced X-ray imaging for observing guinea pig cochlea
KR20120094221A (en) Medical apparatus using interaction between synchrotron radiation x-ray and nanoparticles
US20220117075A1 (en) Systems and methods for compact laser wakefield accelerated electrons and x-rays
JPS63168600A (en) X-ray source
Krol et al. Laser-driven x-ray source for diagnostic radiology
Kellermeier Physical assessment of a novel concept for computed tomography with a stationary source ring of fixed X-ray anodes for medical imaging
Mah An investigation of contrast in kilovoltage imaging with megavoltage Bremsstrahlung beams.
Yakunin et al. Nanomaterials in Matrix X-ray Sensors for Computed Tomography
RU2519772C2 (en) Method for exposing human body pathologies to radiation and device for implementing same (versions)
Carroll Generation of “soft x‐rays” by using the free electron laser as a proposed means of diagnosing and treating breast cancer
Krol et al. Experimental and theoretical studies of dual energy subtraction angiography (DESA) performed using laser-based x-ray source
Sagae et al. Quasi-monochromatic x-ray generator utilizing graphite cathode diode with transmission-type molybdenum target

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

R150 Certificate of patent or registration of utility model

Ref document number: 3972986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees