JP3972282B2 - Water purification method for rivers using porous material with aggregate of clinker ash - Google Patents

Water purification method for rivers using porous material with aggregate of clinker ash Download PDF

Info

Publication number
JP3972282B2
JP3972282B2 JP2000204392A JP2000204392A JP3972282B2 JP 3972282 B2 JP3972282 B2 JP 3972282B2 JP 2000204392 A JP2000204392 A JP 2000204392A JP 2000204392 A JP2000204392 A JP 2000204392A JP 3972282 B2 JP3972282 B2 JP 3972282B2
Authority
JP
Japan
Prior art keywords
clinker ash
water
cement
pores
water purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000204392A
Other languages
Japanese (ja)
Other versions
JP2001064083A (en
Inventor
洋和 川中
友美 松原
Original Assignee
大有コンクリート工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大有コンクリート工業株式会社 filed Critical 大有コンクリート工業株式会社
Priority to JP2000204392A priority Critical patent/JP3972282B2/en
Publication of JP2001064083A publication Critical patent/JP2001064083A/en
Application granted granted Critical
Publication of JP3972282B2 publication Critical patent/JP3972282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00758Uses not provided for elsewhere in C04B2111/00 for agri-, sylvi- or piscicultural or cattle-breeding applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/74Underwater applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Revetment (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Water Treatment By Sorption (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多数の細孔を有するクリンカーアッシュをセメントで互いに結合してクリンカーアンシュ間にクリンカーアッシュが有する細孔よりも孔径の大きい空隙を有した多孔質体を河川に敷設する河川の水質浄化方法に関するものである。
【0002】
【従来の技術】
従来から、水質浄化用ブロックなどに用いられる各種多孔体が提案されている。例えば、特開平8−218403号公報に記載のセラミック粒状物と多孔質物を混合し、成形し、900〜1200℃で焼成して製造する焼結多孔体が提案されている。この様な多孔体は焼成によって多孔体としているためコスト高となる。
この為、この様な多孔質体を河川の水質浄化方法として使用することはコスト高となり、実用に供し得ない。
【0003】
又、特開平8−41848号公報には、粗骨材にセメントを加えて製造する空洞を有するコンクリートブロックが水質浄化用ブロックとして提案されているが、使用する骨材がコンクリートがら、石材工楊で使用不能の石がら等であり、多孔体ではあるが、水と接する孔壁の表面積が充分であるとはいえない。その為、この様なコンクリートブロックを河川に敷設しても単位面積当りの水質浄化能力は低く,実用に供し得ない。
【0004】
更に、特開平8−188482号公報には、水質浄化用の多孔質ブロック構造体が提案されているが、鹿沼土などをマルメライザーに投入して細粒を造り、マルメライザー処理を数回繰返して細粒を顆粒とし、顆粒を原料として成形し、800〜1400℃で焼成して製造する多孔質ブロックが提案されている。顆粒の製造及び焼成工程からなる製造方法であって、やはりコスト高になる。
この為,コスト面から河川。の水質浄化に使用することは実用上問題である。
【0005】
一方、河川の生活排水などによる汚濁が進行している水域の水質浄化法として、接触材充填水路浄化法、礫間接触酸化法等の直接浄化法が期待されている。しかしながら、浄化効率に優れ、実用に供し得る程度に経済的であって、耐久性のある浄化技術はまだ確立されていない。
【0006】
金網袋に炭や礫を詰めたものを河川の床に敷設し、微生物の働きで有機物を分解する方法も試みられているが、炭の使用は高価となり、実用には供し得ない。また、礫の使用は単位空間当たりの生物膜の存在がそれほど大きくはないので浄化効率が悪いとの問題がある。焼成によって製造する多孔質ブロックの研究開発も上述の通り、試みられてきたが、焼成技術による空隙の制御が困難であり、かつ高価となるため実用には供し得ない。
【0007】
【発明が解決しようとする課題】
本発明はかかる問題点を解決するものであり、単位空間当りの水質浄化効率と水質浄化能力と水質浄化能力の永続性に優れ、且つ、実用に供し得るほどの極めて経済的な河川の水質浄化方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明によれば、多数の細孔を有するクリンカーアッシュがセメントで互いに結合されて該クリンカーアッシュ間に該クリンカーアッシュの細孔よりも大きな空隙を海綿網目状に連通して形成してなる多孔質体を河川に敷設することを特徴とする河川の水質浄化方法が提供される。
【0009】
又、本発明においては、該クリンカーアッシュの細孔の孔径が3mm以下であって、該クリンカーアッシュ間の空隙の孔径が5mm以上であること好ましい。更に、該クリンカーアッシュが円相当直径で5mm〜15mmの大きさの粒子であることが好ましい。
【0010】
【発明の実施の形態】
本発明を図1に基づいて説明する。図1は多孔質体1の切断面を模式的に示した図である。各クリンカーアッシュ2がセメント4で互いに結合され、クリンカーアッシュ間空隙5が形成された微構造からなる硬化体である。
【0011】
各クリンカーアッシュ2は、孔径が好ましくは3mm以下の、極めて多数の細孔3を有している。そして、各クリンカーアッシュ2を接合するセメント4はクリンカーアッシュ2の多孔性を極力低下させない程度でかつ必要な強度を発現する程度に各クリンカーアッシュ間を接合している。
【0012】
したがって、クリンカーアッシュ2に存在する細孔3の大部分は細孔3よりも孔径の大きいクリンカーアッシュ間空隙5と連通した状態で構成されている。クリンカーアッシュ間空隙5は海綿網目状に連通しており、多孔質体1の表面へと繋がっている。
【0013】
かかる多孔質体を水質浄化用硬化体として河川の床に敷設した場合、著しく水質浄化効果に優れていることを発見した。
アルミナ15〜50パーセント、シリカ70〜30パーセントの化学組成を有する多孔質体として火力発電所の第1集塵機から発生するクリンカーアッシュ(クリンカー状の石炭灰)を用いて作製した水質浄化用硬化体はこの効果が特に著しい。
【0014】
本願発明の多孔質体1による水質浄化機能は、主としてクリンカーアッシュが有する無数の細孔に着床した生物膜の酸化作用によるものである。
好気性生物膜は空隙5の孔壁および細孔3の孔壁にそれぞれ着床するが、好気性生物膜は孔径の小さい細孔を好むので細孔3の孔壁に特に着床し易い。
【0015】
したがって、多孔質体1に存在する単位体積当たりの生物膜の表面積は著しく大きいとの特徴を有する。単位体積当たりの生物膜の表面積はクリンカーアッシュに存在する細孔3の孔壁に着床している生物膜が支配的であって、これら生物膜の酸化作用による水質浄化は細孔3の孔壁に着床した好気性バクテリアによって主として行われているものと推定される。
【0016】
更に、多孔質粒子間空隙5は好ましくは5mm以上と比較的大きな孔径の空隙であるから、河川水は比較的容易に空隙5さらには細孔3内に浸透する。その結果、細孔3に着床している好気性バクテリアには絶えず溶存酸素に富んだ水が供給されることとなり、好気性バクテリアの水質浄化能力は好適に維持される。従って、多孔質体の水質浄化機能が著しく優れ、かつその浄化能力が永く維持される。。
【0017】
図2(2a)はクリンカーアッシュの局部断面の一例であって、クリンカーアッシュ2に存在する細孔3の孔径は図2(2b)に示す通り、細孔の断面積と同一の断面積となる円の直径D(円相当直径)で示す。
【0018】
又、クリンカーアッシュ群とセメントで囲われたクリンカーアッシュ間空隙の孔径も同じくクリンカーアッシュ間空隙の断面積と同一断面積となる円の直径で示す。
更に又、クリンカーアッシュの大きさについても同様に、クリンカーアッシュの断面積と同一断面積となる円の直径で示す。
【0019】
クリンカーアッシュとして5mm〜15mmの大きさが好ましい。
セメントと共に砂6を加えることもできる。砂は川砂、山砂などが一般的である。セメントとしては、普通セメント、早強セメント、超早強セメント、アルミナセメント、高炉セメント、シリカセメント、フライアッシュセメントなどを指す。
【0020】
【実施例】
以下、本発明の実施例を更に詳細に説明するが本発明はこれらの実施例に限定されるものではない。
【0021】
【実施例1】
通常のコンクリート製品の製造は成形時に混練物の充填不良を発生させないように出来るだけ緻密に充填することが行われている。ところが本発明の多孔質体の製造においては、従来のコンクリート製品とは製造する技術課題が全く異なる。
【0022】
本発明の多孔質体の製造における技術課題は、混練時から硬化時に至る過程において多孔質体が有する細孔をセメントで閉塞させることなく、且つ、所定の強度が得られる程度に多孔質間をセメントで結合することである。
【0023】
その為には、過剰のセメントスラリーを発生させないことである。即ち、クリンカーアッシュ間を接合するセメントスラリーが必要充分な量であって、かつセメントスラリーが硬化体表面へと浸み出さないことである。
【0024】
以下に、本発明の多孔質体の製造方法について、図3に示した製造工程図に基づいて説明する。
火力発電所の第1集塵器から排出するクリンカーアッシュをフルイを通して分級する。
【0025】
使用のクリンカーアッシュの組成は火力発電所で使用される石炭の種類(産地)によって変動する。アルミナ分の最大値は29.9%、最小値は18.0%、平均値は24.9%であった。シリカ分の最大値は67.8%、最小値は52.2%、平均値は58.5%であった。これらクリンカーアッシュを水中に浸漬した場合の水のPHは8.2であった。又、1g当たりの細孔容積は0.15〜0.06立方メートルであった。
【0026】
5〜15mmに分級されたクリンカーアッシュを1000kg秤量し、1000kgのクリンカーアッシュにクリンカーアッシュの含水率の25%に相当する水を加え混合する。所定量の水を含んだクリンカーアッシュを混合機に投入する。
【0027】
一方、砂100〜200kgとセメント280〜320kgを混合し、均一な混合体を得る。この均一混合体を前記クリンカーアッシュを投入した混合機に入れ混合する。
【0028】
次いで30〜100gの水を加え、混練する。
均一に混練された混練物を型枠内に投入し、棒で突っつきながら型枠内に充填する。いわゆるかちこみ成形をする。所定時間後硬化が完了してから離型し、多孔質体を得る。
【0029】
クリンカーアッシュに予め所定量の水を加え、含水させるのは混練時の混練状態の急激な変化を緩和するためとクリンカーアッシュの有する細孔がセメントスラリーで閉塞されることを防止するためである。また、飽和状態まで含水させないのは混練時に過剰なセメントスラリーを発生させないためである。従って、クリンカーアッシュの含水率を50%以下の範囲で含水させておくのが好ましい。
【0030】
混練時の混練物の状態は団子状に握っても湿った混練物が数分割されるか又はばらばらと壊れる状態が良い。この様な混練状態であれば成形の際、クリンカーアッシュ内に含まれている水が浸み出し、成形時にクリンカーアッシュ間を接合するに適したセメントスラリー状態になる。型枠の表面にセメント硬化遅延剤を塗布することは成形体の表面に浸み出したセメントスラリーを硬化させないので好ましい。
【0031】
5〜15mmの大きなクリンカーアッシュを用いているので、クリンカーアッシュ間に5mm以上の空隙が海綿網目状に形成される。
又、クリンカーアッシュの細孔の大部分はセメントによって閉塞されること無く、更に離型後は硬化体としての必要強度を有する。
【0032】
セメントは早強セメントが好ましい。混練物を型枠内に投入し、かちこみ成形し、硬化するまでの間に流動性を有するセメントスラリーがクリンカアッシュ表面を被覆することが防止されるので好ましい。硬化促進剤を加えることはセメントスラリーの流動性が短時間で低下し、セメントスラリーが必要以上にクリンカアッシュ表面を被覆することが防止されるので好ましい、従って、早強セメントと硬化促進剤を併用することが更に好ましい。
【0033】
このことによりクリンカアッシュの細孔の大部分はクリンカーアッシュ間に形成される5mm以上の海綿網目状の空隙と連通される。
セメントと共に砂を加えると強度が増すので好ましい。図4に示す形状の多孔質体の物性は空隙率VC≧20%、圧縮強度σ≧10N/mm、透水係数KC≧1×10−1である。
【0034】
【実施例2】
図4に示す本発明の多孔質体1を河川に10平方メートル(10個)敷設し、本発明の多孔質体1に生物膜を着床させ、20日間経過後河川より取り外し、室内に設置した人工水路の床に設置し、河川より採取した水を循環ポンプで循環し、本発明の多孔質体1による河川水の浄化データを測定した。
【0035】
尚、水の循環経路の途中に水車を設け、水中の溶存酸素が浄化によって消費され減少することに対し、水中に酸素を補給し、極力自然の河川に近い状況にして経過日数ごとに水を採取して、BOD、COD、アンモニウムイオン、燐、窒素、PHのそれぞれの推移について測定した。その結果を表1〜表6及び図5〜図10に示す。
【0036】
【表1】

Figure 0003972282
【0037】
【表2】
Figure 0003972282
【0038】
【表3】
Figure 0003972282
【0039】
【表4】
Figure 0003972282
【0040】
【表5】
Figure 0003972282
【0041】
【表6】
Figure 0003972282
【0042】
図5〜図10に本発明の実施例と共に示した比較例は、本実施例に使用した硬化体7の製造方法において、骨材のクリンカアッシュの代わりに礫を使用した点以外は全て本実施例と同一の条件と方法で作成した比較体を用いて、本実施例と同一の方法で測定した浄化データ結果である。
【0043】
図5はBOD値と経過日数の関係を示す。図6はCOD値と経過日数の関係を示す。図7はアンモニアイオン値と経過日数の関係を示す。
図8は全燐値と経過日数の関係を示す。図9は全窒素値と経過日数の関係を示す。図10はPH値と経過日数の関係を示す。
BODなどの測定はJIS規格に沿って測定した。
【0044】
【発明の効果】
以上説明したように、本発明の河川の水質浄化方法は多数の細孔を有するクリンカーアッシュをセメントで結合させてクリンカーアッシュ間にクリンカーアッシュに存在する細孔よりも大きな空隙を形成した構造の多孔質体を河川に敷設して河川の水を浄化する方法であるから、多孔質体の空隙が通水機能を有し、細孔がバクテリアの着床による水質浄化機能を有するから、溶存酸素に富んだ水が細孔部に絶えず供給され、その結果、水質浄化能力に優れ、単位空間当りの水質浄化効率に優れ、水質浄化能力の永続性に優れていると共に実用に供し得る程度の低コストな水質浄化方法が提供される。
【図面の簡単な説明】
【図1】本発明で用いる多孔質体の切断面を模式的に示した図である。
【図2】(2a)本発明で使用するクリンカーアッシュの局部断面の一例である。(2b)クリンカーアッシュに存在する細孔の孔径を示す図である。
【図3】本発明で用いる多孔質体の製造工程図である。
【図4】上部の断面が台形状の本発明で用いる多孔質体の斜視図を示す。
【図5】本発明で用いる水質浄化用硬化体による河川水の水質浄化データ、BOD値と経過日数の関係を示す。
【図6】COD値と経過日数の関係を示す。
【図7】アンモニアイオン値と経過日数の関係を示す。
【図8】全燐値と経過日数の関係を示す。
【図9】全窒素値と経過日数の関係を示す。
【図10】PH値と経過日数の関係を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water quality of a river in which clinker ash having a large number of pores is bonded to each other with cement and a porous body having a void having a pore diameter larger than the pores of the clinker ash between clinker anches is laid in the river It relates to a purification method.
[0002]
[Prior art]
Conventionally, various porous bodies used for water purification blocks and the like have been proposed. For example, there has been proposed a sintered porous body produced by mixing ceramic particles and a porous material described in JP-A-8-218403, forming and firing at 900 to 1200 ° C. Since such a porous body is made into a porous body by firing, the cost becomes high.
For this reason, using such a porous body as a water purification method for rivers increases the cost and cannot be put into practical use.
[0003]
Japanese Patent Application Laid-Open No. 8-41848 proposes a concrete block having a cavity produced by adding cement to coarse aggregate as a water purification block. However, it cannot be said that the surface area of the pore wall in contact with water is sufficient. Therefore, even if such a concrete block is laid in a river, the water purification capacity per unit area is low and cannot be put to practical use.
[0004]
Furthermore, in Japanese Patent Application Laid-Open No. 8-188482, a porous block structure for water purification is proposed, but Kanumachi or the like is put into a malmerizer to make fine particles, and the malmerizer treatment is repeated several times. A porous block has been proposed in which fine granules are formed into granules, the granules are formed from the raw material, and are fired at 800 to 1400 ° C. This is a production method comprising granule production and a firing step, which also increases the cost.
For this reason, it is a river in terms of cost. It is practically problematic to use it for water purification.
[0005]
On the other hand, direct purification methods such as the contact material filling water channel purification method and the gravel contact oxidation method are expected as water quality purification methods for water areas where pollution due to river sewage is progressing. However, a purification technology that is excellent in purification efficiency and economical enough to be put to practical use has not yet been established.
[0006]
Although attempts have been made to lay down metal mesh bags filled with charcoal or gravel on the riverbed and decompose organic matter by the action of microorganisms, the use of charcoal is expensive and cannot be put into practical use. In addition, the use of gravel has a problem that purification efficiency is poor because the existence of biofilm per unit space is not so large. Research and development of a porous block produced by firing has been attempted as described above, but it is difficult to control the voids by the firing technique and is expensive, and cannot be put to practical use.
[0007]
[Problems to be solved by the invention]
The present invention solves such a problem, and is excellent in water purification efficiency per unit space, water purification capability, and durability of water purification capability, and is extremely economical in water quality that can be practically used. It aims to provide a method.
[0008]
[Means for Solving the Problems]
According to the present invention, porous clinker ash is a larger gap than the pores of the clinker ash between the clinker ash are coupled together by the cement formed in communication with the sponge reticulated having a large number of pores A water quality purification method for a river characterized in that the body is laid on the river.
[0009]
In the present invention, the pore diameter of the clinker ash is preferably 3 mm or less, and the pore diameter between the clinker ash is preferably 5 mm or more. Further, it is preferable that the clinker ash is a particle having a circle equivalent diameter of 5 mm to 15 mm.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described with reference to FIG. FIG. 1 is a diagram schematically showing a cut surface of the porous body 1. Each clinker ash 2 is a hardened body composed of a microstructure in which the clinker ash 2 is bonded to each other with cement 4 to form a space 5 between clinker ash.
[0011]
Each clinker ash 2 has a very large number of pores 3 having a pore diameter of preferably 3 mm or less. And the cement 4 which joins each clinker ash 2 joins each clinker ash to such an extent that the porosity of the clinker ash 2 is not reduced as much as possible and a necessary strength is expressed.
[0012]
Therefore, most of the pores 3 existing in the clinker ash 2 are configured to communicate with the clinker ash interspace 5 having a larger pore diameter than the pores 3. The space 5 between the clinker ash communicates in a spongy mesh shape and is connected to the surface of the porous body 1.
[0013]
It has been found that when such a porous body is laid on a river floor as a cured body for water purification, the water purification effect is remarkably excellent.
A cured body for water purification produced using clinker ash (clinker-like coal ash) generated from the first dust collector of a thermal power plant as a porous body having a chemical composition of 15 to 50 percent alumina and 70 to 30 percent silica is: This effect is particularly remarkable.
[0014]
The water purification function by the porous body 1 of the present invention is mainly due to the oxidation action of the biofilm that has been deposited in countless pores of the clinker ash.
The aerobic biofilm is deposited on the pore wall of the void 5 and the pore wall of the pore 3, respectively. However, since the aerobic biofilm prefers pores having a small pore diameter, it is particularly easy to deposit on the pore wall of the pore 3.
[0015]
Therefore, it has a feature that the surface area of the biofilm per unit volume existing in the porous body 1 is remarkably large. The surface area of the biofilm per unit volume is dominated by the biofilm deposited on the pore walls of the pores 3 existing in the clinker ash. It is presumed that it is mainly performed by aerobic bacteria that have landed on the wall.
[0016]
Furthermore, since the porous interparticle void 5 is a void having a relatively large pore diameter of preferably 5 mm or more, the river water penetrates into the void 5 and the pores 3 relatively easily. As a result, water rich in dissolved oxygen is constantly supplied to the aerobic bacteria implanted in the pores 3, and the water purification ability of the aerobic bacteria is suitably maintained. Therefore, the water purification function of the porous body is remarkably excellent, and the purification ability is maintained for a long time. .
[0017]
FIG. 2 (2a) is an example of a local cross section of the clinker ash, and the pore diameter of the pores 3 existing in the clinker ash 2 is the same as the cross sectional area of the pores as shown in FIG. 2 (2b). It is indicated by a circle diameter D (equivalent circle diameter).
[0018]
The pore diameter of the clinker ash gap surrounded by the clinker ash group and the cement is also indicated by the diameter of a circle having the same cross-sectional area as that of the clinker ash gap.
Furthermore, the size of the clinker ash is also indicated by the diameter of a circle having the same cross-sectional area as that of the clinker ash.
[0019]
The size of clinker ash is preferably 5 mm to 15 mm.
Sand 6 can also be added with cement. The sand is generally river sand or mountain sand. Examples of the cement include ordinary cement, early-strength cement, ultra-early-strength cement, alumina cement, blast furnace cement, silica cement, fly ash cement and the like.
[0020]
【Example】
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
[0021]
[Example 1]
In the production of ordinary concrete products, filling is carried out as densely as possible so as not to cause poor filling of the kneaded material during molding. However, in the production of the porous body of the present invention, the technical problem to be produced is completely different from the conventional concrete product.
[0022]
The technical problem in the production of the porous body of the present invention is that the pores of the porous body are not clogged with cement in the process from kneading to curing, and between the porous bodies so that a predetermined strength can be obtained. Bonding with cement.
[0023]
For that purpose, an excessive cement slurry is not generated. That is, the cement slurry for joining the clinker ash is a necessary and sufficient amount, and the cement slurry does not ooze out to the surface of the cured body.
[0024]
Below, the manufacturing method of the porous body of this invention is demonstrated based on the manufacturing-process figure shown in FIG.
The clinker ash discharged from the first dust collector of the thermal power plant is classified through a sieve.
[0025]
The composition of the clinker ash used varies depending on the type of coal used in the thermal power plant. The maximum value of the alumina content was 29.9%, the minimum value was 18.0%, and the average value was 24.9%. The maximum value of silica content was 67.8%, the minimum value was 52.2%, and the average value was 58.5%. The pH of water when these clinker ash was immersed in water was 8.2. The pore volume per gram was 0.15 to 0.06 cubic meters.
[0026]
1000 kg of clinker ash classified to 5 to 15 mm is weighed, and water corresponding to 25% of the moisture content of clinker ash is added to 1000 kg of clinker ash and mixed. A clinker ash containing a predetermined amount of water is charged into the mixer.
[0027]
On the other hand, 100 to 200 kg of sand and 280 to 320 kg of cement are mixed to obtain a uniform mixture. This homogeneous mixture is placed in a mixer charged with the clinker ash and mixed.
[0028]
Next, 30 to 100 g of water is added and kneaded.
The kneaded material kneaded uniformly is put into the mold, and filled into the mold while striking with a stick. So-called squeeze molding. After curing for a predetermined time, the mold is released to obtain a porous body.
[0029]
The reason why a predetermined amount of water is added to the clinker ash in advance to contain water is to mitigate sudden changes in the kneading state during kneading and to prevent the pores of the clinker ash from being clogged with cement slurry. Further, the reason why water is not contained until the saturated state is that excessive cement slurry is not generated during kneading. Therefore, it is preferable to keep the water content of the clinker ash in the range of 50% or less.
[0030]
The state of the kneaded product at the time of kneading is preferably a state in which the wet kneaded product is divided into several parts or broken apart even when gripped in a dumpling shape. In such a kneaded state, water contained in the clinker ash oozes out during molding, and a cement slurry state suitable for joining the clinker ash during molding is obtained. It is preferable to apply a cement curing retarder to the surface of the mold because the cement slurry that has leached out to the surface of the molded body is not cured.
[0031]
Since a large clinker ash having a size of 5 to 15 mm is used, a gap of 5 mm or more is formed in a sponge mesh shape between the clinker ash.
Further, most of the pores of the clinker ash are not clogged with cement, and further have a necessary strength as a cured product after release.
[0032]
The cement is preferably an early strong cement. Since the kneaded product is put into a mold, formed into a mold, and cemented with fluidity before it is cured, the clinker ash surface is prevented from being coated, which is preferable. It is preferable to add a hardening accelerator because the fluidity of the cement slurry is reduced in a short time and the cement slurry is prevented from covering the clinker ash surface more than necessary. More preferably.
[0033]
As a result, most of the pores of the clinker ash are communicated with a 5 mm or more spongy mesh-like void formed between the clinker ash.
It is preferable to add sand together with cement because the strength increases. The physical properties of the porous body having the shape shown in FIG. 4 are porosity VC ≧ 20%, compressive strength σ ≧ 10 N / mm 2 , and water permeability KC ≧ 1 × 10 −1 .
[0034]
[Example 2]
The porous body 1 of the present invention shown in FIG. 4 was laid on a river by 10 square meters (10 pieces), a biofilm was deposited on the porous body 1 of the present invention, removed from the river after 20 days, and installed indoors. It was installed on the floor of an artificial channel, and water collected from the river was circulated with a circulation pump, and the purification data of the river water by the porous body 1 of the present invention was measured.
[0035]
In addition, a water wheel is installed in the middle of the water circulation path, and dissolved oxygen in the water is consumed and reduced by purification. It collected and measured about each transition of BOD, COD, ammonium ion, phosphorus, nitrogen, and PH. The results are shown in Tables 1 to 6 and FIGS.
[0036]
[Table 1]
Figure 0003972282
[0037]
[Table 2]
Figure 0003972282
[0038]
[Table 3]
Figure 0003972282
[0039]
[Table 4]
Figure 0003972282
[0040]
[Table 5]
Figure 0003972282
[0041]
[Table 6]
Figure 0003972282
[0042]
The comparative examples shown together with the examples of the present invention in FIGS. 5 to 10 are all the same except that gravel is used instead of the aggregate clinker ash in the manufacturing method of the cured body 7 used in the present example. It is the purification | cleaning data result measured by the method same as a present Example using the comparison body created on the same conditions and methods as an example.
[0043]
FIG. 5 shows the relationship between the BOD value and the elapsed days. FIG. 6 shows the relationship between the COD value and the elapsed days. FIG. 7 shows the relationship between the ammonia ion value and the number of days elapsed.
FIG. 8 shows the relationship between the total phosphorus value and the elapsed days. FIG. 9 shows the relationship between the total nitrogen value and the elapsed days. FIG. 10 shows the relationship between the PH value and the elapsed days.
BOD and the like were measured according to JIS standards.
[0044]
【The invention's effect】
As described above, the river water purification method of the present invention is a porous structure having a structure in which clinker ash having a large number of pores is bonded with cement to form voids larger than pores existing in the clinker ash between the clinker ash. This is a method of purifying the river water by laying the material in the river, so the voids in the porous body have a water passing function, and the pores have the water purification function by the implantation of bacteria. Rich water is constantly supplied to the pores. As a result, the water purification capacity is excellent, the water purification efficiency per unit space is excellent, the water purification capacity is durable, and the cost is low enough for practical use. Water purification methods are provided.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a cut surface of a porous body used in the present invention.
FIG. 2 (2a) is an example of a local cross section of a clinker ash used in the present invention. (2b) It is a figure which shows the hole diameter of the pore which exists in clinker ash.
FIG. 3 is a production process diagram of a porous body used in the present invention.
FIG. 4 is a perspective view of a porous body used in the present invention having a trapezoidal cross section at the top.
FIG. 5 shows the relationship between water quality purification data, BOD value, and elapsed days of river water by the water purification body used in the present invention.
FIG. 6 shows the relationship between the COD value and the elapsed days.
FIG. 7 shows the relationship between ammonia ion value and elapsed days.
FIG. 8 shows the relationship between total phosphorus value and elapsed days.
FIG. 9 shows the relationship between the total nitrogen value and the elapsed days.
FIG. 10 shows the relationship between PH value and elapsed days.

Claims (3)

多数の細孔を有するクリンカーアッシュがセメントで互いに結合されて該クリンカーアッシュ間に該クリンカーアッシュの細孔よりも大きな空隙を海綿網目状に連通して形成してなる多孔質体を河川に敷設することを特徴とする河川の水質浄化方法。 A clinker ash having a large number of pores is bonded to each other with cement, and a porous body is formed in the river by forming a void larger than the pores of the clinker ash between the clinker ash in a spongy mesh shape. A method for purifying water quality of rivers. 該クリンカーアッシュの細孔の孔径が3mm以下であって、該クリンカーアッシュ間の空隙の孔径が5mm以上であることを特徴とする請求項1に記載の河川の水質浄化方法 The water quality purification method for a river according to claim 1, wherein the pore diameter of the pores of the clinker ash is 3 mm or less, and the pore diameter of the gap between the clinker ash is 5 mm or more. 該クリンカーアッシュが円相当直径で5mm〜15mmの大きさの粒子であることを特徴とする請求項1に記載の河川の水質浄化方法The method for purifying water quality of a river according to claim 1, wherein the clinker ash is particles having a circle equivalent diameter of 5 mm to 15 mm.
JP2000204392A 1999-06-21 2000-06-01 Water purification method for rivers using porous material with aggregate of clinker ash Expired - Fee Related JP3972282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000204392A JP3972282B2 (en) 1999-06-21 2000-06-01 Water purification method for rivers using porous material with aggregate of clinker ash

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-212603 1999-06-21
JP21260399 1999-06-21
JP2000204392A JP3972282B2 (en) 1999-06-21 2000-06-01 Water purification method for rivers using porous material with aggregate of clinker ash

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005270946A Division JP2006057449A (en) 1999-06-21 2005-08-22 Riverbed block for purifying water quality in rivers

Publications (2)

Publication Number Publication Date
JP2001064083A JP2001064083A (en) 2001-03-13
JP3972282B2 true JP3972282B2 (en) 2007-09-05

Family

ID=26519321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000204392A Expired - Fee Related JP3972282B2 (en) 1999-06-21 2000-06-01 Water purification method for rivers using porous material with aggregate of clinker ash

Country Status (1)

Country Link
JP (1) JP3972282B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856610B2 (en) * 2007-10-16 2012-01-18 株式会社アオヤマエコシステム Method for producing molded article for water purification
JP6867643B2 (en) * 2017-03-24 2021-05-12 東北環境開発株式会社 Porous concrete using zeolite

Also Published As

Publication number Publication date
JP2001064083A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
CN108774041B (en) Water permeable brick using artificial carbonized steel slag balls as aggregate and preparation method thereof
CN107445556B (en) Granite waste stone powder ceramsite pervious concrete and preparation method thereof
CN106044919B (en) A kind of method of ammonia nitrogen removal frank in raising river water
CN108821698A (en) A kind of pervious concrete preformed bricks and preparation method thereof
CN107902987A (en) Decontamination pervious concrete and preparation method
CN111039620B (en) Nitrogen and phosphorus removal ecological permeable material and preparation method thereof
CN109650792A (en) A kind of the parian brick and preparation method of building waste preparation
JP3972282B2 (en) Water purification method for rivers using porous material with aggregate of clinker ash
CN106904903A (en) A kind of gradient type porous concrete product and preparation method thereof
CN103028366B (en) Method for preparing composite absorbing filter material
CN100509329C (en) Pebble-imitated ecological concrete precast member and preparation method thereof
JP2006057449A (en) Riverbed block for purifying water quality in rivers
CN112897915B (en) Preparation method of high-alumina fly ash chloride ion combined ceramic sand with core-shell structure
Bao et al. Performance and characterization of a non-sintered zeolite porous filter for the simultaneous removal of nitrogen and phosphorus in a biological aerated filter (BAF)
JP2001270767A (en) Charcoal-containing concrete block and method for manufacturing the same
CN108892440A (en) A kind of pervious concrete and preparation method thereof using the preparation of ceramic polished powder
CN1238275C (en) Filter material having phosphor adsorbing and biological membrane function and its preparing method
JP3779397B2 (en) Manufacturing method of composite porous block
EP0479411A2 (en) Block molded of coal ash for civil engineering and construction works
CN112266267A (en) Light recycled aggregate pervious concrete and preparation method thereof
CN111302734A (en) Protective building material for farmland ditches and preparation method thereof
JP2002128560A (en) Water-absorbing molded form and its manufacturing method
CN214653946U (en) Artificial rapid infiltration water purifying device
CN109678466A (en) A kind of preparation method of copper tailing sintering brick permeable to water
JP4196198B2 (en) Breeding reef / algae reef block made of a porous molded body of cement hydrate containing ceramic charcoal and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees