JP3971951B2 - Conductive elastic composition - Google Patents

Conductive elastic composition Download PDF

Info

Publication number
JP3971951B2
JP3971951B2 JP2002125901A JP2002125901A JP3971951B2 JP 3971951 B2 JP3971951 B2 JP 3971951B2 JP 2002125901 A JP2002125901 A JP 2002125901A JP 2002125901 A JP2002125901 A JP 2002125901A JP 3971951 B2 JP3971951 B2 JP 3971951B2
Authority
JP
Japan
Prior art keywords
styrene
conductive material
polymer
sample
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002125901A
Other languages
Japanese (ja)
Other versions
JP2003324036A (en
Inventor
史郎 田波
紀江 風岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinugawa Rubber Industrial Co Ltd
Original Assignee
Kinugawa Rubber Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinugawa Rubber Industrial Co Ltd filed Critical Kinugawa Rubber Industrial Co Ltd
Priority to JP2002125901A priority Critical patent/JP3971951B2/en
Publication of JP2003324036A publication Critical patent/JP2003324036A/en
Application granted granted Critical
Publication of JP3971951B2 publication Critical patent/JP3971951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive, elastic composition which holds sufficiently a resistance to solvents, a film formability, and a burrier property, by which an energy-accumulating component of such as electric double-layer capacitor can be downsized, is given a large capacitor, and is endowed with high reliability. <P>SOLUTION: A conductive material consisting of a styrene elastomer (block copolymer of styrene-etylene) and carbon is used for making the elastic material. The styrene elastomer has block structure of styrene-etylene-propylene-styrene and its molecular weight is 100,000-300,000. A polysiloxane of 0.5-2.0 pts.wt. (preferably 0.5-1.0 pts.wt.) containing carboxyl is used as an additive of the conductive material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、導電性を有する弾性体組成物に関するものであり、例えば電解液を用いた電気二重層キャパシタの集電体に用いられるものである。
【0002】
【従来の技術】
石油危機以降、省エネルギー・クリーン活動等の環境性・カイロ会議によりエネルギー枯渇問題等が提起され、エネルギー蓄積部品として例えばキャパシタ等の開発が行われてきた。このキャパシタの中で、一般的なアルミニウム電解キャパシタは電気容量が100μF/cm2程度であるが、希釈溶液中で電気層を構成する電気二重層キャパシタは電気容量が1000μF/cm2〜10000μF/cm2程度であり、実用性の高いエネルギー蓄積部品として注目されている。
【0003】
前記の電気二重層キャパシタは、硫酸等の電解液(水系の電解質)を用いたものと有機系の電解質を用いたものとに分類される。電解液を用いた電気二重層キャパシタは、有機系の電解質を用いたものと比較して耐電圧が若干低いが、内部抵抗が小さく比較的安価である特徴を有する。
【0004】
前記の電解液を用いた電気二重層キャパシタは、例えば図4の概略説明図に示すように、絶縁性の枠体41aの内周側にセパレータ41bが設けられたガスケット41を2つの集電体42a,42bにより挟持し、前記セパレータ41bと集電体42a,42bとの間に硫酸等の電解液43を充填した単セル40によって構成され、使用目的に応じて前記単セル40を複数個組み合わせ積層して用いられる。
【0005】
前記の集電体には、例えばポリエステル等のポリマー(重合体)を主成分とした導電性材料を薄膜化して成る弾性体組成物が用いられている。この弾性体組成物の表面(電解液と接触する側の面)においては、活性炭と溶剤との混合溶液(以下、活性炭溶液と称する)を塗布して表面処理することにより、その表面積を大きくして電気容量を大きくする方法が採られている。なお、前記の活性炭溶液においては、活性炭がカルボン酸,アミン等の遊離イオン性官能基を多く含んでいることを考慮して、ジメチルホルムアミド,N−メチルピロリドン,ジメチルスルホキシド等のSP値の高い溶剤が用いられている。
【0006】
前記のように構成された電気二重層キャパシタは、さらなる小型化,大容量化,高信頼性化が求められ、集電体において以下に示す項目(1)〜(7)の特性が要求されている。
【0007】
(1)抵抗値を低減すること(導電性;例えば、体積固有抵抗値が1Ω・cm以下)
(2)電解液に侵食されないこと(耐侵食性;例えば、濃度50%の硫酸に対して5000時間物性変化が無いこと)
(3)所定の強度を持たせること(弾力性;例えば、十分な伸縮性を有し破裂しないこと)
(4)ガスケットの枠体に対して熱圧着,熱融着できること(ヒートシール性)
(5)活性炭溶液を塗布できること(耐溶剤性;活性炭溶液により集電体が膨潤,溶解しないこと)
(6)薄膜化すること(成膜性;例えば、厚さ100μm以下の薄膜で罅割れ等が無いこと)
(7)電解液の漏れを防止すること(バリア性;集電体を介して滲み出ないこと)
前記の(1)の特性を得るための方法として、多量の導電性付与材を用いて集電体を形成する方法が考えられるが、前記の(2)の電解液に対して耐侵食性を有する導電性付与材を用いる必要があり、一般的にはカーボンが高充填された導電性材料を用いられている。
【0008】
前記の(2)の特性においては、ポリマーの極性が大きいと集電体が電解液によって化学分解され易くなるため、極性の低いポリマー、例えばスチレン基の量が少ない又はスチレン基の無いオレフィン系樹脂等のポリマーを用いる方法が採られている。このオレフィン系樹脂はガスケットの枠体として広く一般的に用いられていることから、その枠体と集電体との化学的相溶性により前記の(4)の特性を得ることができる。
【0009】
また、前記の(3)の特性を得るために、導電性材料の主成分として分子量の大きいポリマーが用いられている。
【0010】
【発明が解決しようとする課題】
しかしながら、前記のカーボンが高充填された導電性材料や分子量の大きいポリマーを用いた導電性材料は、高粘度で加工性が悪いため、一般的な薄膜の製造方法であるインフレーション法では前記の項目(6)に示すような薄膜の弾性体組成物を形成することが困難となり、成膜性が低くなってしまう問題がある。
【0011】
このような導電性材料に溶剤を加えて粘度を低減し、表面が平滑な金属体上に対してフィルム状に流延し乾燥することにより薄膜を形成する方法(流延法;特開平9−237519号公報における溶液流延法,特開平10−4034号公報における溶液成膜法)等が知られているが、前記の項目(2),(4)の特性を付与するオレフィン系樹脂(特に、スチレン基の少ない(またはスチレン基の無い)オレフィン系樹脂)は溶剤に溶解し難い問題がある。
【0012】
また、前記の加工性を確保するために分子量の低いポリマーを用いた場合には、そのポリマーの分子間物理架橋が少なくなってしまうため、前記表面処理用の活性炭溶液(SP値の高い溶剤)によって集電体が膨潤や溶解する恐れがあり、前記の項目(5)に示す特性が得られなくなってしまう。さらに、前記の項目(6)に示すように集電体の膜厚を薄くすると、その集電体のバリア性の低下により前記の項目(7)に示す特性が得られなくなってしまう。
【0013】
本発明は前記課題に基づいてなされたものであり、ガスケットに対するシール性,弾力性を有するポリマーと導電性,耐侵食性を付与するカーボンとから成る導電性材料を用い、集電体において十分な耐溶剤性,成膜性,バリア性を確保し、電気二重層キャパシタ等のエネルギー蓄積部品の小型化,大容量化,高信頼性化を図ることが可能な導電性を有する弾性体組成物を提供することにある。
【0014】
【課題を解決するための手段】
本発明は前記の課題の解決を図るものであり、請求項1に記載の発明においては、少なくともポリマーとカーボンとを含んだ導電性材料から成り、電気二重層キャパシタの集電体に用いられる導電性を有する弾性体組成物であって、前記ポリマーは、ブロック構造がスチレン−エチレン−エチレン−プロピレン−スチレンであって、かつ、分子量が10万〜30万の範囲内のスチレン系エラストマーであることを特徴とする。
【0015】
請求項2に記載の発明における導電性材料は、ポリマー100重量部に対し、カルボキシル基を含んだポリシロキサンが0.5重量部〜1.0重量部の範囲内で添加されたことを特徴とする。
【0018】
一般的な電気二重層キャパシタ等に用いられている弾性体組成物のように、ポリマーとしてスチレン系エラストマー以外のものを用いた場合、ガスケット材とのシール性や活性炭溶液に対する耐溶剤性が悪くなってしまう。また、前記スチレン系エラストマーのブロック構造がスチレン−エチレン−ブチレン−スチレン構造である場合、十分な耐溶剤性が得られない。
【0019】
一方、本発明によれば、たとえ100μm以下の薄膜であっても、それぞれ良好な耐侵食性,ガスケットの枠体に対するシール性,弾力性,耐溶剤性,成膜性,バリア性を確保することができ、電気二重層キャパシタ等のエネルギー蓄積部品の小型化,大容量化,高信頼性化を図ることが可能になる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態における導電性を有する弾性体組成物を図面等に基づいて詳細に説明する。
【0021】
本実施の形態は、例えば硫酸を主成分とする電解液を用いた電気二重層キャパシタの集電体に関するものであり、少なくともスチレン基を有するスチレン系エラストマー(スチレン−エチレンのブロック共重合体)とカーボンとから成る導電性材料を用いる。前記スチレン系エラストマーとしては、ブロック構造がスチレン−エチレン−エチレン−プロピレン−スチレン(以下、S−E−E−P−S構造と称する)で、分子量が10万〜30万のものを用いる。また、集電体のバリア性を高めるため、前記導電性材料に対し添加剤としてカルボキシル基を含むポリシロキサンを用いる。
【0022】
前記のように、ポリマーとしてS−E−E−P−S構造のスチレン系エラストマーを用いることにより、硫酸等の電解液に対する耐侵食性が得られ、ガスケットの枠体に対するシール性を確保することができると共に、例えば特開平10−4034号公報に示すようにブロック構造がスチレン−エチレン−ブチレン−スチレン(以下、S−E−B−S構造と称する)やランダムブタジエンスチレンゴム(以下、ランダムSBRと称する)構造のポリマーを用いた集電体と比較して、活性炭溶液に対する耐溶剤性を良好にすることができる。
【0023】
また、前記のスチレン系エラストマーとして分子量が10万〜30万の範囲内のものを用いることにより、たとえ100μm以下の薄膜であっても、耐溶剤性と共に十分な成膜性が得られる。さらに、導電性材料に対しカルボキシル基を含むポリシロキサンを添加剤として用いることにより、集電体において良好なバリア性を得ることができる。この添加剤においては、0.5重量部〜1.0重量部の範囲内で用いることが好ましい
【0024】
次に、本実施の形態における導電性を有する弾性体組成物の実施例を詳細に説明する。本実施例では、下記表1に示す種々のブロック構造,分子量,スチレン量のポリマー(後述するポリマーP1〜P15),種々の添加剤(後述する添加剤A1〜A3)およびカーボンを用いて導電性材料(後述する導電性材料M1〜M21)をそれぞれ得、それら導電性材料を用いて作製した種々の集電体の試料において以下に示す方法で成形性,導電性(体積固有抵抗値),弾力性(破断強度,伸び率),耐溶剤性,シール性,バリア性をそれぞれ調べた。
【0025】
【表1】

Figure 0003971951
【0026】
まず、容積500mlのビーカー内に前記のポリマー(ポリマーP1〜P15)を所定量投入すると共に、そのポリマーの量の約3倍に相当する容量のトルエンを投入してから、約60℃に加温しながら約1時間攪拌することにより樹脂ワニスをそれぞれ得た。そして、前記の各樹脂ワニスに前記の添加剤,カーボンを所定量添加し攪拌して混合物を得、その混合物の粘度が約5000CPSとなるように溶剤(ミネラルスピリット)を加えながらインクミル(3本ロール)で分散および攪拌することにより、導電性材料M1〜M21をそれぞれ作製した。これら各導電性材料M1〜M21におけるポリマー,添加剤,カーボンの配合割合および合計重量部は下記表2,3に示す。
【0027】
【表2】
Figure 0003971951
【0028】
【表3】
Figure 0003971951
【0029】
その後、図1A,Bのメイヤーバーコート法の概略説明図に示すように、アクリル板1の一端面側に対して略矩形状で厚さ100μmのポリエチレンテレフタレートから成る薄膜(以下、PET薄膜と称する)2を載置し、そのPET薄膜2上に対して前記の導電性材料M1〜M21を各々滴下し、ガラス棒3を使用(例えば、図1Aの矢印方向に掃引)して流延することにより、前記PET薄膜2表面を導電性材料で被覆した後、循環オーブン(温度100℃)により乾燥(10分間)し硬化させて薄膜(厚さ100μm以下)の集電体の試料4をそれぞれ作製した。
【0030】
なお、前記試料4に用いるポリマーがスチレン系エラストマー、またはポリオレフィン系以外である場合には、その試料4をPET薄膜2から剥離し易くする必要があるため、図1Bに示すように前記PET薄膜2の外周部付近に対して例えば厚さ約150μmのセロテープ(NICHIBAN社の登録商標)5をスペーサとして被着する、または前記PET薄膜2表面を予め離形処理してから、図1Aに示すように試料4を作製することが好ましい。
【0031】
[成膜性]
前記のように作製した試料4表面における罅割れ等の有無を観察した後、その試料4と共にPET薄膜2をアクリル板1から剥離して折曲し、その折曲した部分の試料4における罅割れ等の有無を観察した。また、前記PET薄膜2から試料4を剥離した際に、その試料4の伸縮,破断,反り(例えば、反りが生じ、シール性試験等において取り扱いが困難になる状態)等の有無を観察した。
【0032】
[導電性]
前記の剥離した試料4において、SRIS(日本ゴム協会基準)2301に準拠して体積固有抵抗値を測定した。
【0033】
[弾力性]
前記試料4において、JIS−K7127(プラスチックフィルムの試験方法)に準拠して破断強度を測定すると共に、その破断した際の伸び率を測定した。
【0034】
[耐溶剤性]
ジメチルホルムアミドおよびN−メチルピロリドンから成る溶剤が30ml充填されたデスカップ内に前記試料4を投入し、温度125℃に保ちながら30分間攪拌した後、その試料4の劣化度合い観察した。
【0035】
[シール性]
図2の概略説明図に示すように、低融点ポリエチレンから成る略矩形状のガスケット部材6の両端面に対して、前記試料4を裁断して得た約20mm×50mmの略矩形状のフィルム7a,7bを圧着機8により圧着すると共に温度200℃で5秒間加熱し、所定時間放置してから前記ガスケット部材6とフィルム7a,7bとの密着度合いを観察した。
【0036】
[バリア性]
図3の概略説明図に示すように、約40gの水が充填された直径約120mmのシャーレ9の開口部を、前記試料4を裁断して得た約150mm×150mmの略矩形状のフィルム10で被覆およびセロテープ5で封止し、そのシャーレ9をオーブンにより温度100℃で60分間加熱してから室温下にて10分間放置し、前記オーブンによる加熱前および加熱後の前記シャーレ9の重量減少率を測定した。
【0037】
前記の各導電性材料M1〜M21を用いた場合における試料の成形性,導電性,弾力性,耐溶剤性,シール性,バリア性の結果を下記表4,5に示す。なお、下記の成膜性の欄では、試料において罅割れや伸縮,破断,反り等が多少観察された場合を記号「△」で示し、まったく観察されなかった場合を記号「○」で示した。耐溶剤性の欄では、試料表面において粗くなる等の劣化が観察された場合を記号「×」で示し、多少観察された場合を記号「△」で示し、まったく観察されなかった場合を記号「○」で示した。シール性の欄では、ガスケット部材とフィルムとが溶着しなかった場合(基材剥離のレベル)を記号「×」で示し、溶着した場合を記号「○」で示した。
【0038】
【表4】
Figure 0003971951
【0039】
【表5】
Figure 0003971951
【0040】
前記の表4に示すように、スチレン系エラストマー以外のポリマーから成る導電性材料M1〜M5を用いた試料の場合は、その成膜性は良好であったが十分な導電性,弾力性が得られず、耐溶剤性、シール性が極めて低くバリア性を測定することができなかった。
【0041】
ブロック構造がランダムSBR構造のスチレン系エラストマーから成る導電性材料M6を用いた試料の場合は、その導電性,シール性は良好であったが、十分な成膜性,弾力性,耐溶剤性が得られなかった。
【0042】
ブロック構造がS−E−B−S構造のスチレン系エラストマーから成る導電性材料M7〜M10を用いた試料の場合は、その成膜性,導電性,シール性は良好であったが、十分な弾力性,耐溶剤性が得られなかった。
【0043】
また、前記の表5に示すように、ブロック構造がS−E−E−P−S構造のスチレン系エラストマーから成る各導電性材料M11〜M21のうち、比較的分子量の大きいスチレン系エラストマーから成る導電性材料M11,M12を用いた試料の場合は、その導電性,弾力性,耐溶剤性,シール性は良好であったが、十分な成膜性,バリア性が得られなかった。比較的分子量の小さいスチレン系エラストマーから成る導電性材料M15を用いた試料の場合は、その成膜性,導電性,弾力性,シール性,バリア性は良好であったが、十分な耐溶剤性が得られなかった。
【0044】
一方、前記の各導電性材料M11〜M21のうち、分子量が15万のスチレン系エラストマーから成る導電性材料M13,M14を用いた試料の場合は、成形性,導電性,弾力性,耐溶剤性,シール性,バリア性の全てにおいて良好な結果が得られた。また、添加剤を含んだ導電性材料M16〜M21を用いた試料においても、成形性,導電性,弾力性,耐溶剤性,シール性,バリア性の全てにおいて良好な結果が得られたが、特に添加剤としてジメチルメチルカルボキシポリシロキサンが0.5重量部〜1.0重量部充填された導電性材料M18,M20から成る試料の場合は、比較的良好なバリア性が得られた。
【0045】
なお、前記の導電性材料のポリマーとして用いたスチレン系エラストマーにおいて、ブロック構造がS−E−E−P−S構造で分子量が10万〜30万の範囲内であれば、その導電性材料から成る弾性体組成物は成形性,導電性,弾力性,耐溶剤性,シール性,バリア性の全てが良好であることを確認できた。
【0046】
また、前記のようにブロック構造がS−E−E−P−S構造で、分子量が10万〜30万の範囲内であるスチレン系エラストマーを用いた導電性材料において、添加剤としてカルボキシル基を含んだポリシロキサンを0.5重量部〜1.0重量部範囲内で用いることにより、その弾性体組成物のバリア性を極めて良好にできることが確認できた。
【0047】
以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。
【0048】
例えば、導電性材料に対して、カルボキシル基を含んだポリシロキサンを添加すると共に、一般的な電気二重層キャパシタ等に用いられている添加剤を添加した場合においても、本発明と同様の作用効果が得られる。
【0049】
【発明の効果】
以上示したように本発明によれば、100μm以下の薄膜であっても、成膜性が良好で硫酸等の電解液に対する耐侵食性が得られ、ガスケットの枠体に対するシール性を確保することができると共に、活性炭溶液に対する耐溶剤性を良好にすることができる。また、カルボキシル基を含むポリシロキサンを添加剤として用いることにより、良好なバリア性が得られる。
【0050】
ゆえに、電気二重層キャパシタ等のエネルギー蓄積部品の小型化,大容量化,高信頼性化を図ることが可能となる。
【図面の簡単な説明】
【図1】本実施例における試料の製造方法を示す概略説明図。
【図2】本実施例におけるシール性の測定方法を示す概略説明図。
【図3】本実施例におけるバリア性の測定方法を示す概略説明図。
【図4】一般的な電気二重層キャパシタの概略説明図。
【符号の説明】
1…アクリル板
2…PET膜
3…ガラス棒
4…試料
6…ガスケット部材
7a,7b,10…フィルム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive elastic composition, and is used, for example, as a current collector of an electric double layer capacitor using an electrolytic solution.
[0002]
[Prior art]
Since the oil crisis, energy conservation issues such as energy conservation and clean activities, and the issue of energy depletion have been raised by the Cairo Conference, and for example, capacitors have been developed as energy storage components. Among these capacitors, a general aluminum electrolytic capacitor has an electric capacity of about 100 μF / cm 2 , but an electric double layer capacitor constituting an electric layer in a diluted solution has an electric capacity of 1000 μF / cm 2 to 10,000 μF / cm 2. It is about 2 and is attracting attention as a highly practical energy storage component.
[0003]
The electric double layer capacitors are classified into those using an electrolytic solution (aqueous electrolyte) such as sulfuric acid and those using an organic electrolyte. An electric double layer capacitor using an electrolytic solution has a characteristic that the withstand voltage is slightly lower than that using an organic electrolyte, but the internal resistance is small and relatively inexpensive.
[0004]
For example, as shown in the schematic explanatory diagram of FIG. 4, the electric double layer capacitor using the electrolytic solution has a gasket 41 in which a separator 41 b is provided on the inner peripheral side of an insulating frame 41 a. 42a and 42b are sandwiched between the separator 41b and the current collectors 42a and 42b, and a single cell 40 is filled with an electrolytic solution 43 such as sulfuric acid. Depending on the intended use, a plurality of the single cells 40 are combined. Used in layers.
[0005]
For the current collector, for example, an elastic composition formed by thinning a conductive material whose main component is a polymer (polymer) such as polyester is used. On the surface of the elastic composition (surface on the side in contact with the electrolyte), the surface area is increased by applying a surface treatment by applying a mixed solution of activated carbon and a solvent (hereinafter referred to as activated carbon solution). Therefore, a method of increasing the electric capacity is employed. In the activated carbon solution, a solvent having a high SP value such as dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide, etc., considering that the activated carbon contains many free ionic functional groups such as carboxylic acid and amine. Is used.
[0006]
The electric double layer capacitor configured as described above requires further miniaturization, larger capacity, and higher reliability, and the current collectors are required to have the characteristics of items (1) to (7) shown below. Yes.
[0007]
(1) Reducing the resistance value (conductivity; for example, the volume resistivity value is 1 Ω · cm or less)
(2) No erosion by the electrolyte (corrosion resistance; for example, no change in physical properties for 5000 hours with 50% sulfuric acid)
(3) Giving a predetermined strength (elasticity; for example, having sufficient elasticity and not bursting)
(4) Capable of thermocompression bonding and heat fusion to the gasket frame (heat sealability)
(5) Capable of applying activated carbon solution (solvent resistance; current collector is not swollen or dissolved by activated carbon solution)
(6) Making a thin film (film formability; for example, a thin film having a thickness of 100 μm or less and no cracks)
(7) Prevent leakage of electrolyte (barrier property; must not ooze through current collector)
As a method for obtaining the characteristic (1), a method of forming a current collector using a large amount of a conductivity-imparting material is conceivable. However, it has erosion resistance against the electrolytic solution (2). It is necessary to use a conductivity-imparting material, and generally a conductive material highly filled with carbon is used.
[0008]
In the characteristic (2), since the current collector is likely to be chemically decomposed by the electrolytic solution when the polymer has a large polarity, a polymer having a low polarity, for example, an olefin resin having a small amount of styrene groups or no styrene groups. A method using a polymer such as Since this olefin resin is widely used as a gasket frame, the characteristic (4) can be obtained by chemical compatibility between the frame and the current collector.
[0009]
In order to obtain the characteristic (3), a polymer having a large molecular weight is used as the main component of the conductive material.
[0010]
[Problems to be solved by the invention]
However, since the conductive material filled with carbon and the conductive material using a polymer having a large molecular weight have high viscosity and poor workability, the above-mentioned items are not obtained in the inflation method which is a general thin film manufacturing method. It is difficult to form a thin-film elastic composition as shown in (6), and there is a problem that film formability is lowered.
[0011]
A method of forming a thin film by adding a solvent to such a conductive material to reduce the viscosity, casting it into a film on a smooth metal body and drying it (casting method; Known as a solution casting method in Japanese Patent No. 237519, a solution film forming method in Japanese Patent Laid-Open No. 10-4034, and the like. The olefin resin having a small number of styrene groups (or no styrene group) is difficult to dissolve in a solvent.
[0012]
Further, when a polymer having a low molecular weight is used in order to ensure the processability, the intermolecular physical crosslinking of the polymer is reduced, so that the activated carbon solution for surface treatment (a solvent having a high SP value). As a result, the current collector may swell or dissolve, and the characteristics shown in the item (5) cannot be obtained. Further, if the current collector is made thin as shown in the item (6), the characteristics shown in the item (7) cannot be obtained due to a decrease in the barrier property of the current collector.
[0013]
The present invention has been made on the basis of the above-mentioned problems, and uses a conductive material composed of a polymer having a sealing property and elasticity for a gasket and carbon imparting conductivity and erosion resistance. An electrically conductive elastic composition that ensures solvent resistance, film-forming properties, and barrier properties, and can reduce the size, capacity, and reliability of energy storage components such as electric double layer capacitors. It is to provide.
[0014]
[Means for Solving the Problems]
The present invention is intended to solve the above-mentioned problems, and in the invention according to claim 1, the conductive material is made of a conductive material containing at least a polymer and carbon, and is used for a current collector of an electric double layer capacitor. The polymer is a styrene-based elastomer having a block structure of styrene-ethylene-ethylene-propylene-styrene and a molecular weight in the range of 100,000 to 300,000. It is characterized by.
[0015]
The conductive material according to the invention of claim 2 is characterized in that a polysiloxane containing a carboxyl group is added within a range of 0.5 to 1.0 part by weight with respect to 100 parts by weight of a polymer. To do.
[0018]
When a polymer other than a styrene elastomer is used as an elastic composition used in general electric double layer capacitors, the sealing performance with the gasket material and the solvent resistance against the activated carbon solution deteriorate. End up. Moreover, when the block structure of the styrene elastomer is a styrene-ethylene-butylene-styrene structure, sufficient solvent resistance cannot be obtained.
[0019]
On the other hand, according to the present invention, even for a thin film of 100 μm or less, it is possible to secure good erosion resistance, sealing performance against the gasket frame, elasticity, solvent resistance, film forming property, and barrier property. This makes it possible to reduce the size, increase the capacity, and improve the reliability of energy storage components such as electric double layer capacitors.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the conductive elastic composition according to the embodiment of the present invention will be described in detail with reference to the drawings.
[0021]
The present embodiment relates to a current collector of an electric double layer capacitor using, for example, an electrolytic solution mainly composed of sulfuric acid, and a styrene-based elastomer (styrene-ethylene block copolymer) having at least a styrene group; A conductive material made of carbon is used. As the styrene-based elastomer, those having a block structure of styrene-ethylene-ethylene-propylene-styrene (hereinafter referred to as SEEPEPS structure) and a molecular weight of 100,000 to 300,000 are used. In order to improve the barrier property of the current collector, polysiloxane containing a carboxyl group is used as an additive to the conductive material.
[0022]
As described above, by using a styrene elastomer having a SEEPEPS structure as a polymer, erosion resistance to an electrolytic solution such as sulfuric acid can be obtained, and sealing performance for a gasket frame is ensured. For example, as shown in JP-A-10-4034, the block structure is styrene-ethylene-butylene-styrene (hereinafter referred to as S-EBS structure) or random butadiene styrene rubber (hereinafter referred to as random SBR). The solvent resistance to the activated carbon solution can be improved as compared with a current collector using a polymer having a structure.
[0023]
Further, by using a styrene-based elastomer having a molecular weight in the range of 100,000 to 300,000, sufficient film forming properties as well as solvent resistance can be obtained even for a thin film of 100 μm or less. Furthermore, a favorable barrier property can be obtained in the current collector by using a polysiloxane containing a carboxyl group as an additive to the conductive material. In this additive, it is preferable to use within the range of 0.5 weight part- 1.0 weight part .
[0024]
Next, examples of the elastic composition having conductivity in the present embodiment will be described in detail. In this example, various block structures, molecular weights, and styrene amount polymers (polymers P1 to P15 described later) shown in Table 1 below, various additives (additives A1 to A3 described later), and carbon are used for conductivity. Materials (conductive materials M1 to M21 to be described later) were obtained, and various samples of current collectors prepared using these conductive materials were formed, conductive (volume resistivity), and elastic by the following methods. Properties (breaking strength, elongation), solvent resistance, sealing properties, and barrier properties were examined.
[0025]
[Table 1]
Figure 0003971951
[0026]
First, a predetermined amount of the polymer (polymers P1 to P15) is charged into a beaker having a volume of 500 ml, and a volume of toluene corresponding to about three times the amount of the polymer is charged, and then heated to about 60 ° C. While stirring for about 1 hour, resin varnishes were obtained. Then, a predetermined amount of the above-mentioned additives and carbon are added to each of the resin varnishes and stirred to obtain a mixture, and an ink mill (three rolls) is added while adding a solvent (mineral spirit) so that the viscosity of the mixture becomes about 5000 CPS. ) To prepare conductive materials M1 to M21. Tables 2 and 3 below show the blending ratios and total parts by weight of the polymer, additives, and carbon in each of the conductive materials M1 to M21.
[0027]
[Table 2]
Figure 0003971951
[0028]
[Table 3]
Figure 0003971951
[0029]
Thereafter, as shown in the schematic explanatory view of the Mayer bar coating method in FIGS. 1A and 1B, a thin film made of polyethylene terephthalate having a substantially rectangular shape and a thickness of 100 μm with respect to one end surface side of the acrylic plate 1 (hereinafter referred to as a PET thin film) ) 2 is placed, the conductive materials M1 to M21 are dropped onto the PET thin film 2, and cast using a glass rod 3 (for example, sweeping in the direction of the arrow in FIG. 1A). Then, after coating the surface of the PET thin film 2 with a conductive material, it is dried (10 minutes) and cured in a circulation oven (temperature 100 ° C.) to produce a thin film (thickness 100 μm or less) current collector sample 4 respectively. did.
[0030]
When the polymer used for the sample 4 is other than styrene elastomer or polyolefin, it is necessary to make the sample 4 easy to peel off from the PET thin film 2, so that the PET thin film 2 as shown in FIG. 1B. As shown in FIG. 1A, for example, a cellophane tape (registered trademark of NICHIBAN) 5 having a thickness of about 150 μm is applied as a spacer to the vicinity of the outer peripheral portion of the PET, or the surface of the PET thin film 2 is preliminarily demolded. It is preferable to prepare the sample 4.
[0031]
[Film formability]
After observing the presence or absence of cracks or the like on the surface of the sample 4 produced as described above, the PET thin film 2 was peeled off from the acrylic plate 1 together with the sample 4 and bent, and the cracked portion in the sample 4 was cracked. Etc. were observed. Further, when the sample 4 was peeled off from the PET thin film 2, the presence or absence of expansion, contraction, warpage (for example, a state in which warpage occurred and it was difficult to handle in a sealing property test, etc.) of the sample 4 was observed.
[0032]
[Conductivity]
In the peeled sample 4, the volume resistivity value was measured in accordance with SRIS (Japan Rubber Association Standard) 2301.
[0033]
[Elasticity]
In the sample 4, the breaking strength was measured according to JIS-K7127 (plastic film test method), and the elongation at the time of breaking was measured.
[0034]
[Solvent resistance]
The sample 4 was put into a descup filled with 30 ml of a solvent composed of dimethylformamide and N-methylpyrrolidone, stirred for 30 minutes while maintaining the temperature at 125 ° C., and the degree of deterioration of the sample 4 was observed.
[0035]
[Sealability]
As shown in the schematic explanatory view of FIG. 2, a substantially rectangular film 7a of about 20 mm × 50 mm obtained by cutting the sample 4 with respect to both end surfaces of a substantially rectangular gasket member 6 made of low melting point polyethylene. 7b was crimped by the crimping machine 8 and heated at a temperature of 200 ° C. for 5 seconds and left for a predetermined time, and then the adhesion between the gasket member 6 and the films 7a and 7b was observed.
[0036]
[Barrier properties]
As shown in the schematic explanatory diagram of FIG. 3, a substantially rectangular film 10 of about 150 mm × 150 mm obtained by cutting the opening of the petri dish 9 having a diameter of about 120 mm filled with about 40 g of water. And the petri dish 9 was heated in an oven at a temperature of 100 ° C. for 60 minutes and then allowed to stand at room temperature for 10 minutes to reduce the weight of the petri dish 9 before and after heating by the oven. The rate was measured.
[0037]
Tables 4 and 5 show the results of the moldability, conductivity, elasticity, solvent resistance, sealability, and barrier properties of the sample when each of the conductive materials M1 to M21 is used. In the following film formability column, the case where some cracks, expansion, contraction, warping, etc. were observed in the sample is indicated by the symbol “△”, and the case where none was observed is indicated by the symbol “◯”. . In the column of solvent resistance, the case where deterioration such as roughening is observed on the sample surface is indicated by the symbol “x”, the case where it is somewhat observed is indicated by the symbol “△”, and the case where no deterioration is observed is indicated by the symbol “ ○ ”. In the column of sealability, the case where the gasket member and the film were not welded (the level of substrate peeling) was indicated by the symbol “x”, and the case where they were welded was indicated by the symbol “◯”.
[0038]
[Table 4]
Figure 0003971951
[0039]
[Table 5]
Figure 0003971951
[0040]
As shown in Table 4 above, in the case of the sample using the conductive materials M1 to M5 made of a polymer other than the styrene elastomer, the film formability was good, but sufficient conductivity and elasticity were obtained. In other words, the solvent resistance and sealing properties were extremely low, and the barrier properties could not be measured.
[0041]
In the case of the sample using the conductive material M6 made of a styrene-based elastomer having a random SBR structure in the block structure, the conductivity and sealability were good, but sufficient film formability, elasticity and solvent resistance were obtained. It was not obtained.
[0042]
In the case of the sample using the conductive materials M7 to M10 made of a styrene-based elastomer having a block structure of S-E-B-S, the film formability, conductivity and sealability were good, but sufficient Elasticity and solvent resistance were not obtained.
[0043]
Further, as shown in Table 5, the block structure is made of a styrene elastomer having a relatively large molecular weight among the conductive materials M11 to M21 made of a styrene elastomer having a SEEPS structure. In the case of the samples using the conductive materials M11 and M12, the conductivity, elasticity, solvent resistance, and sealing properties were good, but sufficient film forming properties and barrier properties were not obtained. In the case of the sample using the conductive material M15 made of a styrene elastomer having a relatively small molecular weight, the film forming property, conductivity, elasticity, sealing property and barrier property were good, but sufficient solvent resistance. Was not obtained.
[0044]
On the other hand, among the conductive materials M11 to M21, in the case of a sample using conductive materials M13 and M14 made of styrene elastomer having a molecular weight of 150,000, moldability, conductivity, elasticity, and solvent resistance are obtained. Good results were obtained in all of sealing properties and barrier properties. Moreover, even in the samples using the conductive materials M16 to M21 containing the additive, good results were obtained in all of the moldability, conductivity, elasticity, solvent resistance, sealing properties, and barrier properties. In particular, in the case of a sample made of conductive materials M18 and M20 filled with 0.5 to 1.0 parts by weight of dimethylmethylcarboxypolysiloxane as an additive, a relatively good barrier property was obtained.
[0045]
In addition, in the styrene-based elastomer used as the polymer of the conductive material, if the block structure is a SEEPS structure and the molecular weight is in the range of 100,000 to 300,000, the conductive material is used. It was confirmed that the resulting elastic composition had good moldability, conductivity, elasticity, solvent resistance, sealing properties, and barrier properties.
[0046]
In addition, in the conductive material using a styrene elastomer having a block structure of SEEPEPS structure and a molecular weight in the range of 100,000 to 300,000 as described above, a carboxyl group is added as an additive. It was confirmed that the barrier property of the elastic composition could be made extremely good by using the contained polysiloxane in the range of 0.5 to 1.0 part by weight.
[0047]
Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.
[0048]
For example, when a polysiloxane containing a carboxyl group is added to a conductive material and an additive used for a general electric double layer capacitor is added, the same effect as the present invention is achieved. Is obtained.
[0049]
【The invention's effect】
As described above, according to the present invention, even with a thin film of 100 μm or less, good film formability is obtained, corrosion resistance to an electrolytic solution such as sulfuric acid is obtained, and sealing performance of the gasket frame is ensured. In addition, the solvent resistance to the activated carbon solution can be improved. Moreover, favorable barrier property is obtained by using the polysiloxane containing a carboxyl group as an additive.
[0050]
Therefore, the energy storage component such as the electric double layer capacitor can be reduced in size, increased in capacity, and improved in reliability.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a method for producing a sample in this example.
FIG. 2 is a schematic explanatory view showing a sealing property measuring method in this example.
FIG. 3 is a schematic explanatory diagram showing a method for measuring barrier properties in the present example.
FIG. 4 is a schematic explanatory diagram of a general electric double layer capacitor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Acrylic board 2 ... PET film 3 ... Glass rod 4 ... Sample 6 ... Gasket members 7a, 7b, 10 ... Film

Claims (2)

少なくともポリマーとカーボンとを含んだ導電性材料から成り、電気二重層キャパシタの集電体に用いられる導電性を有する弾性体組成物において、
前記ポリマーは、ブロック構造がスチレン−エチレン−エチレン−プロピレン−スチレンであって、かつ、分子量が10万〜30万の範囲内のスチレン系エラストマーであることを特徴とする導電性を有する弾性体組成物。
In an elastic composition having a conductivity used for a current collector of an electric double layer capacitor, comprising a conductive material containing at least a polymer and carbon,
The polymer has a block structure of styrene-ethylene-ethylene-propylene-styrene , and is a styrene elastomer having a molecular weight in the range of 100,000 to 300,000. object.
前記導電性材料は、ポリマー100重量部に対し、カルボキシル基を含んだポリシロキサンが0.5重量部〜1.0重量部の範囲内で添加されたことを特徴とする請求項1記載の導電性を有する弾性体組成物。 The conductive material per 100 parts by weight of the polymer, conductivity according to claim 1, wherein the polysiloxane containing a carboxyl group is characterized in that it is added in the range of 0.5 part by weight to 1.0 parts by weight Elastic body composition.
JP2002125901A 2002-04-26 2002-04-26 Conductive elastic composition Expired - Fee Related JP3971951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125901A JP3971951B2 (en) 2002-04-26 2002-04-26 Conductive elastic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125901A JP3971951B2 (en) 2002-04-26 2002-04-26 Conductive elastic composition

Publications (2)

Publication Number Publication Date
JP2003324036A JP2003324036A (en) 2003-11-14
JP3971951B2 true JP3971951B2 (en) 2007-09-05

Family

ID=29540483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125901A Expired - Fee Related JP3971951B2 (en) 2002-04-26 2002-04-26 Conductive elastic composition

Country Status (1)

Country Link
JP (1) JP3971951B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034423A (en) * 2006-07-26 2008-02-14 Meidensha Corp Electric double layer capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104034A (en) * 1996-06-18 1998-01-06 Sumitomo Bakelite Co Ltd Conductive film for collecting electricity and method for manufacturing the same
JP4370677B2 (en) * 2000-04-20 2009-11-25 三菱化学株式会社 Synthetic resin molding
JP2002322366A (en) * 2001-04-23 2002-11-08 Riken Technos Corp Conductive thermoplastic resin composition
JP2003142340A (en) * 2001-11-01 2003-05-16 Nec Tokin Corp Electric double-layer capacitor and manufacturing method therefor
JP2003188050A (en) * 2001-12-20 2003-07-04 Nec Tokin Corp Electric double-layer capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003324036A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
Wang et al. A highly elastic and reversibly stretchable all‐polymer supercapacitor
Chen et al. Strong and stretchable polypyrrole hydrogels with biphase microstructure as electrodes for substrate‐free stretchable supercapacitors
KR101489042B1 (en) Water-based slurry composition, electrode plate for electricity storage device, and electricity storage device
TWI584521B (en) Cathode and method of manufacturing the same
TWI483274B (en) Composite electrode and electrolytic capacitor
JP6371861B2 (en) Electrode having a collector including a protective conductive layer and corresponding manufacturing method for an electrical energy storage system
CN108140784A (en) Improved film, partition board, battery and method
US8472163B2 (en) Negative electrode current collector for heterogeneous electrochemical capacitor and method of manufacture thereof
EP3214677A1 (en) Collector for electrodes, method for producing collector for electrodes, electrode, lithium ion secondary battery, redox flow battery and electric double layer capacitor
TW201231574A (en) Conductive undercoating agent composition
Malik et al. Self‐repairable silicon anodes using a multifunctional binder for high‐performance lithium‐ion batteries
CN104966800A (en) Functional composite packaging aluminum plastic film for lithium battery
Nguyen et al. Washable and stretchable Zn–MnO2 rechargeable cell
TW200539206A (en) Method for making a solid electrolytic capacitor
CN111162315B (en) Electrolyte and lithium ion battery
Leš et al. Ionic conductivity enhancement in solid polymer electrolytes by electrochemical in situ formation of an interpenetrating network
TW550612B (en) Separator for solid electrolyte condenser and solid electrolyte condenser using the same
Jin et al. Preparation of the flexible polypyrrole/polypropylene composite fibrous film for electrochemical capacitor
JP2017139121A (en) Adhesive film for metal terminal
JP3971951B2 (en) Conductive elastic composition
JPH104034A (en) Conductive film for collecting electricity and method for manufacturing the same
US10020119B2 (en) Capacitor structure
KR20140057251A (en) Current-conducting electrode and corresponding manufacturing process
JP5153993B2 (en) Conductive thermoplastic resin film
JP5099365B2 (en) Conductive elastomer film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees