JP3971877B2 - Oral composition - Google Patents

Oral composition Download PDF

Info

Publication number
JP3971877B2
JP3971877B2 JP30182699A JP30182699A JP3971877B2 JP 3971877 B2 JP3971877 B2 JP 3971877B2 JP 30182699 A JP30182699 A JP 30182699A JP 30182699 A JP30182699 A JP 30182699A JP 3971877 B2 JP3971877 B2 JP 3971877B2
Authority
JP
Japan
Prior art keywords
hydroxyapatite
bacteria
oral
low crystalline
apatite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30182699A
Other languages
Japanese (ja)
Other versions
JP2001122748A (en
Inventor
恵二郎 藤田
正嘉 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sangi Co Ltd
Original Assignee
Sangi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sangi Co Ltd filed Critical Sangi Co Ltd
Priority to JP30182699A priority Critical patent/JP3971877B2/en
Publication of JP2001122748A publication Critical patent/JP2001122748A/en
Application granted granted Critical
Publication of JP3971877B2 publication Critical patent/JP3971877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、非晶質或いは結晶性が低いハイドロキシアパタイトを配合した口腔用組成物に関する。更に詳しくは、口腔内細菌の除菌に優れた効果を有し、他の配合成分との相容性に優れる口腔用組成物を提供することを目的とする。
【0002】
【従来の技術】
口腔内の2大疾患であるう蝕、歯周病の発生、進行には口腔内の細菌が深く関与している。また、口臭の発生、プラークの形成にも口腔内の細菌が関与しており、口腔内の疾患、不快感の予防には口腔内細菌の抑制が不可欠である。
【0003】
このように、口腔内疾患は細菌性の疾患であるので、口腔疾患を引き起こす細菌に対する殺菌効果、プラーク抑制効果を目的として、クロルヘキシジン、塩化セチルピリジニウム等の殺菌剤を口腔用組成物に配合することが知られている。
ところが、口腔用組成物には、香料成分の可溶化や製剤の安定化のために、ノニオン界面活性剤が配合されており、このノニオン界面活性剤は脂溶性の殺菌剤やカチオン型殺菌剤をその中に取り込み、本来の殺菌剤の殺菌効果を著しく低下させることが報告されている。
【0004】
また、クロルヘキシジンは、歯表面に付着しやすい性質を持っているので、ストレプトコッカス・ミュータンスに対する抗菌力が高い殺菌剤であるものの、口腔内粘膜アレルギー反応を引き起こしやすく、知覚障害を生じやすい。
このように、従来の有機系の殺菌剤を使用する場合には、その効果を十分発揮させるため、他成分との反応性を考慮し、使用時の刺激性や味覚を考慮しなければならない。
【0005】
従って、前記の有機系殺菌剤を配合する場合には、使用量が限定され、共存しうる成分も極めて限定されるため、殺菌力が十分満足しうるものではなく、殺菌力以外の発泡性、薬効性等の口腔用組成物の性能も限定され、十分な効果が期待できなかった。
【0006】
【発明が解決しようとする課題】
本発明は、従来より口腔用組成物に配合されている有機系殺菌剤の前記の欠点を解決するためになされたものであり、優れた除菌効果を有し、他の配合成分との相容性に優れる口腔用組成物を提供することを目的とする。
【0007】
【課題を解決するための手段】
かかる状況において、本発明者らは鋭意検討した結果、非晶質ハイドロキシアパタイトを含む低結晶性ハイドロキシアパタイト微粒子は、口腔内細菌に速やかに吸着し、菌体表面が覆われることを見出した。
即ち、本発明では、ハイドロキシアパタイト特有の結晶性の明確な特徴である回折パターンを示さない結晶性が低いハイドロキシアパタイト(以下、低結晶性ハイドロキシアパタイト)を使用する。
【0008】
ハイドロキシアパタイトは、Ca10(PO46(OH)2(Ca/P=1.67;H2O=1.79%)なる化学量論組成で示されるが、Ca/Pモル比が1.67にならない非化学両論的な場合であっても、ハイドロキシアパタイトの性質を示す。
従って、本発明に使用する低結晶性ハイドロキシアパタイトとは、Ca/Pモル比1.4〜1.8でCa塩とリン酸塩とを反応させて得られた非晶質または結晶性の低いものを意味する。
【0009】
所定濃度のCa塩水溶液の攪拌下に、リン酸塩水溶液を滴下し、攪拌混合させて反応させる。反応は、中性から塩基性が保持され、反応温度は、高くとも60℃、好ましくは室温以下の温度が好ましい。滴下完了後、生成した沈殿を採取し、100℃以下の温度で、空気中で乾燥、粉砕する。滴下するCa/Pのモル比は1.4〜1.8になるよう適宜選択し、使用するCa塩には、Ca(OH)2、Ca(NO32 或いはCaCl2 を用い、リン酸イオン水溶液の調整には、H3PO4水溶液、或いは(NH42PO4水溶液を用いるのが一般的である。
【0010】
本発明で使用する低結晶性ハイドロキシアパタイトは結晶性の高いハイドロキシアパタイト(以下結晶質アパタイトと称する)と比較して、粒径の小さい粒子からなる凝集体を形成しやすく、その凝集体は容易に崩壊する。このため、歯牙表面の口腔内の食物残沙、口腔内細菌、歯垢等を物理吸着或いは化学吸着によって取り込む作用は結晶質アパタイトに比較して効果的になり、口腔内の清掃効果は口腔用組成物で通常使用される研磨剤、例えばリン酸水素カルシウム、水酸化アルミニウム、無水ケイ素等と比較して極めて良好である。
【0011】
前記したように、低結晶性ハイドロキシアパタイト微粒子は口腔内細菌に速やかに吸着して菌体表面を覆うので、口腔内細菌を除去する効果が高い。
口腔内細菌に特異的に吸着し、菌体表面が覆われる
また、歯牙に接触した低結晶性ハイドロキシアパタイトは、エナメル質表面に吸着して石灰化を促進することにより、エナメル質の構造は修復され、周辺部位のハイドロキシアパタイトの結晶性が高められる。このようにして、歯牙のエナメル質が改善されて歯の美白性が高められるとともに、エナメル質の石灰化度が高められるのでう蝕予防する効果を有する。
【0012】
低結晶性ハイドロキシアパタイト粒子の平均粒径は、0.005μm〜30.0μmのものを使用するのが好ましい。平均粒子径が0.005μm未満のものは製造時の作業性が悪く、30.0μmを越えたものでは使用感が損なわれる。
また、低結晶性ハイドロキシアパタイトは通常0.001〜50%、より好ましくは0.1〜10%配合することが望ましく、0.001%未満であると、エナメル質に形成不全部に低結晶性ハイドロキシアパタイトが接触しにくくなり、本発明の口腔用組成物の効果が十分に発揮し得ないからである。また、配合量が50%を越えると、口腔用組成物としての保存安定性に欠ける恐れがある。
【0013】
本発明の口腔内組成物は、前述の低結晶性ハイドロキシアパタイト及び他の成分とともに常法に従って配合し、練歯磨剤、洗口剤、クリーム、溶液(懸濁)などの種々の剤型にすることにより調製される。本発明の口腔内組成物は必須成分以上に通常使用される添加剤、例えば、研磨剤、湿潤剤、界面活性剤、香料、甘味料、防腐剤、及び各種有効成分などを本発明の効果を妨げず、薬剤学的に許容できる範囲で適宜使用される。これらの成分の具体例を下記に示す。
【0014】
研磨剤:炭酸カルシウム、ピロリン酸カルシウム、無水珪酸、珪酸アルミニウム、水酸化アルミニウム、リン酸水素カルシウム等。
湿潤剤:グリセリン、ソルビトール、プロピレングリコール、ポリエチレングリコール等。
界面活性剤:アルキル硫酸塩、アルキルベンゼンスルホン酸塩、ショ糖脂肪酸エステル、ラウリル硫酸ナトリウム等。
増粘剤:ヒドロキシエチルセルロース、カラギーナン、カルボキシエチルセルロース、カルボキシビニルポリマー、ポリアクリル酸ナトリウム、キサンタンガム等。
防腐剤:安息香酸ナトリウム、メチルパラベン、パラオキシ安息香酸エステル、塩酸アルキルジアミノエチルグリシン等。
甘味料:サッカリンナトリウム、キシリトール、ステビオエキス等。
香料:メントール、オレンジ油、スペアミント油、ペパーミント油、レモン油、ユーカリ油、サリチル酸メチルなど。
その他薬効成分:アラントイン、酢酸トコフェロール、イソプロピルフェノール、β−グリチルレチン酸、トリクロサン、クロルヘキシジン、デキストラナーゼ、クルロフィル、フラボノイド、トラネキサム酸、ヒノキチオール等。
【0015】
【発明の実施の形態】
[低結晶ハイドロキシアパタイトの製造]
次の処方にて、本発明の口腔用組成物に配合する低結晶性ハイドロキシアパタイトを製造した。
最初に攪拌下の水酸化カルシウム懸濁液に、pH10に至るまで3倍に蒸留水で稀釈したリン酸水溶液を滴下したのち、6倍に水で稀釈したリン酸水溶液をCa/P比が1.67になるまで滴下した。このようにして生成したゲル状物質を室温で1日間放置して熟成した。その後かかるゲル状物質をガラスフィルターで濾過し、残った物質を更に100℃の空気中で乾燥を行うことにより、Ca/P比が1.62の低結晶性ハイドロキシアパタイトを得た。かかる低結晶性ハイドロキシアパタイトの平均粒径は、0.3μmで最大粒径が1.1μmであった。
【0016】
このようにして得られた低結晶性ハイドロキシアパタイトの粉末X線回折パターンを図1に示す。この図からわかるように、低結晶性ハイドロキシアパタイトは、回折パターンが不明瞭であり、結晶性は良好でないことがわかる。
【0017】
[結晶質アパタイトの製造]
前述の製造方法によって得られた低結晶性ハイドロキシアパタイトの一部を更に空気中にて800℃、2時間焼成して、結晶性アパタイトを得た。かかる結晶性アパタイトは、Ca/P比が1.67、平均粒径が3.2μmで最大粒径が14.6μmであった。得られた結晶質アパタイトの粉末X線回折パターンを図1に示す。この図からわかるように、結晶質アパタイトは特有の反射角で鋭いピーク強度を有しており、これらがハイドロキシアパタイト特有のものであるので、結晶性は良好であることがわかる。
【0018】
[微粒子アパタイトの製造]
前述の製造方法によって得られた低結晶性ハイドロキシアパタイト及び結晶性ハイドロキシアパタイトのそれぞれを、ビーズミルを用いて破砕し、平均粒径が0.01μm、0.1μm、1.0μmの微粒子アパタイトを製造した。
【0019】
[微粒子アパタイトによる酸の産生抑制効果試験]
本発明の低結晶性ハイドロキシアパタイトについて、口腔内細菌による酸産生の抑制効果を確認するため、前記の微粒子アパタイトを用いて、次の実験を行った。
【0020】
(1)Streptococcus mutans の培養
代表的な口腔内細菌である、Streptococcus mutans(以下、S. mutans)を次の条件にて培養した。
まず、歯頸部からプラークを採取し、直ちに、Mitis Salivarius(MS)寒天培地(米国 DIFCO社製)に入れた。
培養は、グローブボックス内の孵卵器中で37℃で72時間培養することにより行った。
培養後、コロニーを観察し、均一であることを確認した。
対数増殖期にある前記の菌を4℃で遠心沈殿して集め、150mM KCl−5mM MgCl2溶液で3回洗浄した後、同液に菌を懸濁した。
菌懸濁液中の菌の量は分光光度計を用いて、660nmにおける吸光度を測定し、乾燥菌体重量を求めた。
【0021】
(2)pH低下実験
まず、2mMリン酸緩衝液(PPB)、150mM KCl、5mM MgCl2を含み、この中に乾燥重量で2.0mgの菌が含まれるよう、総量5.0mlの溶液を調製し、これを反応系とした。
pH低下実験は、反応系を37℃の恒温槽にいれ、攪拌しながら5mM KOHで滴定し、pHを7に保った。
4分後KOHによる滴定を中止して、表1のごとく調製した微粒子アパタイトの懸濁液を1ml加え、1分間攪拌した。
次いで、0.5Mグルコースを0.05ml加え、菌の糖代謝に伴う酸産生によるpHの低下を20分間記録した。
なお、比較のため微粒子アパタイトの懸濁液の代えて、平均粒径0.1μmのシリカの懸濁液を用いて、同様に実験を行った。
【0022】
(3)産生された酸の分析
前記のpH低下実験で使用した反応系は、前記の実験後、メンブレンフィルター(セルロース混合エステル、孔径0.2μm ミリポア社製)によって濾過した後、得られた濾液について、カルボン酸分析装置(東京理化機械社製)にて、乳酸、ギ酸、酢酸、ピルビン酸の定量を行った。
【0023】
【表1】

Figure 0003971877
【0024】
(4)実験結果
▲1▼ pH低下実験
実施例1〜6、比較例1〜8、対照例のそれぞれの反応系について、pHの経時変化の測定結果は表2のようになった。
【0025】
【表2】
Figure 0003971877
【0026】
▲2▼ 産生された酸の分析結果
実施例1〜6、比較例1〜8、対照例のそれぞれの反応系について、産生された酸の分析およびその定量の測定結果は表3のようになった。
なお、産生された酸は、乾燥菌体重量あたり1分間に産生する酸の量(μmol/mg/min)で表した。
【0027】
【表3】
Figure 0003971877
【0028】
[口腔用組成物の製造例]
以下の製造例(1)〜(6)に本発明の口腔用組成物組成物の開示例を示して本発明を具体的に説明するが、本発明は下記の製造例に限定されるものではない。なお、各例中の%はいずれも重量%である。
【0029】
Figure 0003971877
【0030】
Figure 0003971877
【0031】
Figure 0003971877
【0032】
Figure 0003971877
【0033】
Figure 0003971877
【0034】
Figure 0003971877
【0035】
[細菌除去試験]
(試験方法)
前述の低結晶性ハイドロキシアパタイト、結晶性アパタイト及びシリカ粉体(平均粒径1.5μm)を用いて、下記のごとく実験を行った。
(1)菌液の培養
比験菌株(ストレプトコッカス・ミュータンス)を37℃、24時間浸盪培養し、これを約1.0×106 個/mlとなるように調製し、試験に使用した。
(2)各種粉体の菌吸着
上記の各種粉体をそれぞれ、上記の菌液に所定の濃度になるように分散し、37℃下で、3分間作用させた。
(3)各種粉体を前記のごとく菌液に作用させたものを、遠心分離器にかけ、上澄みの細菌濃度を測定し、これを非付着菌数とした。
初期菌濃度と前記の非付着菌数との差を付着菌数とし、初期菌濃度に対する付着菌数の割合を、付着率とした。測定結果を、表4〜表6に示す。
【0036】
【表4】
Figure 0003971877
【0037】
【表5】
Figure 0003971877
【0038】
【表6】
Figure 0003971877
【0039】
(菌吸着試験の結果)
表4及び表5の結果から、低結晶性ハイドロキシアパタイト微粒子が有する菌吸着能は、結晶性アパタイトに比較して、格段に高いことがわかる。
また、シリカ粉体は、従来より歯磨剤の研磨剤成分として使用されているが、表6の結果からわかるように、低結晶性ハイドロキシアパタイトと比較して菌吸着能は著しく低い。
低結晶性ハイドロキシアパタイトは、少量でも菌吸着能に優れるので、マウスウォッシュのような液状組成物に1成分として分散して使用することができるが、結晶性アパタイト或いはシリカ粉体は、相当量を配合しないと菌の吸着除去に有効でないので、マウスウォッシュのような液状の剤型として使用するのは不向きである。
【0040】
(電子顕微鏡観察結果)
前記の菌吸着試験において、前記の各種試料の付着状態を見るために、試料濃度0.1重量%で菌吸着試験を行ったものを電子顕微鏡にて観察した。
まず、0.1重量%で菌吸着試験を行った後の溶液を、エタノール昇順系列で脱水した。
次いで、t−ブタノール溶液置換を行い、凍結乾燥装置で凍結乾燥した。
各種試料について、白金パラジウムを蒸着した後、電解放出型走査電子顕微鏡(S−4500、日立社製)で観察した。
その結果を、図2〜図4に示す。
【0041】
図2〜図4は、低結晶性ハイドロキシアパタイト、結晶性アパタイト、シリカをそれぞれ使用して菌吸着試験を行った後のものを、電子顕微鏡撮影したものである。
図5は、前記の試料を懸濁する前の菌液を前述の処方にてフリーズドライしたものの電子顕微鏡撮影したものである。
図2と図5を比較すると、細菌の表面がハイドロキシアパタイトによって、密に覆われていることがわかる。
一方、結晶性アパタイトを使用した場合は、図3の写真からわかるように、低結晶性のものと比べて細菌の被覆性は良好ではない。
また、シリカ粉体を使用した場合(図4)と同程度の効果しかないことがわかる。
【図面の簡単な説明】
【図1】低結晶性ハイドロキシアパタイト及び結晶質アパタイト粉末X線回折パターン図である。
【図2】低結晶性アパタイトの使用結果を示す電子顕微鏡写真である(倍率10,000倍)。
【図3】結晶性アパタイトの使用結果を示す電子顕微鏡写真である(倍率10,000倍)。
【図4】シリカの使用結果を示す電子顕微鏡写真である(倍率10,000倍)。
【図5】菌液のフリーズドライを示す電子顕微鏡写真である(倍率10,000倍)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oral composition containing hydroxyapatite which is amorphous or has low crystallinity. More specifically, an object of the present invention is to provide a composition for oral cavity which has an excellent effect on eradication of oral bacteria and is excellent in compatibility with other compounding components.
[0002]
[Prior art]
Bacteria in the oral cavity are deeply involved in the occurrence and progression of dental caries and periodontal disease, which are the two major diseases in the oral cavity. In addition, oral bacteria are involved in the generation of halitosis and plaque formation, and suppression of oral bacteria is indispensable for preventing diseases and discomfort in the oral cavity.
[0003]
As described above, since oral diseases are bacterial diseases, a bactericidal agent such as chlorhexidine or cetylpyridinium chloride should be added to the oral composition for the purpose of bactericidal effects against bacteria that cause oral diseases and plaque-suppressing effects. It has been known.
However, a nonionic surfactant is blended in the oral composition in order to solubilize the fragrance component and stabilize the preparation. This nonionic surfactant contains a fat-soluble fungicide and a cationic fungicide. It has been reported that it can be incorporated into it to significantly reduce the bactericidal effect of the original bactericidal agent.
[0004]
Chlorhexidine is a fungicide with high antibacterial activity against Streptococcus mutans because it has a property of easily adhering to the tooth surface. However, it easily causes oral mucosal allergic reaction and easily causes sensory disturbance.
Thus, when using a conventional organic fungicide, in order to exert its effect sufficiently, it is necessary to consider the irritation and taste during use in consideration of reactivity with other components.
[0005]
Therefore, when blending the organic fungicide, the amount of use is limited, and the components that can coexist are also very limited, so the bactericidal power is not sufficiently satisfied, foaming other than bactericidal power, The performance of oral compositions such as medicinal properties was also limited, and sufficient effects could not be expected.
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned drawbacks of organic fungicides that have been conventionally blended in oral compositions, has an excellent sterilizing effect, and is compatible with other blending components. It aims at providing the composition for oral cavity which is excellent in tolerability.
[0007]
[Means for Solving the Problems]
In such a situation, the present inventors have intensively studied, and as a result, found that the low crystalline hydroxyapatite fine particles containing amorphous hydroxyapatite are rapidly adsorbed to oral bacteria and the cell surface is covered.
That is, in the present invention, hydroxyapatite with low crystallinity (hereinafter referred to as low crystalline hydroxyapatite) that does not show a diffraction pattern, which is a distinct characteristic of crystallinity unique to hydroxyapatite, is used.
[0008]
Hydroxyapatite has a stoichiometric composition of Ca 10 (PO 4 ) 6 (OH) 2 (Ca / P = 1.67; H 2 O = 1.79%), but the Ca / P molar ratio is 1. Even in the non-stoichiometric case that does not reach .67, it exhibits the properties of hydroxyapatite.
Therefore, the low crystalline hydroxyapatite used in the present invention is an amorphous or low crystallinity obtained by reacting Ca salt and phosphate at a Ca / P molar ratio of 1.4 to 1.8. Means things.
[0009]
While stirring a predetermined concentration of Ca salt aqueous solution, a phosphate aqueous solution is dropped, and the mixture is stirred and mixed for reaction. The reaction is neutral to basic, and the reaction temperature is at most 60 ° C., preferably room temperature or lower. After completion of dropping, the produced precipitate is collected, dried and pulverized in air at a temperature of 100 ° C. or lower. The molar ratio of Ca / P to be dropped is appropriately selected to be 1.4 to 1.8, and Ca (OH) 2 , Ca (NO 3 ) 2 or CaCl 2 is used as the Ca salt to be used, and phosphoric acid. For the adjustment of the aqueous ionic solution, it is common to use an H 3 PO 4 aqueous solution or an (NH 4 ) 2 PO 4 aqueous solution.
[0010]
The low crystalline hydroxyapatite used in the present invention is easier to form an aggregate composed of particles having a smaller particle diameter than hydroxyapatite having high crystallinity (hereinafter referred to as crystalline apatite), and the aggregate is easily Collapse. Therefore, the action of taking in food residue, oral bacteria, plaque, etc. in the oral cavity of the tooth surface by physical adsorption or chemical adsorption is more effective than crystalline apatite, and the cleaning effect in the oral cavity is It is very good compared with abrasives usually used in the composition, such as calcium hydrogen phosphate, aluminum hydroxide, anhydrous silicon and the like.
[0011]
As described above, since the low crystalline hydroxyapatite fine particles are quickly adsorbed to the oral bacteria and cover the surface of the cells, the effect of removing the oral bacteria is high.
Adsorbs specifically to bacteria in the oral cavity and the surface of the cell is covered.Also, the low crystalline hydroxyapatite that contacts the teeth adsorbs to the enamel surface and promotes calcification, thereby restoring the structure of the enamel. As a result, the crystallinity of the hydroxyapatite in the surrounding area is enhanced. In this way, the enamel of the tooth is improved and the whitening of the tooth is enhanced, and the calcification degree of the enamel is enhanced, so that it has an effect of preventing caries.
[0012]
The average particle size of the low crystalline hydroxyapatite particles is preferably 0.005 μm to 30.0 μm. When the average particle size is less than 0.005 μm, the workability during production is poor, and when it exceeds 30.0 μm, the feeling of use is impaired.
Further, it is desirable that the low crystalline hydroxyapatite is usually added in an amount of 0.001 to 50%, more preferably 0.1 to 10%. This is because the hydroxyapatite becomes difficult to contact and the effect of the composition for oral cavity of the present invention cannot be sufficiently exhibited. Moreover, when a compounding quantity exceeds 50%, there exists a possibility that the storage stability as an oral composition may be missing.
[0013]
The oral composition of the present invention is formulated according to a conventional method together with the above-mentioned low crystalline hydroxyapatite and other components to form various dosage forms such as a toothpaste, a mouthwash, a cream, and a solution (suspension). It is prepared by. The oral composition of the present invention has the effects of the present invention with additives that are usually used in addition to essential components, such as abrasives, wetting agents, surfactants, fragrances, sweeteners, preservatives, and various active ingredients. It is appropriately used within a pharmaceutically acceptable range without interfering. Specific examples of these components are shown below.
[0014]
Abrasive: calcium carbonate, calcium pyrophosphate, anhydrous silicic acid, aluminum silicate, aluminum hydroxide, calcium hydrogen phosphate, etc.
Wetting agent: glycerin, sorbitol, propylene glycol, polyethylene glycol and the like.
Surfactant: Alkyl sulfate, alkyl benzene sulfonate, sucrose fatty acid ester, sodium lauryl sulfate and the like.
Thickener: hydroxyethyl cellulose, carrageenan, carboxyethyl cellulose, carboxyvinyl polymer, sodium polyacrylate, xanthan gum and the like.
Preservatives: sodium benzoate, methyl paraben, paraoxybenzoate ester, alkyldiaminoethylglycine hydrochloride, etc.
Sweeteners: sodium saccharin, xylitol, stevio extract, etc.
Perfume: menthol, orange oil, spearmint oil, peppermint oil, lemon oil, eucalyptus oil, methyl salicylate, etc.
Other medicinal ingredients: allantoin, tocopherol acetate, isopropylphenol, β-glycyrrhetinic acid, triclosan, chlorhexidine, dextranase, currophyll, flavonoid, tranexamic acid, hinokitiol, etc.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
[Production of low crystalline hydroxyapatite]
A low crystalline hydroxyapatite blended with the oral composition of the present invention was produced by the following formulation.
First, a phosphoric acid aqueous solution diluted three times with distilled water until pH 10 is dropped into the calcium hydroxide suspension under stirring, and then the phosphoric acid aqueous solution diluted six times with water has a Ca / P ratio of 1 Dropped until .67. The gel material thus produced was aged by leaving it at room temperature for 1 day. Thereafter, the gel-like substance was filtered with a glass filter, and the remaining substance was further dried in air at 100 ° C. to obtain low crystalline hydroxyapatite having a Ca / P ratio of 1.62. The average particle size of the low crystalline hydroxyapatite was 0.3 μm and the maximum particle size was 1.1 μm.
[0016]
The powder X-ray diffraction pattern of the low crystalline hydroxyapatite thus obtained is shown in FIG. As can be seen from this figure, it can be seen that low crystalline hydroxyapatite has an unclear diffraction pattern and poor crystallinity.
[0017]
[Production of crystalline apatite]
Part of the low crystalline hydroxyapatite obtained by the above production method was further baked in air at 800 ° C. for 2 hours to obtain crystalline apatite. Such crystalline apatite had a Ca / P ratio of 1.67, an average particle size of 3.2 μm and a maximum particle size of 14.6 μm. The powder X-ray diffraction pattern of the obtained crystalline apatite is shown in FIG. As can be seen from this figure, crystalline apatite has a sharp peak intensity at a specific reflection angle, and since these are specific to hydroxyapatite, it can be seen that the crystallinity is good.
[0018]
[Production of fine particle apatite]
Each of the low crystalline hydroxyapatite and the crystalline hydroxyapatite obtained by the above production method was crushed using a bead mill to produce fine particle apatite having an average particle size of 0.01 μm, 0.1 μm, and 1.0 μm. .
[0019]
[Acid production inhibition effect test by fine particle apatite]
For the low crystalline hydroxyapatite of the present invention, the following experiment was performed using the above-mentioned fine particle apatite in order to confirm the effect of suppressing acid production by oral bacteria.
[0020]
(1) Culture of Streptococcus mutans A typical oral bacterium, Streptococcus mutans (hereinafter, S. mutans) was cultured under the following conditions.
First, plaques were collected from the tooth neck and immediately placed in Mitis Salvarius (MS) agar medium (manufactured by DIFCO, USA).
The culture was performed by culturing at 37 ° C. for 72 hours in an incubator in a glove box.
After culture, colonies were observed and confirmed to be uniform.
The above bacteria in the logarithmic growth phase were collected by centrifugation at 4 ° C., washed with 150 mM KCl-5 mM MgCl 2 solution three times, and then suspended in the same solution.
The amount of bacteria in the suspension was determined by measuring the absorbance at 660 nm using a spectrophotometer to obtain the dry cell weight.
[0021]
(2) pH reduction experiment First, a solution of 2 ml phosphate buffer (PPB), 150 mM KCl, 5 mM MgCl2 was prepared, and a total volume of 5.0 ml was prepared so that 2.0 mg of bacteria were contained in the dry weight. This was the reaction system.
In the pH reduction experiment, the reaction system was placed in a constant temperature bath at 37 ° C., and titrated with 5 mM KOH while stirring to maintain the pH at 7.
After 4 minutes, titration with KOH was stopped, and 1 ml of a suspension of fine particle apatite prepared as shown in Table 1 was added and stirred for 1 minute.
Subsequently, 0.05 ml of 0.5 M glucose was added, and the decrease in pH due to acid production accompanying the sugar metabolism of the bacteria was recorded for 20 minutes.
For comparison, an experiment was similarly performed using a suspension of silica having an average particle diameter of 0.1 μm instead of the suspension of fine particle apatite.
[0022]
(3) Analysis of produced acid The reaction system used in the above-mentioned pH lowering experiment was filtered through a membrane filter (cellulose mixed ester, pore size 0.2 μm manufactured by Millipore) after the above-mentioned experiment, and the filtrate obtained The lactic acid, formic acid, acetic acid, and pyruvic acid were quantified using a carboxylic acid analyzer (manufactured by Tokyo Rika Kikai Co., Ltd.).
[0023]
[Table 1]
Figure 0003971877
[0024]
(4) Experimental results {circle around (1)} pH lowering experimental results for the reaction systems of Examples 1 to 6, Comparative Examples 1 to 8, and Control Example are shown in Table 2.
[0025]
[Table 2]
Figure 0003971877
[0026]
(2) Analytical result of produced acid For each reaction system of Examples 1 to 6, Comparative Examples 1 to 8, and Control Example, analysis of produced acid and measurement result of its quantification are as shown in Table 3. It was.
The acid produced was expressed as the amount of acid (μmol / mg / min) produced per minute per dry cell weight.
[0027]
[Table 3]
Figure 0003971877
[0028]
[Production Example of Oral Composition]
Although the following manufacture examples (1)-(6) show the disclosure example of the composition for oral cavity of this invention, this invention is demonstrated concretely, This invention is not limited to the following manufacture example. Absent. In addition, all% in each example is weight%.
[0029]
Figure 0003971877
[0030]
Figure 0003971877
[0031]
Figure 0003971877
[0032]
Figure 0003971877
[0033]
Figure 0003971877
[0034]
Figure 0003971877
[0035]
[Bacteria removal test]
(Test method)
Using the low crystalline hydroxyapatite, crystalline apatite and silica powder (average particle size 1.5 μm) described above, experiments were conducted as follows.
(1) Bacterial culture culture test strain (Streptococcus mutans) was cultured by shaking at 37 ° C. for 24 hours, and this was prepared to be about 1.0 × 10 6 cells / ml and used for the test. .
(2) Bacterial adsorption of various powders Each of the various powders was dispersed in the bacterial solution so as to have a predetermined concentration and allowed to act at 37 ° C for 3 minutes.
(3) A product obtained by allowing various powders to act on the bacterial solution as described above was applied to a centrifuge, and the bacterial concentration of the supernatant was measured. This was defined as the number of non-adherent bacteria.
The difference between the initial bacterial concentration and the number of non-adherent bacteria was defined as the number of adhered bacteria, and the ratio of the number of adhered bacteria to the initial bacterial concentration was defined as the adhesion rate. The measurement results are shown in Tables 4-6.
[0036]
[Table 4]
Figure 0003971877
[0037]
[Table 5]
Figure 0003971877
[0038]
[Table 6]
Figure 0003971877
[0039]
(Results of bacteria adsorption test)
From the results of Tables 4 and 5, it can be seen that the bacteria-adsorbing ability of the low crystalline hydroxyapatite fine particles is much higher than that of crystalline apatite.
Silica powder has been conventionally used as an abrasive component of dentifrice, but as can be seen from the results in Table 6, the ability to adsorb bacteria is remarkably lower than that of low crystalline hydroxyapatite.
Low crystalline hydroxyapatite has excellent ability to adsorb bacteria even in small amounts, so it can be used dispersed as a component in a liquid composition such as mouthwash, but a considerable amount of crystalline apatite or silica powder can be used. If it is not blended, it is not effective for removing bacteria by adsorption, so it is not suitable for use as a liquid dosage form such as mouthwash.
[0040]
(Electron microscope observation results)
In the above-mentioned bacteria adsorption test, in order to see the state of adhesion of the various samples, the bacteria adsorption test conducted at a sample concentration of 0.1% by weight was observed with an electron microscope.
First, the solution after the fungus adsorption test at 0.1% by weight was dehydrated in an ascending ethanol series.
Subsequently, t-butanol solution substitution was performed and lyophilized with a lyophilizer.
About various samples, after depositing platinum palladium, it was observed with a field emission scanning electron microscope (S-4500, manufactured by Hitachi).
The results are shown in FIGS.
[0041]
2 to 4 are electron micrographs of the bacteria adsorption test using low crystalline hydroxyapatite, crystalline apatite, and silica, respectively.
FIG. 5 is an electron micrograph of the freeze-dried bacterial solution before suspending the sample.
Comparing FIG. 2 and FIG. 5, it can be seen that the surface of the bacteria is densely covered with hydroxyapatite.
On the other hand, when crystalline apatite is used, as can be seen from the photograph of FIG. 3, the bacterial coverage is not as good as that of the low crystalline one.
Moreover, it turns out that there exists only an effect comparable as the case where a silica powder is used (FIG. 4).
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern diagram of low crystalline hydroxyapatite and crystalline apatite powder.
FIG. 2 is an electron micrograph showing the use result of low crystalline apatite (magnification 10,000 times).
FIG. 3 is an electron micrograph showing the use result of crystalline apatite (magnification 10,000 times).
FIG. 4 is an electron micrograph showing the result of using silica (magnification 10,000 times).
FIG. 5 is an electron micrograph showing freeze-drying of a bacterial solution (magnification 10,000 times).

Claims (2)

平均粒径が0.005μm〜30.0μm、Ca/Pが1.4〜1.8の、Ca塩(ただし、炭酸カルシウムを除く。)とリン酸塩とを反応して得られた合成低結晶性ハイドロキシアパタイト(ただし、X線結晶回折におけるd=2.814での半価幅値が1.01のハイドロキシアパタイトを除く。)を配合したことを特徴とする、口腔用組成物(ただし、焼成ハイドロキシアパタイト及び/又はフッ化物を配合した口腔用組成物を除く。)。The synthetic low particle diameter obtained by reacting Ca salt (excluding calcium carbonate) and phosphate having an average particle size of 0.005 to 30.0 μm and Ca / P of 1.4 to 1.8 . A composition for oral cavity characterized by blending crystalline hydroxyapatite (however, excluding hydroxyapatite having a half-width value of 1.01 in d = 2.814 in X-ray crystal diffraction) Excluding oral compositions containing calcined hydroxyapatite and / or fluoride). 低結晶性ハイドロキシアパタイトの配合量が0.001〜50%である請求項1の口腔用組成物。The composition for oral cavity according to claim 1, wherein the amount of the low crystalline hydroxyapatite is 0.001 to 50%.
JP30182699A 1999-10-25 1999-10-25 Oral composition Expired - Fee Related JP3971877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30182699A JP3971877B2 (en) 1999-10-25 1999-10-25 Oral composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30182699A JP3971877B2 (en) 1999-10-25 1999-10-25 Oral composition

Publications (2)

Publication Number Publication Date
JP2001122748A JP2001122748A (en) 2001-05-08
JP3971877B2 true JP3971877B2 (en) 2007-09-05

Family

ID=17901637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30182699A Expired - Fee Related JP3971877B2 (en) 1999-10-25 1999-10-25 Oral composition

Country Status (1)

Country Link
JP (1) JP3971877B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10383807B2 (en) 2016-05-20 2019-08-20 The Procter & Gamble Company Regimen for providing smooth tooth feel
US10441523B2 (en) 2013-11-22 2019-10-15 The Procter & Gamble Company Regimen for controlling or reducing dentine hypersensitivity
US11007125B2 (en) 2015-07-13 2021-05-18 Kabushiki Kaisha Sangi Tooth-surface-membrane-forming powder containing sintered apatite

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035416A (en) * 2002-06-28 2004-02-05 Sangi Co Ltd Improved 3ds home care agent and system for microbial removal of dental caries
JP3981725B2 (en) * 2002-10-23 2007-09-26 独立行政法人産業技術総合研究所 Apatite hydrogel complexed with protein, solidified body thereof, and production method thereof
JP5553396B2 (en) * 2007-04-10 2014-07-16 株式会社サンギ Remineralization accelerator and oral composition
JP2009167204A (en) * 2009-03-18 2009-07-30 Sangi Co Ltd Improved 3ds home care agent
JP5654740B2 (en) * 2009-10-15 2015-01-14 太平化学産業株式会社 Antioxidant
JP6077336B2 (en) * 2013-02-28 2017-02-08 太平化学産業株式会社 Sterilizing and cleaning composition
SG11201600874YA (en) 2013-09-25 2016-04-28 Credentis Ag Dental care product for tooth whitening
CN107072935A (en) 2015-01-16 2017-08-18 三仪股份有限公司 Toothpaste composition
EP3904282A4 (en) * 2018-12-27 2022-10-26 Sunstar Suisse SA Composition for oral cavity
JP2020117423A (en) * 2019-01-25 2020-08-06 株式会社バイオアパタイト Hydroxyapatite for oral cavity, composition for oral cavity, and method for producing hydroxyapatite for oral cavity
JP2021008428A (en) * 2019-06-28 2021-01-28 サンスター株式会社 Oral composition
JP7341751B2 (en) * 2019-06-28 2023-09-11 サンスター株式会社 Oral composition
CN114452301A (en) * 2021-06-10 2022-05-10 宿迁医美科技有限公司 Porphyromonas gingivalis adsorbent comprising novel hydroxyapatite, method for producing same, and toothpaste and oral cavity cleanser
CN113425610A (en) * 2021-07-19 2021-09-24 厦门金特康生物科技有限公司 Toothpaste and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164712A (en) * 1987-12-22 1989-06-28 Toyo Sutoufuaa Chem:Kk Surface-modified calcium hydrogenphosphate and surface coating method
JPH0782125A (en) * 1993-09-13 1995-03-28 San Medical Kk Cleaning agent containing hydroxyapatite
JP2990335B2 (en) * 1995-07-06 1999-12-13 富田製薬株式会社 Hydroxyapatite for toothpaste formulation and method for producing the same
JPH09268116A (en) * 1996-04-01 1997-10-14 Yozo Ishizuka Production of medicinal dentifrice with natural apatite compound extracted from fish scale or the like as abrasive
JP3862797B2 (en) * 1996-12-12 2006-12-27 丸尾カルシウム株式会社 Dental polishing / repairing agent and dentifrice

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10441523B2 (en) 2013-11-22 2019-10-15 The Procter & Gamble Company Regimen for controlling or reducing dentine hypersensitivity
US11007125B2 (en) 2015-07-13 2021-05-18 Kabushiki Kaisha Sangi Tooth-surface-membrane-forming powder containing sintered apatite
US10383807B2 (en) 2016-05-20 2019-08-20 The Procter & Gamble Company Regimen for providing smooth tooth feel

Also Published As

Publication number Publication date
JP2001122748A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP3971877B2 (en) Oral composition
AU692340B2 (en) Oral compositions containing stabilized stannous compounds
EP2758025B1 (en) Toothpaste comprising calcium based abrasives
US5688492A (en) Oral hygiene composition
MX2008015172A (en) Biologicallly active nanoparticles of a carbonate-substituted hydroxyapatite, process for their preparation and compositions incorporating the same.
JP2010275271A (en) Dentifrice composition
EA038047B1 (en) Toothpaste composition
WO1993024103A1 (en) Oral hygiene composition
KR102154066B1 (en) Oral Care and Oral Hygiene Products Having Photocatalytic Activity Comprising Inorganic Particles Superficially Functionalised with TiO2 Nanoparticles
US4559223A (en) Silver sulfadiazine and/or zinc sulfadiazine-containing toothpaste or oral medicament
EP2549975A2 (en) Antimicrobial silica composites
JP3942822B2 (en) Oral composition
WO2023148307A1 (en) Oral care composition comprising porous silica particles
JP2019196329A (en) Periodontal disease prevention oral composition
JP2004035416A (en) Improved 3ds home care agent and system for microbial removal of dental caries
JPH11310522A (en) Composition for application to oral cavity
JP2009167204A (en) Improved 3ds home care agent
US11052029B2 (en) Cation compatible metal oxides and oral care compositions containing the metal oxides
JP3053699B2 (en) Oral composition
EP2442872B1 (en) Cation compatible metal oxides and oral care compositions containing the metal oxides
JP3022047B2 (en) Oral composition
JP2008231032A (en) Improved 3ds home care agent and bacterial removing system for dental caries, periodontal disease and opportunistic infection bacterium
EP3393598B1 (en) A composite for biofilm control
JP2003081795A (en) Toothpaste composition
JPS63246316A (en) Composition for oral cavity application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3971877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees