JP3971197B2 - Chromatic dispersion compensator - Google Patents

Chromatic dispersion compensator Download PDF

Info

Publication number
JP3971197B2
JP3971197B2 JP2002026706A JP2002026706A JP3971197B2 JP 3971197 B2 JP3971197 B2 JP 3971197B2 JP 2002026706 A JP2002026706 A JP 2002026706A JP 2002026706 A JP2002026706 A JP 2002026706A JP 3971197 B2 JP3971197 B2 JP 3971197B2
Authority
JP
Japan
Prior art keywords
chromatic dispersion
optical amplifier
resonant structure
semiconductor optical
structure semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002026706A
Other languages
Japanese (ja)
Other versions
JP2003228032A (en
Inventor
拓也 大原
秀彦 高良
一平 社家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002026706A priority Critical patent/JP3971197B2/en
Publication of JP2003228032A publication Critical patent/JP2003228032A/en
Application granted granted Critical
Publication of JP3971197B2 publication Critical patent/JP3971197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光伝送路の波長分散を補償する波長分散補償器に関する。
【0002】
【従来の技術】
近年の通信需要の増大により、光通信幹線網においてチャネル数の増加とともに1チャネルあたりのビットレートが高速化してきている。光伝送路の波長分散は、1チャネルあたりのビットレートが高速になるほど影響が大きくなるので、波長分散補償が重要な課題の一つになっている。
【0003】
図9は、従来の光伝送系の概略構成を示す。図において、51は送信系、52は伝送用光ファイバ、53は光中継器、54は波長分散補償手段、55は受信系である。送信系51で発生させた光信号(図中A)は伝送用光ファイバ52に送信され、所定の距離ごとに挿入された光中継器53で光増幅されながら受信系55に伝送される。
【0004】
伝送直後の光信号は、伝送用光ファイバ52および光中継器53の波長分散により波形が劣化する(図中B)。この光信号を直接受信すると、隣接光パルス間の干渉により信号読み取りに誤りが生じる。また、光信号の速度が増加するほど、1タイムスロット(1ビットの占める時間幅)が減少するので、波長分散による伝送特性への影響は増大する。そこで、この伝送路(伝送用光ファイバ52および光中継器53)の波長分散を補償する波長分散補償手段54が用いられる。
【0005】
従来の波長分散補償手段54は、伝送路と逆の符号で絶対値が等しい分散値を有する光ファイバまたは光ファイバグレーティングを用い、伝送路の波長分散を補償していた(図中C)(参考文献1:小倉邦男,「分散補償光ファイバーの最近の開発状況」,応用物理,64,1,p.28,1995、参考文献2:J.Williams, "Fiber dispertion compensation using a chirped in-fiber Bragg grating", Electron. Lett., 30, 12, p.985, 1994) 。
【0006】
【発明が解決しようとする課題】
従来の波長分散補償手段54では、分散補償量を光ファイバ長や光ファイバグレーティングのグレーティング間隔により調整できる。しかし、作製後の分散値が固定であるので、特定の伝送路の初期分散値の補償には適するが、伝送路の交換や温度変化による分散値の変動には対応できなかった。
【0007】
一方、分散値の変動に対するこれまでの補償法としては、送信系の光源の波長を分散値変動に合わせて常に最適な伝送特性が得られるように制御する方法がある。しかし、そのためには高価な波長可変光源が必要となる。また、光バンドパスフィルタを含む光中継器では、光信号波長の変化により光増幅中継後の光信号パワーが変化する問題があった。
【0008】
本発明は、光通信システムにおいて、伝送路の波長分散の時間的な変動の補償を可能とし、分散補償の許容量の拡大を図ることができる波長分散補償器を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の波長分散補償器は、両端に反射部をもつ共振構造により周期的に変化する波長分散特性を有し、利得に応じて波長分散特性の分散の大きさが変化し、共振器長に応じて波長分散特性が光周波数軸上でシフトする共振構造半導体光増幅器と、共振構造半導体光増幅器の利得および共振器長を制御し、波長分散特性の分散の大きさおよび光周波数軸上の位置を制御する制御手段とを備え、共振構造半導体光増幅器に設定される波長分散特性により入力信号光の波長分散補償を行う構成である。
【0010】
なお、共振構造半導体光増幅器への注入電流を制御して利得を調整し、波長分散特性の分散の大きさを制御する構成としてもよい。また、共振構造半導体光増幅器への入力光パワーを制御して利得を調整し、波長分散特性の分散の大きさを制御する構成としてもよい。また、共振構造半導体光増幅器の温度を制御して共振器長を調整し、波長分散特性の光周波数軸上の位置を制御する構成としてもよい。
【0011】
共振構造半導体光増幅器の反射部の反射率をR、共振器長をL、半導体光増幅器を光が1回横切ったときの利得をG、屈折率をn、光速をc(m/s )、入力信号光のビットレートをB(bit/s )としたときに、
L<c/(4nB)
22<1
を満たす構成である。
【0012】
また、入力信号光として、光周波数間隔Δfの波長多重信号光を入力して波長分散補償を行うときに、
Δf=c/(2nL)
の関係を満たすように共振構造半導体光増幅器の共振器長(光学長)nLを設定する構成である。
【0013】
【発明の実施の形態】
(第1の実施形態)
図1は、本発明の波長分散補償器の第1の実施形態を示す。
【0014】
図において、1は共振構造半導体光増幅器、3は共振構造半導体光増幅器1の出力光の一部を分岐する光カプラ、4は分岐した光を電気信号に変換する受光回路、5は受光回路4の出力に応じて共振構造半導体光増幅器1の注入電流および温度を制御する制御部、2は共振構造半導体光増幅器1と光カプラ3との間に配置される光学バンドパスフィルタ、6は共振構造半導体光増幅器1への入射パワーを制御する光パワー制御手段である。なお、光学バンドパスフィルタ2および光パワー制御手段6は任意であり、後述するケースに応じて用いられる。
【0015】
伝送路を通過した光信号は伝送路が有する波長分散の影響を受けて波形が劣化する(図9のB)。この劣化した光信号を共振構造半導体光増幅器1に入力する。このとき、制御部5により共振構造半導体光増幅器1への注入電流と、共振構造半導体光増幅器1の温度を調整し、共振構造半導体光増幅器1の波長分散特性を変化させ、波長分散補償量を調整する。
【0016】
ここで、共振構造半導体光増幅器1の波長分散特性を調整する原理について、図2〜4を参照して説明する。図2において、共振構造半導体光増幅器1は、その両端の反射部11,12により光共振器(ファブリペロー共振器)を構成している。反射部としては、端面コーティング、DBR(分布ブラッグ反射鏡)などのグレーティング構造、スポットサイズ変換結合部など他の領域との接合構造などがある。
【0017】
このような共振器構造のため、透過波の複素振幅At は次式で表される(参考文献:A.Yariv 著、光エレクトロニクスの基礎、4章、丸善株式会社)。
At =[(1-R)G0.5/(1-RGexp(iδ))] Ai …(1)
δ=4πnL/λ=4πnLf/c
【0018】
ただし、Ai は入力光の複素振幅、Tは半導体光増幅器の光強度の透過率、Rは半導体光増幅器の両端の光強度の反射率、Gは半導体光増幅器の光強度の利得(半導体光増幅器を一方向に1回横切ったときの利得)、δは共振器一往復で生じる位相差、nは半導体の屈折率、Lは共振構造半導体光増幅器1の共振器長、λは信号光の波長、fは信号光の光周波数である。
【0019】
共振構造半導体光増幅器1の波長分散特性Dは、透過波と入射波の複素振幅比At/Ai の位相項をφ(=arg[At/Ai])とすると、
D=∂t/∂λ=−(2πc/λ2)(∂2φ/∂ω2) …(2)
で求められる。ここで、tは群速度遅延時間、ωは角周波数(=2πc/λ)である。したがって、(1),(2) 式より、共振構造半導体光増幅器1の波長分散特性は図3のようになる。
【0020】
図3から分かるように波長分散特性は周期的に変化しており、この周期は波長軸上でδλ=λ2/(2nL)、光周波数領域でΔf=c/(2nL)[Hz]である。この周期Δfを光信号のビットレートBの例えば2倍よりも大きくする(Δf>2B)ことにより、共振構造半導体光増幅器1を用いて光信号の波長分散補償を行うことができる。すなわち、共振器長Lの条件として
L<c/(4nB) …(3)
を満たすように設定する。
【0021】
ここで、共振構造半導体光増幅器1の温度を変化させると共振器長(光学長)nLが変化し、波長分散特性の周期Δfが変化する。この波長分散特性の周期Δfの変化(Δf+α)により、図4に示すように、分散スロープのピーク波長(ファブリペロー共振器の透過中心波長)の位置(図4のA,B)が少しずつずれていき、所定の光周波数領域(例えば1.55μm帯)では、波長分散特性が光周波数軸上でシフトした状態になる。なお、図2に示す反射部11,12の間隔(共振器長)を機械的に伸縮させる構成としてもよい。
【0022】
一方、共振構造半導体光増幅器1への注入電流を増加させると利得が増大するので、波長分散特性の分散の大きさが変化する。ただし、レーザ発振を起こさないためには、次の条件
2 2 <1 …(4)
を満たす必要がある。図3中の実線は注入電流が高く、利得Gが大きい場合であり、点線は注入電流が低く、利得Gが小さい場合である。
【0023】
以上説明したように、共振構造半導体光増幅器1は、注入電流と温度を調整することにより、波長分散特性の分散の大きさと光周波数軸(波長軸)上での位置を調整することができるので、光信号の波長分散補償に適用することができる。
【0024】
なお、実際に適用する場合は、まず適用する光通信システムのビットレートBに応じて、(3) 式を満たすような共振器長Lを有する共振構造半導体光増幅器を作製する。そして、温度により光周波数軸(波長軸)上での位置を調整し、注入電流により波長分散特性の分散の大きさを調整する。
【0025】
また、複数の波長の光信号を光周波数軸上で等間隔に配置したWDM(波長多重)システムの場合には、図5に示すように、そのチャネル間隔に合わせて、共振構造半導体光増幅器の波長分散特性の周期Δfを設定することにより、一括した波長分散補償を行うことができる。
【0026】
図6は、本実施形態の構成を用いた実験結果であり、5Gbit/s NRZ光信号をシングルモードファイバ70km伝送させたときの分散補償前後のアイパタンを示す。このアイパタンから明らかなように、マーク部分の広がりが抑えられており、効果的に分散補償がなされていることが分かる。なお、共振構造半導体光増幅器1の利得は入射パワーによっても変動するので、必要であれば、図1に示したように共振構造半導体光増幅器1の前段に入射パワーを一定に制御する光パワー制御手段6を配置してもよい。光パワー制御手段6としては、出力パワー一定制御を行う光ファイバ増幅器などを用いることができる。
【0027】
この波長分散補償器における波長分散補償量は、次のようにして最適値に制御される。図1に示すように、共振構造半導体光増幅器1から出力された光は光カプラ3で2分岐される。その一方の光を受光回路4で電気信号に変換し、制御部5に入力する。制御部5では、電気信号から光信号のクロック周波数成分を抽出し、クロック周波数成分電力Pc と電気信号の全電力Pa の比(Pc/Pa)を求める。ここで、光信号の分散補償が最適な場合にはPc/Paが最大になるので、Pc/Paが最大になるように注入電流と温度を制御し、波長分散補償量を最適化する。
【0028】
なお、RZ符号の光信号の場合には、光電変換後の電気信号自体にクロック周波数成分を含むので、これを抽出する。一方、NRZ符号の光信号の場合には、光電変換後の電気信号にクロック周波数成分がないので、光電変換後に非線形抽出回路を用いてクロック周波数成分を抽出する。
【0029】
また、制御部5で監視するフィードバック信号としては、クロック周波数成分の他にビット誤り率やQ値を用い、制御部5でビット誤り率が最小になるように制御したり、Q値が最大になるように制御してもよい。その場合は、受光回路4はそれぞれビット誤り率検出回路やQ値測定回路を用いる。
【0030】
また、共振構造半導体光増幅器1では、増幅された誘導放出光(ASE)が出力されるので、光信号の信号対雑音比が劣化する。この雑音成分の影響を低減するために、図1に示すように共振構造半導体光増幅器1と光カプラ3との間に、光信号の波長域のみを透過する光学バンドパスフィルタ2を配置してもよい。これにより、電力比Pc/Paの測定精度を高めることができる。
【0031】
(第2の実施形態)
図7は、本発明の波長分散補償器の第2の実施形態を示す。
【0032】
図において、1は共振構造半導体光増幅器、3は共振構造半導体光増幅器1の出力光の一部を分岐する光カプラ、4は分岐した光を電気信号に変換する受光回路、7は受光回路4の出力に応じて共振構造半導体光増幅器1の温度を制御する制御部、8は受光回路4の出力に応じて共振構造半導体光増幅器1への入射パワーを制御する光パワー制御手段、2は共振構造半導体光増幅器1と光カプラ3との間に配置される光学バンドパスフィルタである。なお、光学バンドパスフィルタ2は任意であり、第1の実施形態に示したケースに応じて用いられる。
【0033】
第1の実施形態では、制御部7により、共振構造半導体光増幅器1の注入電流を調整して波長分散特性の分散の大きさを制御していたが、本実施形態では、光パワー制御手段8で共振構造半導体光増幅器1の入射パワーを制御することにより利得を調整し、同様に波長分散特性の分散の大きさを制御するものである。
【0034】
光パワー制御手段8としては、エルビウム添加光ファイバ増幅器の励起光パワーを制御する構成、半導体光増幅器(共振構造のない通常タイプ)の注入電流を制御する構成などを用いることができる。また、これらの光増幅器と減衰量が可変な光減衰器と組合せて、共振構造半導体光増幅器1の入射パワーを制御する構成としてもよい。
【0035】
(第3の実施形態)
図8は、本発明の波長分散補償器の第3の実施形態を示す。本実施形態は、WDM信号の一括分散補償に適用する場合の構成例である。
【0036】
図において、伝送路の波長分散によって波形が劣化したWDM信号の波長分散補償を行う中継器20は、固定波長分散補償器21と、本発明の波長分散補償器22と、必要に応じて光増幅器23を備える。WDM信号は、固定波長分散補償器21で分散スロープが補償され、本発明の波長分散補償器22で波長分散が補償される。なお、本発明の波長分散補償器22は共振構造を有するので、分散補償と同時に光信号の増幅が可能であるが、さらに増幅を要する場合にはその後段に光増幅器23を用いてもよい。
【0037】
【発明の効果】
以上説明したように、本発明は、周期的な波長分散特性を有する共振構造半導体光増幅器を用い、その注入電流または入力光パワー、温度(共振器長)を制御することにより、可変型の波長分散補償器を実現することができる。この波長分散補償器を用いることにより、伝送路の波長分散の時間的な変動をリアルタイムで補償することができる。また、簡単な構成でWDM信号の一括分散補償にも適用することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示すブロック図。
【図2】共振構造半導体光増幅器の構成例を示す図。
【図3】共振構造半導体光増幅器の波長分散特性を示す図。
【図4】共振構造半導体光増幅器の波長分散特性のシフトの様子を示す図。
【図5】WDMシステムの波長分散補償への適用例を説明する図。
【図6】実験結果を示す図。
【図7】本発明の第2の実施形態を示すブロック図。
【図8】本発明の第3の実施形態を示すブロック図。
【図9】従来の光伝送系の概略構成を示す図。
【符号の説明】
1 共振構造半導体光増幅器
2 光学バンドパスフィルタ
3 光カプラ
4 受光回路
5,7 制御部
6,8 光パワー制御手段
11,12 反射部
20 中継器
21 固定波長分散補償器
22 本発明の波長分散補償器
23 光増幅器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chromatic dispersion compensator that compensates for chromatic dispersion in an optical transmission line.
[0002]
[Prior art]
With the increase in communication demand in recent years, the bit rate per channel has been increased with the increase in the number of channels in the optical communication trunk network. The effect of chromatic dispersion on an optical transmission line increases as the bit rate per channel increases, so chromatic dispersion compensation is an important issue.
[0003]
FIG. 9 shows a schematic configuration of a conventional optical transmission system. In the figure, 51 is a transmission system, 52 is a transmission optical fiber, 53 is an optical repeater, 54 is chromatic dispersion compensation means, and 55 is a reception system. The optical signal (A in the figure) generated by the transmission system 51 is transmitted to the transmission optical fiber 52 and transmitted to the reception system 55 while being optically amplified by the optical repeater 53 inserted at every predetermined distance.
[0004]
The waveform of the optical signal immediately after transmission deteriorates due to the wavelength dispersion of the transmission optical fiber 52 and the optical repeater 53 (B in the figure). When this optical signal is received directly, an error occurs in signal reading due to interference between adjacent optical pulses. Also, as the speed of the optical signal increases, one time slot (the time width occupied by one bit) decreases, so the influence on the transmission characteristics due to chromatic dispersion increases. Therefore, chromatic dispersion compensation means 54 for compensating the chromatic dispersion of this transmission line (transmission optical fiber 52 and optical repeater 53) is used.
[0005]
The conventional chromatic dispersion compensation means 54 compensates the chromatic dispersion of the transmission line by using an optical fiber or an optical fiber grating having the same sign as the transmission line and having the same absolute value as the transmission line (C in the figure) (reference) Reference 1: Kunio Ogura, “Recent Development Status of Dispersion Compensating Optical Fiber”, Applied Physics, 64, 1, p.28, 1995, Reference 2: J. Williams, “Fiber dispertion compensation using a chirped in-fiber Bragg grating ", Electron. Lett., 30, 12, p.985, 1994).
[0006]
[Problems to be solved by the invention]
In the conventional chromatic dispersion compensation means 54, the dispersion compensation amount can be adjusted by the optical fiber length or the grating interval of the optical fiber grating. However, since the dispersion value after fabrication is fixed, it is suitable for compensation of the initial dispersion value of a specific transmission line, but it cannot cope with fluctuations in the dispersion value due to exchange of the transmission line or temperature change.
[0007]
On the other hand, as a conventional compensation method for variation of the dispersion value, there is a method of controlling the wavelength of the light source of the transmission system so as to always obtain optimum transmission characteristics according to the variation of the dispersion value. However, this requires an expensive wavelength variable light source. In addition, the optical repeater including the optical bandpass filter has a problem that the optical signal power after the optical amplification relay is changed due to the change of the optical signal wavelength.
[0008]
It is an object of the present invention to provide a chromatic dispersion compensator that can compensate for temporal fluctuations of chromatic dispersion in a transmission line in an optical communication system and can increase the allowable amount of dispersion compensation.
[0009]
[Means for Solving the Problems]
The chromatic dispersion compensator of the present invention has a chromatic dispersion characteristic that periodically changes due to a resonance structure having reflection portions at both ends, and the magnitude of the dispersion of the chromatic dispersion characteristic changes according to the gain, so that the resonator length is increased. The resonant structure semiconductor optical amplifier in which the chromatic dispersion characteristic is shifted on the optical frequency axis in response to this, and the gain and resonator length of the resonant structure semiconductor optical amplifier are controlled, and the magnitude of dispersion of the chromatic dispersion characteristic and the position on the optical frequency axis And a control means for controlling the chromatic dispersion of the input signal light by the chromatic dispersion characteristic set in the resonant structure semiconductor optical amplifier.
[0010]
A configuration may be adopted in which the gain is adjusted by controlling the injection current to the resonant structure semiconductor optical amplifier to control the magnitude of dispersion of the wavelength dispersion characteristic. Further, the gain may be adjusted by controlling the optical power input to the resonant structure semiconductor optical amplifier, and the dispersion of the chromatic dispersion characteristic may be controlled. Further, the temperature of the resonant structure semiconductor optical amplifier may be controlled to adjust the resonator length to control the position of the wavelength dispersion characteristic on the optical frequency axis.
[0011]
The reflectivity of the reflection part of the resonant structure semiconductor optical amplifier is R, the resonator length is L, the gain when the light traverses the semiconductor optical amplifier once is G, the refractive index is n, the speed of light is c (m / s), When the bit rate of the input signal light is B (bit / s),
L <c / (4nB)
R 2 G 2 <1
It is the composition which satisfies.
[0012]
In addition, when performing wavelength dispersion compensation by inputting wavelength multiplexed signal light having an optical frequency interval Δf as input signal light,
Δf = c / (2 nL)
The resonator length (optical length) nL of the resonant structure semiconductor optical amplifier is set so as to satisfy the above relationship.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 shows a first embodiment of a chromatic dispersion compensator of the present invention.
[0014]
In the figure, 1 is a resonant structure semiconductor optical amplifier, 3 is an optical coupler that branches a part of the output light of the resonant structure semiconductor optical amplifier 1, 4 is a light receiving circuit that converts the branched light into an electrical signal, and 5 is a light receiving circuit 4 2 is an optical bandpass filter arranged between the resonant structure semiconductor optical amplifier 1 and the optical coupler 3, and 6 is a resonant structure. This is optical power control means for controlling the incident power to the semiconductor optical amplifier 1. The optical bandpass filter 2 and the optical power control means 6 are arbitrary and are used according to the case described later.
[0015]
The waveform of the optical signal that has passed through the transmission line deteriorates due to the influence of chromatic dispersion of the transmission line (B in FIG. 9). This deteriorated optical signal is input to the resonant structure semiconductor optical amplifier 1. At this time, the control unit 5 adjusts the injection current to the resonant structure semiconductor optical amplifier 1 and the temperature of the resonant structure semiconductor optical amplifier 1 to change the chromatic dispersion characteristic of the resonant structure semiconductor optical amplifier 1, thereby changing the chromatic dispersion compensation amount. adjust.
[0016]
Here, the principle of adjusting the wavelength dispersion characteristic of the resonant structure semiconductor optical amplifier 1 will be described with reference to FIGS. In FIG. 2, the resonant structure semiconductor optical amplifier 1 constitutes an optical resonator (Fabry-Perot resonator) by reflecting portions 11 and 12 at both ends thereof. Examples of the reflective portion include end face coating, a grating structure such as DBR (distributed Bragg reflector), and a junction structure with other regions such as a spot size conversion coupling portion.
[0017]
Due to such a resonator structure, the complex amplitude At of the transmitted wave is expressed by the following equation (reference: A. Yariv, Optoelectronics Basics, Chapter 4, Maruzen Co., Ltd.).
At = [(1-R) G 0.5 / (1-RGexp (iδ))] Ai (1)
δ = 4πnL / λ = 4πnLf / c
[0018]
Where Ai is the complex amplitude of the input light, T is the transmittance of the optical intensity of the semiconductor optical amplifier, R is the reflectance of the optical intensity at both ends of the semiconductor optical amplifier, and G is the gain of the optical intensity of the semiconductor optical amplifier (semiconductor optical amplifier) ) Is the phase difference generated by one round trip of the resonator, n is the refractive index of the semiconductor, L is the resonator length of the resonant structure semiconductor optical amplifier 1, and λ is the wavelength of the signal light. , F is the optical frequency of the signal light.
[0019]
The wavelength dispersion characteristic D of the resonant structure semiconductor optical amplifier 1 is as follows. When the phase term of the complex amplitude ratio At / Ai of the transmitted wave and the incident wave is φ (= arg [At / Ai])
D = ∂t / ∂λ = − (2πc / λ 2 ) (∂ 2 φ / ∂ω 2 ) (2)
Is required. Here, t is a group velocity delay time, and ω is an angular frequency (= 2πc / λ). Therefore, from the equations (1) and (2), the wavelength dispersion characteristic of the resonant structure semiconductor optical amplifier 1 is as shown in FIG.
[0020]
As can be seen from FIG. 3, the chromatic dispersion characteristics change periodically, and this period is δλ = λ 2 / ( 2 nL) on the wavelength axis and Δf = c / ( 2 nL) [Hz] in the optical frequency region. . By making the period Δf larger than, for example, twice the bit rate B of the optical signal (Δf> 2B), the chromatic dispersion compensation of the optical signal can be performed using the resonant structure semiconductor optical amplifier 1. That is, as a condition of the resonator length L, L <c / (4 nB) (3)
Set to satisfy.
[0021]
Here, when the temperature of the resonant structure semiconductor optical amplifier 1 is changed, the resonator length (optical length) nL is changed, and the period Δf of the wavelength dispersion characteristic is changed. Due to the change (Δf + α) of the period Δf of the wavelength dispersion characteristic, as shown in FIG. 4, the position of the peak wavelength of the dispersion slope (the transmission center wavelength of the Fabry-Perot resonator) (A and B in FIG. 4) is slightly shifted. Thus, in a predetermined optical frequency region (for example, 1.55 μm band), the chromatic dispersion characteristic is shifted on the optical frequency axis. In addition, it is good also as a structure which expands / contracts the space | interval (resonator length) of the reflection parts 11 and 12 shown in FIG.
[0022]
On the other hand, when the injection current to the resonant structure semiconductor optical amplifier 1 is increased, the gain increases, so that the dispersion of the wavelength dispersion characteristic changes. However, in order not to cause laser oscillation, the following condition R 2 G 2 <1 (4)
It is necessary to satisfy. The solid line in FIG. 3 is the case where the injected current is high and the gain G is large, and the dotted line is the case where the injected current is low and the gain G is small.
[0023]
As described above, the resonant structure semiconductor optical amplifier 1 can adjust the magnitude of dispersion of the wavelength dispersion characteristic and the position on the optical frequency axis (wavelength axis) by adjusting the injection current and temperature. It can be applied to chromatic dispersion compensation of optical signals.
[0024]
When actually applied, a resonant structure semiconductor optical amplifier having a resonator length L satisfying the expression (3) is first manufactured according to the bit rate B of the optical communication system to be applied. Then, the position on the optical frequency axis (wavelength axis) is adjusted by the temperature, and the degree of dispersion of the wavelength dispersion characteristic is adjusted by the injection current.
[0025]
Further, in the case of a WDM (wavelength multiplexing) system in which optical signals of a plurality of wavelengths are arranged at equal intervals on the optical frequency axis, as shown in FIG. By setting the period Δf of the chromatic dispersion characteristic, it is possible to perform chromatic dispersion compensation collectively.
[0026]
FIG. 6 is an experimental result using the configuration of the present embodiment, and shows eye patterns before and after dispersion compensation when a 5 Gbit / s NRZ optical signal is transmitted by a single mode fiber at 70 km. As is apparent from this eye pattern, the spread of the mark portion is suppressed, and it can be seen that dispersion compensation is effectively performed. Since the gain of the resonant structure semiconductor optical amplifier 1 varies depending on the incident power, if necessary, the optical power control for controlling the incident power to be constant at the front stage of the resonant structure semiconductor optical amplifier 1 as shown in FIG. Means 6 may be arranged. As the optical power control means 6, an optical fiber amplifier that performs constant output power control or the like can be used.
[0027]
The amount of chromatic dispersion compensation in this chromatic dispersion compensator is controlled to an optimum value as follows. As shown in FIG. 1, the light output from the resonant structure semiconductor optical amplifier 1 is branched into two by an optical coupler 3. One of the lights is converted into an electrical signal by the light receiving circuit 4 and input to the control unit 5. The control unit 5 extracts the clock frequency component of the optical signal from the electrical signal, and obtains the ratio (Pc / Pa) of the clock frequency component power Pc and the total power Pa of the electrical signal. Here, when dispersion compensation of the optical signal is optimum, Pc / Pa is maximized. Therefore, the injection current and temperature are controlled so that Pc / Pa is maximized, and the chromatic dispersion compensation amount is optimized.
[0028]
In the case of the optical signal of the RZ code, the electrical signal itself after photoelectric conversion includes a clock frequency component, so that it is extracted. On the other hand, in the case of an optical signal of NRZ code, since the electrical signal after photoelectric conversion has no clock frequency component, the clock frequency component is extracted using a nonlinear extraction circuit after photoelectric conversion.
[0029]
Further, as a feedback signal monitored by the control unit 5, a bit error rate or Q value is used in addition to the clock frequency component, and the control unit 5 performs control so that the bit error rate is minimized, or the Q value is maximized. You may control so that it may become. In that case, the light receiving circuit 4 uses a bit error rate detection circuit and a Q value measurement circuit, respectively.
[0030]
Further, since the resonant structure semiconductor optical amplifier 1 outputs amplified stimulated emission light (ASE), the signal-to-noise ratio of the optical signal is deteriorated. In order to reduce the influence of this noise component, an optical bandpass filter 2 that transmits only the wavelength region of the optical signal is disposed between the resonant structure semiconductor optical amplifier 1 and the optical coupler 3 as shown in FIG. Also good. Thereby, the measurement accuracy of the power ratio Pc / Pa can be increased.
[0031]
(Second Embodiment)
FIG. 7 shows a second embodiment of the chromatic dispersion compensator of the present invention.
[0032]
In the figure, 1 is a resonant structure semiconductor optical amplifier, 3 is an optical coupler that branches part of the output light of the resonant structure semiconductor optical amplifier 1, 4 is a light receiving circuit that converts the branched light into an electrical signal, and 7 is a light receiving circuit 4. A control unit for controlling the temperature of the resonant structure semiconductor optical amplifier 1 according to the output of the optical power; 8 an optical power control means for controlling the incident power to the resonant structure semiconductor optical amplifier 1 according to the output of the light receiving circuit 4; An optical band-pass filter disposed between the structural semiconductor optical amplifier 1 and the optical coupler 3. The optical bandpass filter 2 is optional and is used according to the case shown in the first embodiment.
[0033]
In the first embodiment, the control unit 7 adjusts the injection current of the resonant structure semiconductor optical amplifier 1 to control the magnitude of dispersion of the chromatic dispersion characteristic. However, in this embodiment, the optical power control means 8 The gain is adjusted by controlling the incident power of the resonant structure semiconductor optical amplifier 1, and the magnitude of dispersion of the wavelength dispersion characteristic is similarly controlled.
[0034]
As the optical power control means 8, a configuration for controlling the pumping light power of the erbium-doped optical fiber amplifier, a configuration for controlling the injection current of the semiconductor optical amplifier (normal type without a resonance structure), or the like can be used. Further, the incident power of the resonant structure semiconductor optical amplifier 1 may be controlled by combining these optical amplifiers and an optical attenuator with variable attenuation.
[0035]
(Third embodiment)
FIG. 8 shows a third embodiment of the chromatic dispersion compensator of the present invention. The present embodiment is a configuration example when applied to collective dispersion compensation of WDM signals.
[0036]
In the figure, a repeater 20 that performs chromatic dispersion compensation of a WDM signal whose waveform has deteriorated due to chromatic dispersion of a transmission line includes a fixed chromatic dispersion compensator 21, a chromatic dispersion compensator 22 of the present invention, and an optical amplifier as necessary. 23. The WDM signal is compensated for the dispersion slope by the fixed chromatic dispersion compensator 21 and is compensated for by the chromatic dispersion compensator 22 of the present invention. Since the chromatic dispersion compensator 22 of the present invention has a resonance structure, it is possible to amplify an optical signal simultaneously with dispersion compensation. However, if further amplification is required, an optical amplifier 23 may be used in the subsequent stage.
[0037]
【The invention's effect】
As described above, the present invention uses a resonant structure semiconductor optical amplifier having periodic chromatic dispersion characteristics, and controls its injection current or input optical power and temperature (resonator length), thereby changing the variable wavelength. A dispersion compensator can be realized. By using this chromatic dispersion compensator, it is possible to compensate in real time for temporal variations in chromatic dispersion in the transmission path. Further, it can be applied to collective dispersion compensation of WDM signals with a simple configuration.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment of the present invention.
FIG. 2 is a diagram showing a configuration example of a resonant structure semiconductor optical amplifier.
FIG. 3 is a graph showing chromatic dispersion characteristics of a resonant structure semiconductor optical amplifier.
FIG. 4 is a diagram showing a state of shift of chromatic dispersion characteristics of a resonant structure semiconductor optical amplifier.
FIG. 5 is a diagram for explaining an application example to chromatic dispersion compensation of a WDM system.
FIG. 6 is a diagram showing experimental results.
FIG. 7 is a block diagram showing a second embodiment of the present invention.
FIG. 8 is a block diagram showing a third embodiment of the present invention.
FIG. 9 is a diagram showing a schematic configuration of a conventional optical transmission system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Resonant structure semiconductor optical amplifier 2 Optical band pass filter 3 Optical coupler 4 Light receiving circuit 5, 7 Control part 6, 8 Optical power control means 11, 12 Reflecting part 20 Repeater 21 Fixed chromatic dispersion compensator 22 Chromatic dispersion compensation of this invention 23 Optical Amplifier

Claims (6)

両端に反射部をもつ共振構造により周期的に変化する波長分散特性を有し、利得に応じて波長分散特性の分散の大きさが変化し、共振器長に応じて波長分散特性が光周波数軸上でシフトする共振構造半導体光増幅器と、
前記共振構造半導体光増幅器の利得および共振器長を制御し、前記波長分散特性の分散の大きさおよび光周波数軸上の位置を制御する制御手段とを備え、
前記共振構造半導体光増幅器に設定される波長分散特性により入力信号光の波長分散補償を行う構成である
ことを特徴とする波長分散補償器。
It has a chromatic dispersion characteristic that changes periodically due to the resonant structure with reflecting parts at both ends, the dispersion of the chromatic dispersion characteristic changes according to the gain, and the chromatic dispersion characteristic changes according to the resonator length. A resonant structure semiconductor optical amplifier that shifts up;
Control means for controlling the gain of the resonant structure semiconductor optical amplifier and the resonator length, and controlling the magnitude of dispersion of the chromatic dispersion characteristic and the position on the optical frequency axis;
A chromatic dispersion compensator characterized in that chromatic dispersion compensation of input signal light is performed by chromatic dispersion characteristics set in the resonant structure semiconductor optical amplifier.
請求項1に記載の波長分散補償器において、
前記共振構造半導体光増幅器への注入電流を制御して前記利得を調整し、前記波長分散特性の分散の大きさを制御する構成である
ことを特徴とする波長分散補償器。
The chromatic dispersion compensator according to claim 1, wherein
A chromatic dispersion compensator, characterized in that the gain is adjusted by controlling an injection current to the resonant-structure semiconductor optical amplifier to control the magnitude of dispersion of the chromatic dispersion characteristic.
請求項1に記載の波長分散補償器において、
前記共振構造半導体光増幅器への入力光パワーを制御して前記利得を調整し、前記波長分散特性の分散の大きさを制御する構成である
ことを特徴とする波長分散補償器。
The chromatic dispersion compensator according to claim 1, wherein
A chromatic dispersion compensator characterized in that the gain is adjusted by controlling the optical power input to the resonant structure semiconductor optical amplifier to control the magnitude of dispersion of the chromatic dispersion characteristic.
請求項1に記載の波長分散補償器において、
前記共振構造半導体光増幅器の温度を制御して前記共振器長を調整し、前記波長分散特性の光周波数軸上の位置を制御する構成である
ことを特徴とする波長分散補償器。
The chromatic dispersion compensator according to claim 1, wherein
A chromatic dispersion compensator, characterized in that the temperature of the resonant structure semiconductor optical amplifier is controlled to adjust the resonator length to control the position of the chromatic dispersion characteristic on the optical frequency axis.
請求項1に記載の波長分散補償器において、
前記共振構造半導体光増幅器の反射部の反射率をR、共振器長をL、半導体光増幅器を光が1回横切ったときの利得をG、屈折率をn、光速をc(m/s )、入力信号光のビットレートをB(bit/s )としたときに、
L<c/(4nB)
22<1
を満たす構成であることを特徴とする波長分散補償器。
The chromatic dispersion compensator according to claim 1, wherein
The reflectivity of the reflection part of the resonant structure semiconductor optical amplifier is R, the resonator length is L, the gain when the light crosses the semiconductor optical amplifier once is G, the refractive index is n, and the speed of light is c (m / s). When the bit rate of the input signal light is B (bit / s),
L <c / (4nB)
R 2 G 2 <1
A chromatic dispersion compensator characterized by satisfying the above requirements.
請求項5に記載の波長分散補償器において、
前記入力信号光として、光周波数間隔Δfの波長多重信号光を入力して波長分散補償を行うときに、
Δf=c/(2nL)
の関係を満たすように前記共振構造半導体光増幅器の共振器長(光学長)nLを設定する構成であることを特徴とする波長分散補償器。
The chromatic dispersion compensator according to claim 5,
When performing wavelength dispersion compensation by inputting wavelength multiplexed signal light having an optical frequency interval Δf as the input signal light,
Δf = c / (2 nL)
The chromatic dispersion compensator is characterized in that the resonator length (optical length) nL of the resonant structure semiconductor optical amplifier is set so as to satisfy the above relationship.
JP2002026706A 2002-02-04 2002-02-04 Chromatic dispersion compensator Expired - Fee Related JP3971197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002026706A JP3971197B2 (en) 2002-02-04 2002-02-04 Chromatic dispersion compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002026706A JP3971197B2 (en) 2002-02-04 2002-02-04 Chromatic dispersion compensator

Publications (2)

Publication Number Publication Date
JP2003228032A JP2003228032A (en) 2003-08-15
JP3971197B2 true JP3971197B2 (en) 2007-09-05

Family

ID=27748461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002026706A Expired - Fee Related JP3971197B2 (en) 2002-02-04 2002-02-04 Chromatic dispersion compensator

Country Status (1)

Country Link
JP (1) JP3971197B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081432A1 (en) 2004-02-20 2005-09-01 Fujitsu Limited Distributed compensation method and distributed compensator
JP4894888B2 (en) 2009-05-29 2012-03-14 富士通株式会社 Dispersion compensation device, dispersion compensation method, optical receiver, and optical reception method

Also Published As

Publication number Publication date
JP2003228032A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
US7035545B2 (en) Bidirectional multichannel optical telecommunication system
US5943151A (en) Mehtod of selectively compensating for the chromatic dispersion of optical signals
US6437888B1 (en) Device for adding and dropping optical signals
US7321736B2 (en) Optical receiving station, optical communication system, and dispersion controlling method
US6034812A (en) Gain equalizer and optical transmission system having the gain equalizer
US20010021288A1 (en) Method, device, and system for waveform shaping of signal light
JP2000010129A (en) Optical gate device, production of this device and system having this device
US6859307B2 (en) Method and device for waveform shaping of signal light
JPH01152819A (en) Optical communication system and optical amplifier
Srivastava et al. 1Tb/s Transmission of 100 WDM 10 Gb/s Channels Over 400 km of TrueWave™ Fiber
JP2000323786A (en) Method, device, and system for shaping waveform of signal light
KR20020027515A (en) Gain flattening with nonlinear sagnac amplifiers
CN104330939A (en) SBS broadband tunable optical fiber delay system
Feiste et al. 40 Gbit/s transmission over 434 km standard-fiber using polarisation independent mid-span spectral inversion
Achaerandio et al. New WDM amplified network for optical sensor multiplexing
KR100283866B1 (en) Gain Control Device and Method of Fiber Optic Amplifier
US6532106B2 (en) All-optical gain controlled bidirectional add/drop optical amplifier
JP3971197B2 (en) Chromatic dispersion compensator
JPH0777627A (en) Optical multiplexer/demultiplexer and optical multiplexing/demultiplexing device
JP2003050410A (en) Method for amplification of wavelength division multiplex(wdm) signal in wdm transmission system, as well as optical amplifier, optical amplifier system, and wdm transmission system for it
JP4411748B2 (en) Optical transmission system and optical transmission method
Urban et al. Rayleigh backscattering-suppression in a WDM access network employing a reflective semiconductor optical amplifier
EP0598387B1 (en) Optical transmission line and distortion reduction technique
US20050200945A1 (en) Optical fiber communication systems with brillouin effect amplification
López-Amo et al. Amplified fiber-optic networks for sensor multiplexing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees