JP3970830B2 - Control device for four-wheel drive vehicle - Google Patents

Control device for four-wheel drive vehicle Download PDF

Info

Publication number
JP3970830B2
JP3970830B2 JP2003354085A JP2003354085A JP3970830B2 JP 3970830 B2 JP3970830 B2 JP 3970830B2 JP 2003354085 A JP2003354085 A JP 2003354085A JP 2003354085 A JP2003354085 A JP 2003354085A JP 3970830 B2 JP3970830 B2 JP 3970830B2
Authority
JP
Japan
Prior art keywords
engine
alternator
wheel drive
slip state
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003354085A
Other languages
Japanese (ja)
Other versions
JP2005124267A (en
Inventor
毅 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2003354085A priority Critical patent/JP3970830B2/en
Publication of JP2005124267A publication Critical patent/JP2005124267A/en
Application granted granted Critical
Publication of JP3970830B2 publication Critical patent/JP3970830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Description

本発明は、前後輪のどちらか一方の車輪をエンジンによって駆動し、他方の車輪をエンジンにより駆動するオルタネータの発電によって作動される電動モータにより駆動自在な4輪駆動車の制御装置に関する。   The present invention relates to a control device for a four-wheel drive vehicle that can be driven by an electric motor that is driven by power generation of an alternator that drives one of the front and rear wheels by an engine and drives the other wheel by the engine.

近年、4輪駆動車の形態として、前後輪のどちらか一方の車輪をエンジンによって駆動し、他方の車輪をエンジンにより駆動するオルタネータの発電によって作動される電動モータにより駆動自在な4輪駆動車が開発され、実用化されはじめている。   In recent years, as a form of a four-wheel drive vehicle, there is a four-wheel drive vehicle that can be driven by an electric motor that is operated by power generation of an alternator that drives one of the front and rear wheels by an engine and the other wheel driven by the engine. It has been developed and put into practical use.

例えば、特開2000−142155号公報では、スリップ状態時には、通常、オルタネータとバッテリを接続している切換スイッチを切り換えて、オルタネータの発電を後輪を駆動する電動モータに供給する4輪駆動車が開示されている。この技術では、スリップ状態時、オルタネータの発電量はアクセル開度に応じて制御するようになっており、アクセル開度が大でエンジン出力が大きい時には、オルタネータの発電量を大とし、アクセル開度が小でエンジン出力が小さい時には、オルタネータの発電量を徐々に増大させる。これにより、エンジン出力が小さい状態で、エンジンに大負荷が加わってエンストが生じるのを防止することが図られている。
特開平2000−142155号公報
For example, in Japanese Patent Application Laid-Open No. 2000-142155, in a slip state, a four-wheel drive vehicle that normally switches a changeover switch connecting an alternator and a battery and supplies power generated by the alternator to an electric motor that drives a rear wheel is disclosed. It is disclosed. In this technology, the power generation amount of the alternator is controlled according to the accelerator opening degree in the slip state. When the accelerator opening degree is large and the engine output is large, the power generation amount of the alternator is increased and the accelerator opening degree is increased. When the engine output is small, the power generation amount of the alternator is gradually increased. Accordingly, it is intended to prevent engine stall due to a heavy load applied to the engine in a state where the engine output is small.
JP 2000-142155 A

しかしながら、上述の特許文献1では、スリップ状態時のエンストを防止することにのみ主眼が置かれているため、例えば、スリップ状態が小さいにもかかわらず、アクセル開度が大でエンジン出力が大きい時には、オルタネータの発電量が大とされるため、スリップ状態を解消しようとして後輪が電動モータによって大きな出力で駆動されてしまう。このため、実際のスリップ状態を反映した、前輪と後輪との間の適切な動力配分が行えず、スリップ状態が解消された時に急に、大きな出力で駆動されていた電動モータが停止して、ドライバが違和感を感じるといった問題がある。   However, in Patent Document 1 described above, the main focus is on preventing the engine stall in the slip state. For example, when the accelerator opening is large and the engine output is large despite the small slip state. Since the power generation amount of the alternator is increased, the rear wheel is driven with a large output by the electric motor in an attempt to eliminate the slip state. For this reason, the appropriate power distribution between the front wheels and the rear wheels, which reflects the actual slip state, cannot be performed, and the electric motor that has been driven with a large output suddenly stops when the slip state is resolved. There is a problem that the driver feels uncomfortable.

本発明は上記事情に鑑みてなされたもので、エンジンに過大な負荷をかけることなく、実際のスリップ状態を反映して前輪と後輪の駆動力配分を最適に制御し、ドライブフィーリングに優れた4輪駆動車の制御装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and optimally controls the driving force distribution between the front wheels and the rear wheels by reflecting the actual slip state without applying an excessive load to the engine, and is excellent in drive feeling. Another object of the present invention is to provide a control device for a four-wheel drive vehicle.

本発明は、前後輪のどちらか一方の車輪をエンジンによって駆動し、他方の車輪を上記エンジンにより駆動するオルタネータの発電によって作動される電動モータにより駆動自在な4輪駆動車の制御装置において、前輪の回転数と後輪の回転数との差を前後差回転として演算する前後差回転演算手段と、車両のスリップ状態を検出するスリップ状態検出手段と、上記スリップ状態検出手段が車両のスリップ状態を検出し、且つ、エンジン回転数と車速の少なくともどちらかが予め設定しておいた閾値を超える場合は、上記前後差回転に応じた上記オルタネータの発電を行わせるオルタネータ制御手段と、上記スリップ状態検出手段が車両のスリップ状態を検出し、且つ、エンジン回転数と車速の少なくともどちらかが上記予め設定しておいた閾値を超えない場合は、上記エンジンに対する負荷を抑制させるエンジン負荷抑制手段とを備えたことを特徴としている。   The present invention relates to a control device for a four-wheel drive vehicle that can be driven by an electric motor that is driven by power generation of an alternator that drives one of the front and rear wheels by an engine and the other wheel driven by the engine. The difference rotation calculation means for calculating the difference between the rotation speed of the vehicle and the rotation speed of the rear wheel as a front-rear difference rotation, the slip condition detection means for detecting the slip condition of the vehicle, and the slip condition detection means detects the slip condition of the vehicle. And when the engine speed and / or the vehicle speed exceed a preset threshold, the alternator control means for generating the alternator according to the forward / backward differential rotation, and the slip state detection The means detects the slip state of the vehicle, and at least one of the engine speed and the vehicle speed is set in advance. Does not exceed the value is characterized in that an engine load suppressing means to suppress the load on the engine.

本発明による4輪駆動車の制御装置によれば、エンジンに過大な負荷をかけることなく、実際のスリップ状態を反映して前輪と後輪の駆動力配分を最適に制御し、ドライブフィーリングに優れるという効果を奏する。   According to the control device for a four-wheel drive vehicle according to the present invention, the driving force distribution between the front wheels and the rear wheels is optimally controlled by reflecting the actual slip state without imposing an excessive load on the engine. The effect is excellent.

以下、図面に基づいて本発明の実施の形態を説明する。
図1〜図5は本発明の実施の第1形態を示し、図1は4輪駆動車の駆動系及び制御系の全体を示す概略説明図、図2は4輪駆動制御のメインプログラムのフローチャート、図3はスリップ状態でエンジン回転数が高い時に前後差回転に応じて設定されるオルタネータ負荷のマップの説明図、図4はスリップ状態でエンジン回転数が低い時にエンジン回転数に応じて設定されるオルタネータ負荷のマップの説明図、図5は本4輪駆動制御の低μ路での発進・加速時における効果の一例を示すタイムチャートである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 5 show a first embodiment of the present invention, FIG. 1 is a schematic explanatory diagram showing the entire drive system and control system of a four-wheel drive vehicle, and FIG. 2 is a flowchart of a main program for four-wheel drive control. FIG. 3 is an explanatory diagram of a map of an alternator load that is set according to the front-rear differential rotation when the engine speed is high in the slip state, and FIG. 4 is set according to the engine speed when the engine speed is low in the slip state. FIG. 5 is a time chart showing an example of the effect of the four-wheel drive control when starting and accelerating on a low μ road.

図1において、符号1は4輪駆動車を示し、この4輪駆動車1では、エンジン2により発生された駆動力は、自動変速機3、フロントデファレンシャル4を介して前輪5fl,5frに伝達される。   In FIG. 1, reference numeral 1 denotes a four-wheel drive vehicle. In this four-wheel drive vehicle 1, the driving force generated by the engine 2 is transmitted to the front wheels 5 fl and 5 fr via the automatic transmission 3 and the front differential 4. The

また、図1において、符号6はエンジン2により駆動されて発電するオルタネータを示し、このオルタネータ6の発電により電動モータ(後輪駆動モータ)7が作動される。この後輪駆動モータ7により発生した駆動力は、所定の減速装置8、リヤデファレンシャル9を介して後輪5rl,5rrに伝達される。   In FIG. 1, reference numeral 6 denotes an alternator that is driven by the engine 2 to generate electric power. The electric motor (rear wheel drive motor) 7 is operated by the electric power generated by the alternator 6. The driving force generated by the rear wheel drive motor 7 is transmitted to the rear wheels 5rl and 5rr via a predetermined speed reducer 8 and a rear differential 9.

一方、4輪駆動車1には、4輪の車輪速センサ11fl,11fr,11rl,11rr、及び、エンジン回転数センサ12等の各センサが設けられており、これら各センサからの4輪の車輪速ωfl,ωfr,ωrl,ωrr、エンジン回転数NEの信号は、後述の4輪駆動制御を行う制御装置20に入力される。   On the other hand, the four-wheel drive vehicle 1 is provided with sensors such as four wheel speed sensors 11fl, 11fr, 11rl, 11rr and an engine speed sensor 12, and four wheels from these sensors. The signals of the speeds ωfl, ωfr, ωrl, ωrr, and engine speed NE are input to the control device 20 that performs four-wheel drive control described later.

制御装置20は、上述の各センサからの信号が入力され、後輪駆動モータ7のモータ回転数等を監視しながらオルタネータ6を制御する。すなわち、制御装置20は、前後差回転演算手段、スリップ状態検出手段、オルタネータ制御手段、エンジン負荷抑制手段としての機能を備えて構成されるものであり、以下、制御装置20における4輪駆動制御を、図2のフローチャートで説明する。   The control device 20 receives signals from the above-described sensors, and controls the alternator 6 while monitoring the motor speed of the rear wheel drive motor 7 and the like. That is, the control device 20 is configured to have functions as a front-rear differential rotation calculation unit, a slip state detection unit, an alternator control unit, and an engine load suppression unit. This will be described with reference to the flowchart of FIG.

まず、ステップ(以下、「S」と略称)101で必要なパラメータ、すなわち、4輪の車輪速ωfl,ωfr,ωrl,ωrr、エンジン回転数NEの信号を読み込む。   First, in step (hereinafter abbreviated as “S”) 101, necessary parameters, that is, signals of four-wheel wheel speeds ωfl, ωfr, ωrl, ωrr, and engine speed NE are read.

次に、S102に進み、前輪の回転数((ωfl+ωfr)/2)と後輪の回転数((ωrl+ωrr)/2)との差を前後差回転ΔFRとして演算する。   Next, in S102, the difference between the rotational speed of the front wheels ((ωfl + ωfr) / 2) and the rotational speed of the rear wheels ((ωrl + ωrr) / 2) is calculated as the front-rear differential rotation ΔFR.

次いで、S103に進み、前後差回転ΔFRと予め実験等で求めておいた値Δc1とを比較し、前後差回転ΔFRがΔc1より小さい場合(ΔFR<Δc1の場合)は、スリップ状態ではないと判定してS104に進み、オルタネータ6による後輪駆動モータ7への電力供給をストップさせて、プログラムを抜ける。   Next, the process proceeds to S103, where the forward / backward differential rotation ΔFR is compared with a value Δc1 obtained in advance through experiments or the like, and when the forward / backward differential rotation ΔFR is smaller than Δc1 (when ΔFR <Δc1), it is determined that there is no slip state. In S104, the power supply to the rear wheel drive motor 7 by the alternator 6 is stopped, and the program is exited.

また、S103の判定の結果、前後差回転ΔFRがΔc1以上の場合(ΔFR≧Δc1の場合)は、スリップ状態と判定し、S105以降へと進む。   If the result of determination in S103 is that the forward / backward differential rotation ΔFR is equal to or greater than Δc1 (when ΔFR ≧ Δc1), it is determined that the vehicle is slipping and the process proceeds to S105 and thereafter.

S105では、エンジン回転数NEを予め設定しておいた閾値NEC(例えば、アイドル回転数+500rpmで、具体的には約1000rpm程度の値)と比較し、エンジン回転数NEが予め設定しておいた閾値NEC以上と判定した場合(NE≧NECの場合)は、エンジン出力は十分と判定してS106に進み、エンジン2の過大な駆動力をオルタネータ6の発電に活用すべく、エンジン2により前後差回転ΔFRに応じてオルタネータ6の発電を行わせ、この発電量で後輪駆動モータ7を駆動させる。この前後差回転ΔFRに応じたオルタネータ6の発電は、予め記憶しておいたマップに基づき行われる。このマップは、図3に示すように、前後差回転ΔFRが大きいほど大きなオルタネータ6の発電が行われて、後輪側の駆動力配分が大きくなり、後輪側を速く駆動させて前後差回転ΔFRを小さくするようになっている。   In S105, the engine speed NE is set in advance by comparing the engine speed NE with a preset threshold value NEC (for example, idling speed +500 rpm, specifically about 1000 rpm). If it is determined that the threshold value is more than NEC (when NE ≧ NEC), it is determined that the engine output is sufficient, and the process proceeds to S106. The alternator 6 generates power according to the rotation ΔFR, and the rear wheel drive motor 7 is driven with this power generation amount. The power generation of the alternator 6 according to the front-rear differential rotation ΔFR is performed based on a map stored in advance. In this map, as shown in FIG. 3, the larger the forward / backward differential rotation ΔFR is, the larger the power generation of the alternator 6 is, the greater the rear wheel side driving force distribution is, and the rear wheel side is driven faster to drive forward / backward differential rotation. ΔFR is reduced.

また、S105の判定の結果、エンジン回転数NEが予め設定しておいた閾値NECより小さいと判定した場合(NE<NECの場合)は、エンジン出力は、オルタネータ6の発電を補うには不十分と判定してS107に進み、エンジン2に対する負荷を抑制するために、オルタネータ6の発電量を制限する。このオルタネータ6の発電量の制限は、例えば、図4に示すようなマップによって行い、エンジン回転数NEが極低回転数の領域ではオルタネータ6の発電を行わないようにして、この領域からエンジン回転数NEが高くなるほど、次第にオルタネータ6の発電量が上昇するように設定される。   If it is determined in S105 that the engine speed NE is smaller than the preset threshold NEC (when NE <NEC), the engine output is insufficient to supplement the power generation of the alternator 6. In step S107, the power generation amount of the alternator 6 is limited to suppress the load on the engine 2. The power generation amount of the alternator 6 is limited by, for example, a map as shown in FIG. 4, and the alternator 6 does not generate power in a region where the engine speed NE is extremely low. It is set such that the power generation amount of the alternator 6 gradually increases as the number NE increases.

S106、或いは、S107の処理の後は、S108に進み、S106、或いは、S107で設定したオルタネータ6の発電量を基にして後輪駆動モータ7へ電力供給を実行させ、プログラムを抜ける。   After the processing of S106 or S107, the process proceeds to S108, where the power supply to the rear wheel drive motor 7 is executed based on the power generation amount of the alternator 6 set in S106 or S107, and the program is exited.

本実施の第1形態のような、前輪をエンジン2によって駆動し、後輪をエンジン2により駆動するオルタネータ6の発電によって作動される後輪駆動モータ7により駆動する4輪駆動車1では、低μ路におけるスリップを伴う発進・加速時においては、例えば、図5に示すように、前後輪の車輪速は、前輪側が速く回転する傾向にある。   In the four-wheel drive vehicle 1 driven by the rear wheel drive motor 7 driven by the power generation of the alternator 6 that drives the front wheels by the engine 2 and drives the rear wheels by the engine 2 as in the first embodiment, When starting and accelerating with slip on the μ road, for example, as shown in FIG. 5, the front and rear wheels tend to rotate faster on the front wheel side.

すなわち、スリップを伴う低μ路においては、車両1が発進してから(時刻t1から)加速をしていくと、前輪側の車輪速が速くなり、そのまま何も制御が行われない場合では、図5中の一点破線で示すように、前輪と後輪との車輪速の差(前後差回転ΔFR)が広がって、グリップ力が失われ、安定した発進・加速ができない虞がある。   That is, on a low μ road with a slip, when the vehicle 1 starts to accelerate (from time t1), the wheel speed on the front wheel side increases and no control is performed as it is. As indicated by the one-dot broken line in FIG. 5, there is a possibility that the difference in wheel speed between the front wheels and the rear wheels (front / rear rotational difference ΔFR) is widened, the grip force is lost, and stable start / acceleration cannot be performed.

本実施の第1形態では、前後差回転ΔFRが、予め実験等で求めておいた値Δc1以上となった場合(時刻t2)に、スリップ状態が発生したと判定し、エンジン回転数NEが予め設定しておいた閾値NECより小さいと判定した場合は、エンジン2の出力が不十分であるため、エンジン2に対して負担がかからないようにオルタネータ6の発電量を制限する。一方、スリップ状態が発生したと判定し、エンジン回転数NEが予め設定しておいた閾値NEC以上と判定した場合は、エンジン出力は十分と判定して、エンジン2の過大な駆動力をオルタネータ6の発電に活用すべく、エンジン2により前後差回転ΔFRに応じたオルタネータ6の発電を行わせ、この発電量で後輪駆動モータ7を駆動させる。これにより、後輪側の駆動力配分が大きくなり、後輪側を速く駆動させて前後差回転ΔFRを小さくする。   In the first embodiment, when the front-rear rotational difference ΔFR is equal to or greater than the value Δc1 previously obtained through experiments or the like (time t2), it is determined that a slip condition has occurred, and the engine speed NE is determined in advance. If it is determined that the output is smaller than the preset threshold NEC, the power output of the alternator 6 is limited so that the engine 2 is not burdened because the output of the engine 2 is insufficient. On the other hand, when it is determined that a slip condition has occurred and the engine speed NE is determined to be greater than or equal to a preset threshold value NEC, it is determined that the engine output is sufficient, and the excessive driving force of the engine 2 is increased by the alternator 6. In order to utilize this power generation, the engine 2 causes the alternator 6 to generate power in accordance with the forward / backward differential rotation ΔFR, and the rear wheel drive motor 7 is driven with this power generation amount. As a result, the driving force distribution on the rear wheel side increases, and the rear wheel side is driven quickly to reduce the front-rear differential rotation ΔFR.

次に、図6〜図8は本発明の実施の第2形態を示し、図6は4輪駆動車の駆動系及び制御系の全体を示す概略説明図、図7は4輪駆動制御のメインプログラムのフローチャート、図8はスリップ状態でエンジン回転数が低い時にエンジン回転数に応じて設定されるクラッチ締結力のマップの説明図である。尚、本実施の第2形態は、エンジン2と自動変速機3との間にエンジン駆動力の伝達を制御自在な油圧クラッチを設け、スリップ状態でエンジン2の出力が不十分な時には、この油圧クラッチを制御することでエンジン2に対する負荷を制限するようにし、オルタネータの発電量は前後差回転ΔFRに応じて行うことが前記第1形態とは異なる。その他の構成、作用は、前記第1形態と同様であるので、これらについては第1形態と同じ符号を記し、説明は省略する。   Next, FIGS. 6 to 8 show a second embodiment of the present invention, FIG. 6 is a schematic explanatory diagram showing the entire drive system and control system of a four-wheel drive vehicle, and FIG. 7 is a main view of four-wheel drive control. FIG. 8 is a flowchart of the program, and FIG. 8 is an explanatory diagram of a map of clutch engagement force set according to the engine speed when the engine speed is low in the slip state. In the second embodiment, a hydraulic clutch capable of controlling transmission of engine driving force is provided between the engine 2 and the automatic transmission 3, and this hydraulic pressure is output when the output of the engine 2 is insufficient in a slip state. Unlike the first embodiment, the load on the engine 2 is limited by controlling the clutch, and the power generation amount of the alternator is performed in accordance with the forward / backward differential rotation ΔFR. Since other configurations and operations are the same as those of the first embodiment, the same reference numerals as those of the first embodiment are used, and description thereof is omitted.

すなわち、図6に示すように、エンジン2と自動変速機3との間には、エンジン駆動力の伝達を制御自在な駆動力伝達制御手段としての油圧クラッチ(クラッチ制御手段)31が設けられており、この油圧クラッチ31は、制御装置30からの信号により、そのクラッチ締結力が制御される。   That is, as shown in FIG. 6, a hydraulic clutch (clutch control means) 31 is provided between the engine 2 and the automatic transmission 3 as drive force transmission control means that can control transmission of engine drive force. In addition, the clutch fastening force of the hydraulic clutch 31 is controlled by a signal from the control device 30.

具体的には、図7のフローチャートで示すように、S105で、エンジン回転数NEを予め設定しておいた閾値NECと比較し、エンジン回転数NEが予め設定しておいた閾値NEC以上と判定した場合(NE≧NECの場合)は、エンジン出力は十分と判定してS106に進み、エンジン2の過大な駆動力をオルタネータ6の発電に活用すべく、エンジン2により前後差回転ΔFRに応じてオルタネータ6の発電を行わせ、この発電量で後輪駆動モータ7を駆動させる。この前後差回転ΔFRに応じたオルタネータ6の発電は、前記第1形態と同様、例えば、予め記憶しておいた、図3に示すようなマップに基づき行われる。そして、S106の後は、S108に進み、S106で設定したオルタネータ6の発電量を基にして後輪駆動モータ7へ電力供給を実行させ、プログラムを抜ける。   Specifically, as shown in the flowchart of FIG. 7, in step S105, the engine speed NE is compared with a preset threshold NEC, and it is determined that the engine speed NE is equal to or greater than the preset threshold NEC. If this is the case (NE ≧ NEC), it is determined that the engine output is sufficient, and the process proceeds to S106. In order to utilize the excessive driving force of the engine 2 for power generation of the alternator 6, the engine 2 responds to the forward / backward differential rotation ΔFR. The alternator 6 generates power, and the rear wheel drive motor 7 is driven with this power generation amount. The power generation of the alternator 6 according to the front-rear differential rotation ΔFR is performed based on a map as shown in FIG. 3 stored in advance, for example, as in the first embodiment. Then, after S106, the process proceeds to S108, where power is supplied to the rear wheel drive motor 7 based on the power generation amount of the alternator 6 set in S106, and the program is exited.

一方、S105の判定の結果、エンジン回転数NEが予め設定しておいた閾値NECより小さいと判定した場合(NE<NECの場合)は、エンジン出力は、オルタネータ6の発電を補うには不十分と判定してS201に進み、エンジン2に対する負荷を抑制するために、油圧クラッチ31を制御する。この油圧クラッチ31の制御は、例えば、図8に示すようなマップに基づき行われ、オルタネータ6の負荷がエンジン出力トルクより高いと想定される領域では、クラッチ締結力を0、すなわち、油圧クラッチ31を解放し、エンジン駆動力が前輪に伝達しないように制御する。逆に、オルタネータ6の負荷がエンジン出力トルクより小さくなっていると想定される領域では、徐々にクラッチ締結力を上昇させ、前輪に対して駆動力が伝達するように制御する。このように油圧クラッチ31の締結力を制御することで、エンジン2に対して過大な負荷がかかることを抑制する。   On the other hand, as a result of the determination in S105, if it is determined that the engine speed NE is smaller than the preset threshold NEC (when NE <NEC), the engine output is insufficient to supplement the power generation of the alternator 6. In step S201, the hydraulic clutch 31 is controlled to suppress the load on the engine 2. The control of the hydraulic clutch 31 is performed based on, for example, a map as shown in FIG. 8, and in a region where the load of the alternator 6 is assumed to be higher than the engine output torque, the clutch engagement force is 0, that is, the hydraulic clutch 31. Is controlled so that the engine driving force is not transmitted to the front wheels. Conversely, in a region where the load on the alternator 6 is assumed to be smaller than the engine output torque, control is performed so that the clutch engagement force is gradually increased and the driving force is transmitted to the front wheels. By controlling the fastening force of the hydraulic clutch 31 in this way, it is possible to prevent an excessive load from being applied to the engine 2.

その後、S202に進み、S106と同様、エンジン2により前後差回転ΔFRに応じてオルタネータ6の発電を行わせ、S108に進み、S106で設定したオルタネータ6の発電量を基にして後輪駆動モータ7に電力を供給し、プログラムを抜ける。   Thereafter, the process proceeds to S202, and in the same manner as S106, the engine 2 causes the alternator 6 to generate power according to the forward / backward differential rotation ΔFR, and the process proceeds to S108. Supply power to and exit the program.

このように本実施の第2形態によれば、スリップ状態となってエンジン回転数NEが予め設定しておいた閾値NECより小さいと判定した場合は、エンジン2の出力が不十分であるため、油圧クラッチ31を制御することにより、前輪への駆動力の伝達を抑制することにより、エンジン2に対して過大な負荷がかかることを抑制するのである。このこと以外の効果については、前記第1形態と同様の効果が得られる。   As described above, according to the second embodiment, when it is determined that the engine speed NE is smaller than the preset threshold NEC due to the slip state, the output of the engine 2 is insufficient. By controlling the hydraulic clutch 31, the transmission of the driving force to the front wheels is suppressed, thereby suppressing an excessive load on the engine 2. About the effect other than this, the effect similar to the said 1st form is acquired.

尚、本実施の第2形態では、エンジン駆動力の伝達を制御するのに油圧クラッチ31を用いる例で説明しているが、他に、電磁クラッチ等を用いるようにしても良い。   In the second embodiment, the example in which the hydraulic clutch 31 is used to control the transmission of the engine driving force has been described. However, an electromagnetic clutch or the like may be used instead.

また、本実施の第1、第2形態では、エンジン2により前輪を駆動し、電動モータ7により後輪を駆動する例で説明しているが、エンジン2により後輪を駆動し、電動モータ7により前輪を駆動する車両であっても本発明が適用できることは云うまでもない。   In the first and second embodiments, the front wheel is driven by the engine 2 and the rear wheel is driven by the electric motor 7. However, the rear wheel is driven by the engine 2 and the electric motor 7 is driven. Thus, it goes without saying that the present invention can be applied even to a vehicle that drives the front wheels.

また、本実施の第1、第2形態では、エンジン2が十分な出力を有しているか否かの判定は、すなわち、S105の判定は、エンジン回転数NEと予め設定しておいた閾値NECとを比較することで行っているが、車速Vと予め設定しておいた車速の閾値とを比較することで行うようにしても良い。   In the first and second embodiments of the present invention, the determination as to whether or not the engine 2 has a sufficient output, that is, the determination in S105 is performed based on the engine speed NE and a preset threshold NEC. However, it may be performed by comparing the vehicle speed V with a preset threshold value of the vehicle speed.

本発明の実施の第1形態による、4輪駆動車の駆動系及び制御系の全体を示す概略説明図Schematic explanatory view showing the entire drive system and control system of a four-wheel drive vehicle according to the first embodiment of the present invention. 同上、4輪駆動制御のメインプログラムのフローチャートSame as above, flowchart of main program for four-wheel drive control 同上、スリップ状態でエンジン回転数が高い時に前後差回転に応じて設定されるオルタネータ負荷のマップの説明図Same as above, explanatory diagram of alternator load map set according to front / rear differential rotation when engine speed is high in slip state 同上、スリップ状態でエンジン回転数が低い時にエンジン回転数に応じて設定されるオルタネータ負荷のマップの説明図Same as above, explanatory diagram of alternator load map set according to engine speed when engine speed is low in slip state 同上、本4輪駆動制御の低μ路での発進・加速時における効果の一例を示すタイムチャートSame as above, time chart showing an example of the effect of this four-wheel drive control when starting and accelerating on a low μ road 本発明の実施の第2形態による、4輪駆動車の駆動系及び制御系の全体を示す概略説明図Schematic explanatory diagram showing the entire drive system and control system of a four-wheel drive vehicle according to a second embodiment of the present invention. 同上、4輪駆動制御のメインプログラムのフローチャートSame as above, flowchart of main program for four-wheel drive control 同上、スリップ状態でエンジン回転数が低い時にエンジン回転数に応じて設定されるクラッチ締結力のマップの説明図As above, an explanatory diagram of a map of clutch engagement force set according to the engine speed when the engine speed is low in the slip state

符号の説明Explanation of symbols

1 4輪駆動車
2 エンジン
5fl,5fr 前輪
5rl,5rr 後輪
6 オルタネータ
7 電動モータ(後輪駆動モータ)
11fl,11fr,11rl,11rr 車輪速センサ
12 エンジン回転数センサ
20 制御装置(前後差回転演算手段、スリップ状態検出手段、オルタネータ制御手段、エンジン負荷抑制手段)
代理人 弁理士 伊 藤 進
1 Four-wheel drive vehicle 2 Engine 5fl, 5fr Front wheel 5rl, 5rr Rear wheel 6 Alternator 7 Electric motor (rear wheel drive motor)
11 fl, 11 fr, 11 rl, 11 rr Wheel speed sensor 12 Engine speed sensor 20 Control device (front-rear differential rotation calculation means, slip state detection means, alternator control means, engine load suppression means)
Attorney Susumu Ito

Claims (4)

前後輪のどちらか一方の車輪をエンジンによって駆動し、他方の車輪を上記エンジンにより駆動するオルタネータの発電によって作動される電動モータにより駆動自在な4輪駆動車の制御装置において、
前輪の回転数と後輪の回転数との差を前後差回転として演算する前後差回転演算手段と、
車両のスリップ状態を検出するスリップ状態検出手段と、
上記スリップ状態検出手段が車両のスリップ状態を検出し、且つ、エンジン回転数と車速の少なくともどちらかが予め設定しておいた閾値を超える場合は、上記前後差回転に応じた上記オルタネータの発電を行わせるオルタネータ制御手段と、
上記スリップ状態検出手段が車両のスリップ状態を検出し、且つ、エンジン回転数と車速の少なくともどちらかが上記予め設定しておいた閾値を超えない場合は、上記エンジンに対する負荷を抑制させるエンジン負荷抑制手段と、
を備えたことを特徴とする4輪駆動車の制御装置。
In a control device for a four-wheel drive vehicle that can be driven by an electric motor driven by power generation of an alternator that drives one of the front and rear wheels by an engine and the other wheel driven by the engine,
Front-rear differential rotation calculation means for calculating the difference between the front wheel rotation speed and the rear wheel rotation speed as a front-rear differential rotation;
Slip state detecting means for detecting the slip state of the vehicle;
When the slip state detecting means detects the slip state of the vehicle and at least one of the engine speed and the vehicle speed exceeds a preset threshold value, the alternator generates power according to the forward / backward differential rotation. Alternator control means to be performed;
Engine load suppression for suppressing the load on the engine when the slip state detecting means detects the slip state of the vehicle and at least one of the engine speed and the vehicle speed does not exceed the preset threshold value. Means,
A control device for a four-wheel drive vehicle.
上記エンジン負荷抑制手段が、上記エンジンに対する負荷の抑制を行う場合は、上記オルタネータの発電量を制限することで行うことを特徴とする請求項1記載の4輪駆動車の制御装置。   2. The control apparatus for a four-wheel drive vehicle according to claim 1, wherein when the engine load suppression means suppresses the load on the engine, the engine load suppression means limits the power generation amount of the alternator. 上記エンジンから上記一方の車輪への駆動径路の間にエンジン駆動力の伝達を制御する駆動力伝達制御手段を備え、
上記エンジン負荷抑制手段が、上記エンジンに対する負荷の抑制を行う場合は、上記駆動力伝達制御手段を制御することを特徴とする請求項1記載の4輪駆動車の制御装置。
A driving force transmission control means for controlling transmission of the engine driving force between the engine and the one drive wheel from the engine;
2. The control apparatus for a four-wheel drive vehicle according to claim 1, wherein the engine load suppression means controls the driving force transmission control means when the load on the engine is suppressed.
上記駆動力伝達制御手段は、クラッチ制御手段であることを特徴とする請求項3記載の4輪駆動車の制御装置。   4. The control apparatus for a four-wheel drive vehicle according to claim 3, wherein the driving force transmission control means is a clutch control means.
JP2003354085A 2003-10-14 2003-10-14 Control device for four-wheel drive vehicle Expired - Fee Related JP3970830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003354085A JP3970830B2 (en) 2003-10-14 2003-10-14 Control device for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003354085A JP3970830B2 (en) 2003-10-14 2003-10-14 Control device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JP2005124267A JP2005124267A (en) 2005-05-12
JP3970830B2 true JP3970830B2 (en) 2007-09-05

Family

ID=34612179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003354085A Expired - Fee Related JP3970830B2 (en) 2003-10-14 2003-10-14 Control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP3970830B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476721B2 (en) * 2009-01-20 2014-04-23 日産自動車株式会社 Control device for hybrid vehicle
JP5668869B2 (en) * 2011-11-28 2015-02-12 日産自動車株式会社 VEHICLE DRIVE CONTROL DEVICE AND VEHICLE DRIVE CONTROL METHOD
JP6958455B2 (en) * 2018-03-28 2021-11-02 トヨタ自動車株式会社 Vehicle control device

Also Published As

Publication number Publication date
JP2005124267A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP3807232B2 (en) Hybrid vehicle control system
JP4371270B2 (en) Vehicle driving force device
WO2011152129A1 (en) Play-reducing control apparatus for electrically driven vehicle
JP2007137413A (en) Vehicle with regenerative brake equipment, method for controlling vehicle, method of controlling regenerative brake equipment, and computer program letting computer to perform the method
JP4604815B2 (en) Vehicle drive control device
JP4151617B2 (en) Vehicle drive control device
JP4385342B2 (en) Regenerative energy amount notification device
JP3970830B2 (en) Control device for four-wheel drive vehicle
JP2009011057A (en) Controller of vehicle
JP4305409B2 (en) Vehicle drive control device
JP3661545B2 (en) Hybrid vehicle
JP4428063B2 (en) Vehicle driving force control device and vehicle driving force control method
JP2010149627A (en) Drive controller and start control method for vehicle
JP4419289B2 (en) Regenerative energy control device for electric vehicle
JP7287175B2 (en) Control device for four-wheel drive vehicle
JP4079085B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JP2009284702A (en) Slip suppression controller
JP4439310B2 (en) Hybrid vehicle
JP2008019808A (en) Traveling control device
JP2000168387A (en) Electric motor drive force-assisting vehicle
JP3791525B2 (en) Four-wheel drive vehicle
JP4812355B2 (en) Wheel slip suppression control device
EP4253179A1 (en) Method for controlling electric vehicle and system for controlling electric vehicle
WO2021033644A1 (en) Vehicle control system
JP2006280099A (en) Automobile and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees