JP3969970B2 - Diferrocenodithiin compound and method for producing the same - Google Patents

Diferrocenodithiin compound and method for producing the same Download PDF

Info

Publication number
JP3969970B2
JP3969970B2 JP2001187394A JP2001187394A JP3969970B2 JP 3969970 B2 JP3969970 B2 JP 3969970B2 JP 2001187394 A JP2001187394 A JP 2001187394A JP 2001187394 A JP2001187394 A JP 2001187394A JP 3969970 B2 JP3969970 B2 JP 3969970B2
Authority
JP
Japan
Prior art keywords
compound
diferrocenodithiin
ferrocene
reaction
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001187394A
Other languages
Japanese (ja)
Other versions
JP2003002893A (en
Inventor
智 小川
記嘉 長洞
靖 河合
毅 木村
瀏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001187394A priority Critical patent/JP3969970B2/en
Publication of JP2003002893A publication Critical patent/JP2003002893A/en
Application granted granted Critical
Publication of JP3969970B2 publication Critical patent/JP3969970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、ジフェロセノジチイン化合物とその製造方法に関するものである。さらに詳しくは、この出願の発明は、これまでに例のない多電子酸化還元活性分子を供給することのできる、新しいジフェロセノジチイン化合物とその製造方法に関するものである。
【0002】
【従来の技術と発明の課題】
有機金属化合物は、新しい機能の電気・電子材料等を提供するものとして注目されており、その代表例の一つとしてフェロセンがある。
【0003】
このフェロセンは安定な有機金属化合物であって、中心の鉄原子に由来する可逆な1電子酸化還元特性を示すことから、その特性を利用して、機能性材料の合成中間体や電極材料等に応用されている。
【0004】
しかしながら、その特性が注目されるフェロセンではあるが、これを構成する有機部位は生来の有機分子に特有の絶縁性を示し、可逆な電気化学的な応答がないという問題点がある。このため、フェロセン化合物の応用、用途には限界があった。
【0005】
そこで、この出願の発明は、フェロセン化合物の特性を生かすとともにその問題点を解消し、有機部位に可逆な酸化還元特性を付与し、鉄原子という金属部位とこれをとりまく有機部位の双方に酸化還元系を成立させることのできる新しいハイブリッド化合物を提供することを課題としている。
【0006】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、第1には、次式1
【0007】
【化2】

Figure 0003969970
【0008】
で表わされる化合物もしくはこの式中の炭素5員環には置換基が結合されていてもよい化合物であることを特徴とするジフェロセノジチイン化合物を提供し、第2には、多電子酸化還元活性分子を供給することのできることを特徴とするジフェロセノジチイン化合物を提供する。
【0009】
そしてこの出願の発明は、第3には、以上のジフェロセノジチイン化合物の製造方法であって、フェロセン化合物をクロロスルホニル化反応させてクロロスルホニルフェロセン化合物を合成し、これをスルホンアミドフェロセン化合物に変換した後に二量体化カップリング反応させてビス(スルホンアミドフェロセン)化合物を合成し、次いで還元環化反応させることを特徴とするジフェロセノジチイン化合物の製造方法を提供する。
【0010】
【発明の実施の形態】
この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。
【0011】
この出願の発明により提供される化合物は、前記のとおりの式1で表されるジフェロセノジチインと、その炭素5員環に置換基が結合されていてもよい化合物である。
【0012】
炭素5員環に結合していてもよい置換基は各種のものであってよく、脂肪族、脂環式、あるいは芳香族の炭化水素基をはじめ各種の有機基が考慮される。
【0013】
なかでも、この出願の発明においては、多電子酸化還元活性分子を供給することのできるジフェロセノジチイン化合物が提供される。たとえば、前記の式1で表わされるジフェロセノジチインの場合には、フェロセンの鉄原子という金属部位から段階的に可逆に1電子づつ、合計2電子が、さらには、縮合したジチインという有機部位から段階的に1電子づつ、合計2電子が、多電子酸化還元活性を示すことになる。
【0014】
このようなこれまでに例のない特性を持つこの出願の発明のジフェロセノジチイン化合物は、新しい有機分子素子等として、ダイオードやトランジスタ、電気材料、配線材料、回路材料、EL材料等を構成するために有用なものとなる。
【0015】
製造方法としては各種のアプローチとプロセスが採用されてよいが、この出願の発明においては、たとえば次の全合成経路;
【0016】
【化3】
Figure 0003969970
【0017】
に沿って、フェロセン化合物のクロロスルホニル化反応によるクロロスルホニルフェロセン化合物の合成、クロロスルホニルフェロセン化合物のスルホンアミドフェロセン化合物への変換、二量体化カップリング反応によるビス(スルホンアミドフェロセン)化合物の合成、次いで還元環化反応させることによるジフェロセノジチイン化合物の製造のプロセスが提供される。もちろん、上記の全合成経路における反応試薬の選択や条件の設定は例示であってこれに限定されることはない。反応や処理の目的に合致する限り、同様の役割を果たす試薬や条件が採用されてよいことは言うまでもない。
【0018】
そこで以下に実施例を示し、さらに詳しくこの発明の実施の形態について説明する。
【0019】
【実施例】
<実施例1>
A:フェロセンからクロロスルホニルフェロセンの合成
【0020】
【化4】
Figure 0003969970
【0021】
300mlの三つ口フラスコに攪拌子と化合物2のフェロセン(18.800g;103.2mmol)を入れ、窒素雰囲気にした。シリンジを用い無水酢酸(180ml)を入れ、反応器を氷浴にて0℃にした。この懸濁溶液にシリンジを用いクロロ硫酸(7.2ml;104.4mmol)をゆっくりと滴下した。このとき、反応溶液は瞬時に深緑色に変化した。それから反応溶液を室温で36時間攪拌した。その後、氷水に反応溶液をゆっくりと注いだ(この時、未反応のクロロ硫酸が水と爆発的に反応し、さらに無水酢酸がゆっくりと加水分解し発熱するのでかなり慎重に注いだ)。この水溶液から蒸留にて水および酢酸を取り除き、真空ポンプで乾燥した。乾燥すると緑色の固体となった。この固体をソックスレー抽出器によりエーテル溶媒で固液抽出した。抽出溶液からロータリーエバポレーターにて溶媒を除去し、真空ポンプで乾燥し、黄色の固体を得た。この固体を100mlの枝付きフラスコに入れ、冷却管を取り付け、窒素雰囲気にした。反応器を氷浴に浸し、ここにシリンジを用い三塩化リン(90ml)を加えた。このとき塩化水素ガスが大量に発生した。反応溶液を70℃で4時間反応させ、その後蒸留にて未反応の三塩化リンを取り除き、真空ポンプで乾燥させた。生成物をジクロロメタン(ヘキサンでも可)で再結晶し、化合物3のクロロスルホニルフェロセン(12.487g;51.4mmol;49.8%)を赤色の結晶として得た。
【0022】
このものの同定値は表1のとおりである。
【0023】
【表1】
Figure 0003969970
【0024】
B:クロロスルホニルフェロセンからジメチルアミノスルホニルフェロセンの合成
【0025】
【化5】
Figure 0003969970
【0026】
500mlのナスフラスコに攪拌子と化合物3のクロロスルホニルフェロセン(9.022g;37.17mmol)、テトラヒドロフラン(300ml)を入れ溶解させた。ここへシリンジにより9.87Mジメチルアミン水溶液(10.0ml;97.8mmol)を滴下した。その後、反応溶液を室温で15時間攪拌した(反応溶液は徐々に粘性が高くなった)。15時間後、反応溶媒をロータリーエバポレーターである程度除去し、硫酸マグネシウムを入れて乾燥した。ろ過した後、さらに溶媒をロータリーエバボレーターで除去し目的化合物の粗結晶を得た。これをろ過、乾燥し、ヘキサン溶媒で再結晶し、化合物4のジメチルアミノスルホニルフェロセン(9.527g;32.5mmol;87.4%)を黄色結晶として得た。
【0027】
このものの同定値は表2のとおりである。
【0028】
【表2】
Figure 0003969970
【0029】
C:ジメチルアミノスルホニルフェロセンからビス(2−ジメチルアミノスルホニルフェロセン)の合成
【0030】
【化6】
Figure 0003969970
【0031】
あらかじめ加熱乾燥した200mlの三口フラスコに化合物4のジメチルアミノスルホニルフェロセン(4518mg;15.4mmol)を入れ、アルゴン雰囲気にした。ここに乾燥THF(50ml)と乾燥ジメチルエーテル(100ml)を入れ溶解させた。反応容器を氷浴につけ十分に冷却し、ここにt−ブチルリチウム、n−ペンタン溶液(1.54M、11.0ml;16.9mmol)を加え、30分攪拌した。このとき反応溶液は黄橙色から赤橙色に変化し、懸濁溶液となった。引き続き、室温で1時間攪拌した後、反応器を氷浴に浸し、あらかじめ200℃で1時間減圧乾燥したヨウ化銅(1760mg;9.24mmol)を添加した。反応溶液を8時間室温で攪拌した後、酸素雰囲気下で更に攪拌した。酸素雰囲気下で攪拌するにつれ、反応溶液は茶褐色から黒色へと変化した。次に、この反応溶液を水に注ぎ、濃塩酸にて酸性化し、吸引濾過した。濾液をクロロホルムにて抽出し、この有機層を飽和チオ硫酸ナトリウム水溶液にて洗浄し、硫酸マグネシウムにて乾燥し、濾別した。濾液をロータリーエバボレーターで濃縮し、減圧乾燥した。精製は、クロロホルムを展開溶媒とするシリカゲルカラムクロマトグラフィー(φ=35mm,h=85mm)にて行い、化合物5,6のビス(2−ジメチルアミノスルホニルフェロセン)(2122mg;3.36mmol,47.2%)を橙色結晶として得た。
【0032】
このものの同定値は表3のとおりである。
【0033】
【表3】
Figure 0003969970
【0034】
D:ビス(2−ジメチルアミノスルホニルフェロセン)からジフェロセノジチインの合成
【0035】
【化7】
Figure 0003969970
【0036】
200mlのナスフラスコにビス(2−ジメチルアミノスルホニルフェロセン)(729mg;1.25mmol)を入れ、THF(60ml)で溶解させた。反応溶液を氷浴に浸し、水素化リチウムアルミニウム(473mg;12.5mmol)をゆっくり加えた。その後反応器に水冷管を取り付け、油浴で加熱し、反応溶液を24時間還流させた。所定時間反応の後、反応器を氷浴に浸し、過剰の塩化トリメチルシランを加え、室温で2時間攪拌した。このとき反応溶液は黄色の懸濁溶液になった。次に反応溶液を氷水に注ぎ、濃塩酸にて酸性化し、クロロホルムにて抽出した。この有機層を硫酸マグネシウムにて乾燥し、濾別した。さらに濾液をロータリーエバポレーターで濃縮し、減圧乾燥した。精製はクロロホルム/ヘキサン(v/v=1:1)を展開溶媒とするシリカゲルカラムクロマトグラフィーにて行い、化合物1のジフェロセノジチイン(53mg;0.12mmol,10%)を橙色結晶とした得た。
【0037】
このものの同定値は表4のとおりであった。
【0038】
【表4】
Figure 0003969970
【0039】
<実施例2>
実施例1により合成したジフェロセノジチイン(化合物1)について、その電気化学的特性をサイクリックボルタンメトリー測定した。
【0040】
試料溶液の調整と測定電極は以下のとおりである。すなわち、溶媒のアセトニトリルおよびベンゾニトリルは水素化カルシウムを用いて蒸留した。支持電解質溶液は、支持電解質として過塩素酸テトラブチルアンモニウムを用い0.1M溶液に調整した。測定溶液は測定試料を支持電解質溶液を用いて2mM濃度に調整した。作用極はグラッシーカーボン電極を用いた。参照電極はAg+ /Ag電極を用い、Ag+ には0.01M硝酸銀・支持電解質溶液を用いた。
【0041】
また、この発明の化合物1とともに、次の関連化合物7および8についても測定した。掃引速度100mV/s時の酸化還元電位を表5に、化合物1の酸化還元波を図1に示した。
【0042】
【化8】
Figure 0003969970
【0043】
【表5】
Figure 0003969970
【0044】
表5および図1から明らかなように、この発明の化合物1においては、合計で電子4個の酸化還元反応が生起することがわかる。
【0045】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、フェロセン化合物の特性を生かすとともにその問題点を解消し、有機部位に可逆な酸化還元特性を付与し、鉄原子という金属部位とこれをとりまく有機部位の双方に酸化還元系を成立させることのできる新しいハイブリッド化合物が提供される。
【図面の簡単な説明】
【図1】化合物1の酸化還元波を例示した図である。[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a diferrocenodithiin compound and a method for producing the same. More specifically, the invention of this application relates to a new diferrocenodithiin compound capable of supplying an unprecedented multi-electron redox active molecule and a method for producing the same.
[0002]
[Prior art and problems of the invention]
Organometallic compounds are attracting attention as providing electrical and electronic materials with new functions, and ferrocene is one of typical examples.
[0003]
This ferrocene is a stable organometallic compound and exhibits reversible one-electron redox properties derived from the central iron atom. Therefore, it can be used as a synthetic intermediate for functional materials, electrode materials, etc. Applied.
[0004]
However, although it is a ferrocene whose characteristics are attracting attention, there is a problem in that the organic site constituting it exhibits insulating properties peculiar to natural organic molecules and does not have a reversible electrochemical response. For this reason, the application and use of the ferrocene compound have a limit.
[0005]
Therefore, the invention of this application makes use of the characteristics of the ferrocene compound and solves the problems, imparts reversible oxidation-reduction characteristics to the organic part, and provides oxidation-reduction to both the metal part of the iron atom and the organic part surrounding it. It is an object to provide a new hybrid compound that can establish a system.
[0006]
[Means for Solving the Problems]
As the invention of this application solves the above-mentioned problems, firstly, the following formula 1
[0007]
[Chemical 2]
Figure 0003969970
[0008]
Or a diferrocenodithiin compound characterized in that a substituent may be bonded to a carbon 5-membered ring in the formula, and secondly, a multi-electron oxidation Provided is a diferrocenodithiin compound characterized by being capable of supplying a reducing active molecule.
[0009]
The third aspect of the invention of this application is a method for producing the diferrocenodithiin compound described above, wherein the ferrocene compound is subjected to a chlorosulfonylation reaction to synthesize a chlorosulfonylferrocene compound, which is then a sulfonamide ferrocene compound. There is provided a method for producing a diferrocenodithiin compound, characterized in that a bis (sulfonamidoferrocene) compound is synthesized by performing a dimerization coupling reaction after being converted into a bis (sulfonamidoferrocene) compound and then subjected to a reductive cyclization reaction.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The invention of this application has the features as described above, and an embodiment thereof will be described below.
[0011]
The compound provided by the invention of this application is a compound in which a substituent may be bonded to the diferrocenodithiin represented by Formula 1 as described above and the carbon 5-membered ring.
[0012]
The substituent which may be bonded to the carbon 5-membered ring may be various, and various organic groups including an aliphatic, alicyclic or aromatic hydrocarbon group are considered.
[0013]
Especially, in the invention of this application, a diferrocenodithiin compound capable of supplying a multi-electron redox active molecule is provided. For example, in the case of diferrocenodithioin represented by the above-mentioned formula 1, an organic moiety called dithiine is obtained by reversing one electron step by step from a metal moiety called an iron atom of ferrocene in a reversible manner, and a total of two electrons. Thus, a total of 2 electrons, one electron at a time, show multi-electron redox activity.
[0014]
The diferrocenodithiin compound of the present invention having such unprecedented characteristics constitutes diodes, transistors, electrical materials, wiring materials, circuit materials, EL materials, etc., as new organic molecular devices, etc. It will be useful to do.
[0015]
Although various approaches and processes may be adopted as the production method, in the invention of this application, for example, the following total synthetic route;
[0016]
[Chemical 3]
Figure 0003969970
[0017]
A synthesis of chlorosulfonyl ferrocene compound by chlorosulfonylation reaction of ferrocene compound, conversion of chlorosulfonyl ferrocene compound to sulfonamide ferrocene compound, synthesis of bis (sulfonamidoferrocene) compound by dimerization coupling reaction, A process for producing a diferrocenodithiin compound by reductive cyclization is then provided. Of course, the selection of reaction reagents and the setting of conditions in the above-described total synthesis route are merely examples, and are not limited thereto. Needless to say, reagents and conditions that play the same role may be employed as long as they meet the purpose of the reaction or treatment.
[0018]
Therefore, examples will be shown below, and the embodiments of the present invention will be described in more detail.
[0019]
【Example】
<Example 1>
A: Synthesis of chlorosulfonylferrocene from ferrocene
[Formula 4]
Figure 0003969970
[0021]
A stirrer and compound 2 ferrocene (18.800 g; 103.2 mmol) were placed in a 300 ml three-necked flask and a nitrogen atmosphere was established. Acetic anhydride (180 ml) was added using a syringe and the reactor was brought to 0 ° C. in an ice bath. Chlorosulfuric acid (7.2 ml; 104.4 mmol) was slowly added dropwise to the suspension using a syringe. At this time, the reaction solution instantly turned dark green. The reaction solution was then stirred at room temperature for 36 hours. Thereafter, the reaction solution was slowly poured into ice water (at this time, unreacted chlorosulfuric acid reacted explosively with water, and acetic anhydride slowly hydrolyzed and generated heat). Water and acetic acid were removed from this aqueous solution by distillation and dried with a vacuum pump. When dried, it became a green solid. This solid was subjected to solid-liquid extraction with an ether solvent by a Soxhlet extractor. The solvent was removed from the extracted solution with a rotary evaporator and dried with a vacuum pump to obtain a yellow solid. This solid was placed in a 100 ml branch flask, fitted with a condenser and brought to a nitrogen atmosphere. The reactor was immersed in an ice bath, and phosphorus trichloride (90 ml) was added thereto using a syringe. At this time, a large amount of hydrogen chloride gas was generated. The reaction solution was reacted at 70 ° C. for 4 hours, and then unreacted phosphorus trichloride was removed by distillation, followed by drying with a vacuum pump. The product was recrystallized from dichloromethane (or hexane) to obtain chlorosulfonylferrocene (12.487 g; 51.4 mmol; 49.8%) of compound 3 as red crystals.
[0022]
The identification values of this product are as shown in Table 1.
[0023]
[Table 1]
Figure 0003969970
[0024]
B: Synthesis of dimethylaminosulfonylferrocene from chlorosulfonylferrocene
[Chemical formula 5]
Figure 0003969970
[0026]
A 500 ml eggplant flask was charged with a stirrer, compound 3 chlorosulfonylferrocene (9.022 g; 37.17 mmol), and tetrahydrofuran (300 ml). The 9.87M dimethylamine aqueous solution (10.0 ml; 97.8 mmol) was dripped here with the syringe. Thereafter, the reaction solution was stirred at room temperature for 15 hours (the reaction solution gradually became more viscous). After 15 hours, the reaction solvent was removed to some extent by a rotary evaporator, and magnesium sulfate was added and dried. After filtration, the solvent was further removed with a rotary evaporator to obtain crude crystals of the target compound. This was filtered, dried, and recrystallized with a hexane solvent to obtain Compound 4 dimethylaminosulfonylferrocene (9.527 g; 32.5 mmol; 87.4%) as yellow crystals.
[0027]
The identification values of this product are as shown in Table 2.
[0028]
[Table 2]
Figure 0003969970
[0029]
C: Synthesis of bis (2-dimethylaminosulfonylferrocene) from dimethylaminosulfonylferrocene
[Chemical 6]
Figure 0003969970
[0031]
Dimethylaminosulfonyl ferrocene (4518 mg; 15.4 mmol) of Compound 4 was placed in a 200 ml three-necked flask that had been dried by heating in advance, and an argon atmosphere was established. Here, dry THF (50 ml) and dry dimethyl ether (100 ml) were added and dissolved. The reaction vessel was placed in an ice bath and cooled sufficiently. To this was added t-butyllithium and n-pentane solution (1.54M, 11.0 ml; 16.9 mmol), and the mixture was stirred for 30 minutes. At this time, the reaction solution changed from yellow-orange to red-orange and became a suspended solution. Subsequently, after stirring at room temperature for 1 hour, the reactor was immersed in an ice bath, and copper iodide (1760 mg; 9.24 mmol) previously dried under reduced pressure at 200 ° C. for 1 hour was added. The reaction solution was stirred for 8 hours at room temperature, and further stirred under an oxygen atmosphere. The reaction solution changed from brown to black as it was stirred in an oxygen atmosphere. The reaction solution was then poured into water, acidified with concentrated hydrochloric acid and filtered with suction. The filtrate was extracted with chloroform, and the organic layer was washed with a saturated aqueous sodium thiosulfate solution, dried over magnesium sulfate, and filtered. The filtrate was concentrated with a rotary evaporator and dried under reduced pressure. Purification was performed by silica gel column chromatography (φ = 35 mm, h = 85 mm) using chloroform as a developing solvent, and bis (2-dimethylaminosulfonylferrocene) of compound 5 and 6 (2122 mg; 3.36 mmol, 47.2). %) As orange crystals.
[0032]
The identification values of this product are as shown in Table 3.
[0033]
[Table 3]
Figure 0003969970
[0034]
D: Synthesis of diferrocenodithiine from bis (2-dimethylaminosulfonylferrocene)
[Chemical 7]
Figure 0003969970
[0036]
Bis (2-dimethylaminosulfonylferrocene) (729 mg; 1.25 mmol) was placed in a 200 ml eggplant flask and dissolved in THF (60 ml). The reaction solution was immersed in an ice bath and lithium aluminum hydride (473 mg; 12.5 mmol) was slowly added. Thereafter, a water-cooled tube was attached to the reactor and heated in an oil bath, and the reaction solution was refluxed for 24 hours. After reaction for a predetermined time, the reactor was immersed in an ice bath, excess trimethylsilane chloride was added, and the mixture was stirred at room temperature for 2 hours. At this time, the reaction solution became a yellow suspension solution. Next, the reaction solution was poured into ice water, acidified with concentrated hydrochloric acid, and extracted with chloroform. The organic layer was dried with magnesium sulfate and filtered. Furthermore, the filtrate was concentrated with a rotary evaporator and dried under reduced pressure. Purification was performed by silica gel column chromatography using chloroform / hexane (v / v = 1: 1) as a developing solvent, and diferrocenodithiin (53 mg; 0.12 mmol, 10%) of Compound 1 was converted into orange crystals. Obtained.
[0037]
The identification value of this product was as shown in Table 4.
[0038]
[Table 4]
Figure 0003969970
[0039]
<Example 2>
With respect to diferrocenodithiin (Compound 1) synthesized according to Example 1, the electrochemical characteristics thereof were measured by cyclic voltammetry.
[0040]
Sample solution preparation and measurement electrodes are as follows. That is, the solvents acetonitrile and benzonitrile were distilled using calcium hydride. The supporting electrolyte solution was adjusted to a 0.1 M solution using tetrabutylammonium perchlorate as the supporting electrolyte. The measurement solution was prepared by adjusting the measurement sample to a concentration of 2 mM using a supporting electrolyte solution. A glassy carbon electrode was used as a working electrode. As a reference electrode, an Ag + / Ag electrode was used, and 0.01 M silver nitrate / supporting electrolyte solution was used for Ag + .
[0041]
In addition to the compound 1 of the present invention, the following related compounds 7 and 8 were also measured. The oxidation-reduction potential at a sweep rate of 100 mV / s is shown in Table 5, and the oxidation-reduction wave of Compound 1 is shown in FIG.
[0042]
[Chemical 8]
Figure 0003969970
[0043]
[Table 5]
Figure 0003969970
[0044]
As is apparent from Table 5 and FIG. 1, it can be seen that in Compound 1 of the present invention, a total of four electron redox reactions occur.
[0045]
【The invention's effect】
As explained in detail above, the invention of this application makes use of the characteristics of the ferrocene compound and solves the problems, imparts reversible oxidation-reduction characteristics to the organic part, and provides a metal part called an iron atom and an organic part surrounding it. A new hybrid compound that can establish a redox system for both is provided.
[Brief description of the drawings]
1 is a diagram illustrating an oxidation-reduction wave of compound 1. FIG.

Claims (3)

次式
Figure 0003969970
で表わされる化合物もしくはこの式中の炭素5員環には置換基が結合されていてもよい化合物であることを特徴とするジフェロセノジチイン化合物。
Next formula
Figure 0003969970
Or a diferrocenodithiin compound, wherein a substituent may be bonded to the carbon 5-membered ring in the formula.
多電子酸化還元活性分子を供給することのできることを特徴とする請求項1のジフェロセノジチイン化合物。2. The diferrocenodithiin compound according to claim 1, which is capable of supplying a multi-electron redox active molecule. 請求項1または2のジフェロセノジチイン化合物の製造方法であって、フェロセン化合物をクロロスルホニル化反応させてクロロスルホニルフェロセン化合物を合成し、これをスルホンアミドフェロセン化合物に変換した後に二量体化カップリング反応させてビス(スルホンアミドフェロセン)化合物を合成し、次いで還元環化反応させることを特徴とするジフェロセノジチイン化合物の製造方法。A method for producing a diferrocenodithiin compound according to claim 1 or 2, wherein the ferrocene compound is subjected to a chlorosulfonylation reaction to synthesize a chlorosulfonylferrocene compound, which is converted to a sulfonamide ferrocene compound and then dimerized. A method for producing a diferrocenodithiin compound, characterized in that a bis (sulfonamidoferrocene) compound is synthesized by a coupling reaction and then subjected to a reductive cyclization reaction.
JP2001187394A 2001-06-20 2001-06-20 Diferrocenodithiin compound and method for producing the same Expired - Fee Related JP3969970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001187394A JP3969970B2 (en) 2001-06-20 2001-06-20 Diferrocenodithiin compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001187394A JP3969970B2 (en) 2001-06-20 2001-06-20 Diferrocenodithiin compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003002893A JP2003002893A (en) 2003-01-08
JP3969970B2 true JP3969970B2 (en) 2007-09-05

Family

ID=19026686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001187394A Expired - Fee Related JP3969970B2 (en) 2001-06-20 2001-06-20 Diferrocenodithiin compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP3969970B2 (en)

Also Published As

Publication number Publication date
JP2003002893A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
Gryaznova et al. Electrochemical properties of diphosphonate-bridged palladacycles and their reactivity in arene phosphonation
Uno et al. Organometallic Triskelia: Novel Tris (vinylideneruthenium (II)), Tris (alkynylruthenium (II)), and Triruthenium–Triferrocenyl Complexes
JP3645309B2 (en) Method for producing cross-linked complex having semi-sandwich structure
Pudelski et al. Structure, reactivity, and electronic properties of [4] ferrocenophanes and [4] ruthenocenophanes prepared via a novel heteroannular cyclization reaction
JP3480298B2 (en) C60 derivative
Teimuri-Mofrad et al. Synthesis of new binuclear ferrocenyl compounds by hydrosilylation reactions
Albano et al. Reactions of acetonitrile di-iron μ-aminocarbyne complexes; synthesis and structure of [Fe2 (μ-CNMe2)(μ-H)(CO) 2 (Cp) 2]
JPH06507175A (en) Chiral tridentate bis(phospholane) ligand
JPH0920762A (en) Chiral manganese/triazanonane complexes and their production
JP2010202554A (en) Heterocyclic condensed-ring oligothiophene, method for producing the same and polymer
Poddel’skii et al. Triphenylantimony (V) Catecholates Based on o-Quinones, Derivatives of Benzo [b][1, 4]-Dioxines and Benzo [b][1, 4]-Dioxepines
JP3969970B2 (en) Diferrocenodithiin compound and method for producing the same
CN113512733B (en) Method for synthesizing eribulin intermediate through electrochemical NHK reaction
CN101676293B (en) Bisglyoxaline organic phosphine compound and preparation method thereof
JPH0680672A (en) New electron acceptor and electrically conductive transfer complex containing the acceptor
Hashidzume et al. Electrochemistry of Octamethyl [3] ruthenocenophane: Synthesis and Structure of the First Dicationic Derivative of Ruthenocene,[{. eta. 5:. eta. 5-C5Me4 (CH2) 3C5Me4} Ru (NCMe)](PF6) 2
CN111662147B (en) Process for preparing diynes and analogues thereof
JP2010138088A (en) Method for producing fluorene derivative
JP2648961B2 (en) Benzothiazolium compound and method for producing the same
JPH01172388A (en) Thieno(3,2-b)pyrrolo(2,3-d)pyrroles and production thereof
Mauthner et al. Synthesis and Reactivity of Ru (. eta. 5-C5Me5)(. eta. 4-cyclopentadienone) Complexes. X-ray Structures of Ru (. eta. 5-C5Me5)(. eta. 4-C5H4O) Br, Ru (. eta. 5-C5Me5)(. eta. 4-C5H3O-2-Br) Br, and [Ru (. eta. 5-C5Me5)(. eta. 4-C5H2O-2-Me, 5-PCy3) Br] CF3SO3
CN113862708B (en) Method for electrochemically synthesizing beta-cyano bis-benzenesulfonimide compound
JP6146860B2 (en) Metal complex and fuel cell cathode containing the same
Philippopoulos et al. Organometallic Rh (III) complexes with the bifunctional ligand [2-(dimethylamino) ethyl] cyclopentadiene. Crystal structure of the [{η5: η1-C5H4 (CH2) 2NMe2} RhIIICl2] complex
JP2005089320A (en) 1,3-DIFERROCENYLARYL[c]THIOPHENE COMPOUND AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees