JP3969821B2 - Method and apparatus for investigation and analysis of characteristics related to heat generation energy of rotating body including viscoelastic material - Google Patents

Method and apparatus for investigation and analysis of characteristics related to heat generation energy of rotating body including viscoelastic material Download PDF

Info

Publication number
JP3969821B2
JP3969821B2 JP04050698A JP4050698A JP3969821B2 JP 3969821 B2 JP3969821 B2 JP 3969821B2 JP 04050698 A JP04050698 A JP 04050698A JP 4050698 A JP4050698 A JP 4050698A JP 3969821 B2 JP3969821 B2 JP 3969821B2
Authority
JP
Japan
Prior art keywords
rotating body
strain
stress
data
heat generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04050698A
Other languages
Japanese (ja)
Other versions
JPH11237332A (en
Inventor
全一郎 信田
正隆 小石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP04050698A priority Critical patent/JP3969821B2/en
Publication of JPH11237332A publication Critical patent/JPH11237332A/en
Application granted granted Critical
Publication of JP3969821B2 publication Critical patent/JP3969821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車タイヤ等の粘弾性材料を含む回転体の発熱エネルギ関連の特性、例えば発熱エネルギの特性、転動抵抗の特性等の調査、分析の方法および装置に関する。
【0002】
【従来の技術】
自動車タイヤ等の粘弾性材料を含む回転体の発熱エネルギ関連の特性の調査、分析については従来、例えば、関係式:タイヤ発熱=ひずみエネルギ×材料の損失係数、をもとに、力学的解析または有限要素法(Finite Element Method)に代表される数値解析によりひずみエネルギを求め、タイヤ発熱を予測し、これを走行距離で除算:タイヤ転動抵抗=タイヤ発熱÷走行距離、することにより転動抵抗を予測する方法が知られている。これについては、例えば、日本ゴム協会誌第56巻第543頁〜第551頁、1983年、を参照することができる。
【0003】
【発明が解決しようとする課題】
前記の従来の方法においては、材料の損失係数に関しベルトやカーカス等繊維補強材料の異方性を扱うことができないこと、タイヤの各部位ごとに異なる変形周波数を考慮することができないこと、等の理由により忠実度の高い転動抵抗の推定を行うことができないという問題がある。
【0004】
タイヤ内部の応力、ひずみ、またはエネルギを解析する際には力学的解析は大まかな傾向を知るには良いが、タイヤの部位ごとに異なる応力、ひずみ、またはひずみエネルギの詳細な結果を得ることができないため不都合である。有限要素法による数値解析によれば、タイヤ内の詳細な解析を行うことが可能である。有限要素法には静解析と動解析がある。静解析は、解析に要する演算時間が小であるが、材料の粘弾性の効果を考慮することができない。動解析は、材料の粘弾性を考慮することができるが、解析に要する演算時間が長いため実用性に欠けている。
【0005】
ゴムなどの粘弾性体に周期的に変化する応力を与えると、発生するひずみとの間に位相差が生じ、応力とのひずみの変化により規定されるヒステリシスループの面積は変形による発熱、すなわち変形により失われるエネルギ、に相当する。しかし前記のように静解析では粘弾性の効果を考慮することができないから、ヒステリシスループの面積から発熱を求めることができないという問題がある。
【0006】
本発明の一つの目的は、粘弾性材料を含む回転体の発熱エネルギ関連の特性、例えば発熱エネルギの特性、転動抵抗の特性等を適切に調査、分析する方法および装置を提供することにある。
本発明の他の一つの目的は、演算時間が短かく実用的な静的有限要素解析を用い、応力、ひずみのヒステリシスループの面積から忠実度の高い回転体発熱エネルギおよび回転体転動抵抗の推定を行う方法および装置を提供することにある。
【0007】
本発明による方法および装置は、自動車タイヤのみならず、ロール、コンベヤベルト、無限軌道体(クローラ、crawler)等の粘弾性材料を含む回転体の発熱エネルギおよび転動抵抗の特性の調査、分析にも応用可能である。
【0008】
本発明による方法および装置によれば、タイヤ発熱およびタイヤ転動抵抗の忠実度の高いシミュレーションを行うことが可能である。
本発明による方法および装置においては、応力およびひずみの方向を示す各成分ごとに材料の損失係数が変えられることができ、ベルトまたはカーカス等の繊維補強材料の損失係数の異方性が取扱われることが可能である。また、タイヤの各変形周波数ごとにヒステリシスループの面積が演算されるから、タイヤの各部位ごとに異なる変形周波数が考慮されることが可能である。
【0009】
それにより、本発明による方法および装置においては、従来のひずみエネルギを基礎とする方法と比較して、シミュレーション結果の忠実度がより高いものになることが可能である。
また、本発明による方法および装置においては、ヒステリシスループの面積を演算する際、応力およびひずみの振幅からタイヤの各変形周波数ごとに演算が行われ、材料の損失係数の周波数依存性およびひずみ振幅依存性が考慮されることが可能であり、その際タイヤの部位に応ずる温度を適宜求めることにより、材料損失係数の温度、周波数、ひずみ振幅依存性を考慮した解析を行うことが可能である。
【0010】
また、本発明による方法および装置においては、材料損失係数の温度、周波数、およびひずみ振幅依存性が考慮されることにより、忠実度のより高いシミュレーション結果を得ることが可能である。
【0011】
【課題を解決するための手段】
本発明においては、粘弾性材料を含む回転体の発熱エネルギの特性の調査、分析の方法であって、(1)使用条件下における粘弾性体を含む回転体の応力、ひずみを演算し、(2)局所座標を参照した応力、ひずみに変換する演算を行い断面内の一点における応力、ひずみの成分を演算し、(3)円周方向に隣接する諸点の応力、ひずみを順次演算し一周分の応力、ひずみを得ることにより応力、ひずみの変化特性の曲線を導出し、(4)一周分の応力、ひずみの有限次数のフーリエ級数展開の演算を行い各フーリエ次数ごとに曲線の振幅、位相を演算し、材料の損失係数に応じた位相遅れをひずみ値に与えての各フーリエ次数ごとのヒステリシスループの面積の演算にもとづきフーリエ次数とヒステリシスループ面積の積の総和を導出し、(5)以上の一連の(1)〜(4)の演算過程を応力、ひずみの全成分について反復実行し各成分ごとの該総和を演算することにより当該位置における発熱エネルギ密度を導出し、(6)該発熱エネルギ密度にて発熱エネルギ密度特性が近似される、当該位置を含む領域の体積と発熱エネルギ密度との積を演算することにより、当該領域における発熱エネルギを導出し、(7)以上の一連の(1)〜(6)の演算および導出の過程を回転体の全体について反復実行し回転体全体の発熱エネルギを導出する、ことを特徴とする粘弾性材料を含む回転体の発熱エネルギの特性の調査、分析の方法が、提供される。
【0012】
本発明においてはまた、粘弾性材料を含む回転体の転動抵抗の特性の調査、分析の方法であって、
(1)使用条件下における粘弾性体を含み回転体の応力、ひずみを演算し、
(2)該演算された応力、ひずみを局所座標を参照した応力、ひずみに変換する演算を行い断面内の一点における応力、ひずみの成分を演算し、
(3)該演算に引続き円周方向に隣接する諸点の応力、ひずみを順次演算し一周分の応力、ひずみを得ることにより応力、ひずみの変化特性の曲線を導出し、
(4)一周分の応力、ひずみの有限次数のフーリエ級数展開の演算を行い各フーリエ次数ごとに曲線の振幅、位相を演算し、
(5)材料の損失係数に応じた位相遅れをひずみ値に与えての各フーリエ級数ごとのヒステリシスループの面積の演算にもとづきフーリエ次数とヒステリシスループ面積の積の総和を演算し、
(6)以上の一連の(1)〜(5)の演算過程を応力、ひずみの全成分について反復実行し各成分ごとの総和を演算することにより当該位置における発熱エネルギ密度を導出し、
(7)該発熱エネルギ密度にて発熱エネルギ密度特性が近似される、当該位置を含む領域の体積と発熱エネルギ密度との積を演算することにより、当該領域における発熱エネルギを導出し、
(8)以上の一連の(1)〜(7)の演算および導出の過程を回転体の全体について反復実行し回転体全体の発熱エネルギを導出し、
(9)荷重を負荷していないときの回転体の外半径、および荷重を負荷したときの負荷半径を、有限要素法により演算しその結果を用いて回転体が一回転したときの走行距離を導出し、
(10)該導出された回転体一回転時の発熱エネルギと回転体が一回転したときの走行距離にもとづき回転体の転動抵抗を導出する、
ことを特徴とする粘弾性材料を含む回転体転動抵抗の特性の調査、分析の方法が提供される。
【0013】
本発明においてはまた、形状データ供給部、材料データ供給部、境界データ供給部、および荷重データ供給部からのデータ供給にとづき粘弾性材料を含む回転体の応力およびひずみが演算される回転体応力、ひずみ演算部、
該回転体応力、ひずみ演算部の出力を受け局所座標を参照した応力およびひずみへの座標変換が行われる座標変換応力、ひずみ演算部、
以上の回転体応力、ひずみ演算と座標変換応力、ひずみ演算とを回転体一周について順次行い回転体一周分の応力、ひずみデータが導出され蓄積される一周分データ導出部、
該一周分の応力、ひずみデータにもとづきヒステリシスループの面積の演算が行われるヒステリシスループ面積導出部、
該ヒステリシスループ面積導出部の出力を受け回転体の発熱エネルギ密度の演算が行われる回転体発熱エネルギ密度データ導出部、
該回転体発熱エネルギ密度データにて発熱エネルギ密度特性が近似される、当該位置を含む領域の体積の演算が行われる体積データ導出部、および、
該回転体発熱エネルギ密度データ導出部、該データ導出部の出力を受け回転体の発熱エネルギの演算が行われる発熱エネルギデータ導出部、
を具備することを特徴とする粘弾性材料を含む回転体の発熱エネルギの特性の調査、分析の装置が提供される。
【0014】
本発明においてはまた、形状データ供給部、材料データ供給部、境界データ供給部、および荷重データ供給部からのデータ供給にもとづき粘弾性材料を含む回転体の応力およびひずみが演算される回転体応力、ひずみ演算部、
該回転体応力、ひずみ演算部の出力を受け局所座標を参照した応力およびひずみへの座標変換が行われる座標変換応力、ひずみ演算部、
以上の回転体応力、ひずみ演算と座標変換応力、ひずみ演算とを回転体一周について順次行い回転体一周分の応力、ひずみデータが導出され蓄積される一周分データ導出部、
該一周分の応力、ひずみデータにもとづきヒステリシスループの面積の演算が行われるヒステリシスループ面積導出部、
該ヒステリシスループ面積導出部の出力を受け回転体の発熱エネルギ密度の演算が行われる回転体発熱エネルギ密度データ導出部、
該回転体発熱エネルギ密度データにて発熱エネルギ密度特性が近似される、当該位置を含む領域の体積の演算が行われる体積データ導出部、および、
該回転体発熱エネルギ密度データ導出部、該体積データ導出部の出力を受け回転体の発熱エネルギの演算が行われる発熱エネルギデータ導出部、
荷重を負荷していない回転体の外半径が導出される外半径導出部、
荷重を負荷した回転体の静的負荷半径が導出される静的負荷半径導出部、
該導出された外半径および静的負荷半径にもとづき回転体一回転の走行距離が導出される回転体一回転時走行距離導出部、および
該導出された回転体発熱エネルギデータおよび回転体一回転の走行距離にもとづき回転体の転動抵抗が導出される回転体転動抵抗導出部、
を具備することを特徴とする粘弾性材料を含む回転体の転動抵抗の特性の調査、分析の装置が提供される。
【0015】
【発明の実施の形態】
本発明の一実施例としての粘弾性材料を含む回転体の発熱エネルギの特性の調査、分析の方法を行う装置の一例が図1に示される。また本発明の一実施例としての粘弾性材料を含む回転体の転動抵抗の特性の調査、分析の方法を行う装置の一例が図2に示される。
【0016】
図1の装置の説明の理解を助けるため、本発明による粘弾性材料を含む回転体の発熱エネルギの特性の調査、分析の原理が図3を参照して説明される。
図3の左方の図は位置を横軸座標とした粘弾性体の応力とひずみの特性をあらわし、右方の図はひずみを横軸座標、応力を縦軸座標として応力とひずみのヒステリシスループ特性をあらわす。
【0017】
左方の図に示されるように、粘弾性体では、応力に対しひずみの位相がδだけ遅れ、ここに0<δ<π/2である。右方の図に示されるように、粘弾性体のヒステリシスループは楕円となり、楕円の面積Aは1サイクルの変形に際して損失したエネルギで、この損失したエネルギは、A=π・f・g・sinδであらわされるが、発熱エネルギに相当する。ここでfは応力の振幅、gはひずみの振幅である。
このように、応力振幅f、ひずみ振幅g、位相差δがわかれば、発熱エネルギの計算が可能である。そこで、応力、およびひずみを静的有限要素法による解析により求めるのである。
なお粘弾性材料を含む回転体の発熱エネルギの特性に関しては、例えば岩柳茂夫「レオロジー」朝倉書店に記載されている。
【0018】
この発熱エネルギの計算における、応力およびひずみをフーリエ級数展開し、各次数毎にヒステリシスループの面積を求める過程が、図4〜図9を参照しつつ説明される。
図4の上方の図は、粘弾性材料を含む回転体としてのタイヤ60の断面図をあらわし、各要素60eについて、タイヤ周方向r、要素幅の方向s、および要素厚さの方向tの3つが考慮されることをあらわす。図4の下方の図はタイヤ6を回転軸の方向から見た立面図をあらわす。図5は演算結果から得られた応力の分布、およびひずみの分布の例を示す曲線である。図6は、図5の応力曲線をフーリエ級数展開して得られる1次、2次、…の成分の曲線であるが、図では2次までをあらわす。図7は、図5のひずみ曲線をフーリエ級数展開して得られる1次、2次、…の成分の曲線であるが、図では2次までをあらわす。図8は1次成分の応力ひずみにもとづく1次成分のヒステリシスループをあらわし、図9は2次成分の応力、ひずみにもとづく2次成分のヒステリシスループをあらわす。
【0019】
前記のような原理にもとづき、粘弾性材料を含む回転体としてのタイヤの発熱エネルギの特性の調査分析が行われる。まず、有限要素法により、荷重を負荷した回転体の応力、ひずみ特性の分析を行い、回転体の各要素ごとに局所座標を参照した応力およびひずみを求める。次いで、回転体断面内の一要素の中心における、一成分の応力、ひずみを求め、順次、周方向に隣接する点の応力、ひずみを求め、回転体一周分の応力f(θ)、およびひずみg(θ)を求める。応力f(θ)、ひずみg(θ)をそれぞれ有限次のフーリエ級数に展開し、各次数ごとに振幅An 、位相Bn を求める。この場合、フーリエ級数展開を行う次数は10〜100とする。10次未満であると精度の良い結果が得られず、100次より多いと、結果の精度は変わらないのに演算時間が増加するだけである。好適には20次〜50次が選ばれる。
【0020】
ひずみg(θ)については、材料の損失係数に応ずる位相遅れを与えた上で、各次数ごとにヒステリシスループの面積Sn を計算し、それにもとづき次数nと面積Sn の積の総和Sc を関係式:
n =π・An f ・An g ・sin(Bn f −Bn g +δ)
c =Σn・Sn
に従って求める。
【0021】
応力、ひずみの全成分について以上の過程を反復し、各成分ごとの総和Sc の総和を求めこれを発熱エネルギ密度とし、当該発熱エネルギ密度を求めた要素全体の体積Vとの積Ediを、

Figure 0003969821
として求め、このEdiをその位置における発熱エネルギとする。
次いで、回転体全体について以上の過程を反復し、回転体全体の発熱エネルギEd 、すなわち回転体が1回転したときの発熱エネルギを求める。
【0022】
図1に示される粘弾性材料を含む回転体の発熱エネルギの特性の調査、分析の方法を行う装置は、回転体発熱エネルギデータ生成部1よりなり、このデータ生成部1は、形状データ供給部111、材料データ供給部112、境界データ供給部113、荷重データ供給部114、回転体応力、ひずみ演算部12、局部座標変換の応力、ひずみ導出部13、一周分データ導出部、ヒステリシスループ面積導出部15、および回転体発熱エネルギ密度データ導出部16、回転体体積データ導出部17、回転体発熱エネルギデータ導出部18を包含する。
【0023】
演算部12において、形状データ、材料データ、境界データ、および荷重データにもとづく回転体応力およびひずみの演算が行われる。応力、ひずみ導出部13において、局所座標を参照した応力、ひずみに変換するよう演算が行われ、断面内の一要素における応力、ひずみを求める。データ導出部14において、周方向に隣接する点の応力、ひずみを順次求め、1周分の応力、ひずみを求めて変化特性曲線を導出する。
【0024】
ヒステリシスループ面積演算部15において、ひずみ値について材料の損失係数に応ずる位相遅れ(δ)を与えて、各フーリエ次数ごとにヒステリシスループの面積(Sn )を演算する。それにもとづきフーリエ次数(n)と面積(Sn )の積の総和(Sc )を求める。
回転体発熱エネルギデータ導出部16において、応力、ひずみの全成分について前記の演算の過程を反復し、各成分ごとの総和Sc の総和と体積の積(Edi)を求め、この積(Edi)をその位置における発熱エネルギとする。
回転体全体について前記の演算の過程を反復し、回転体全体の発熱エネルギ、すなわち回転体が1回転したときの発熱エネルギ(Ed )を求める。
【0025】
図2に示される粘弾性材料を含む回転体の転動抵抗の特性の調査、分析の方法を行う装置は、回転体発熱エネルギデータ生成部1、回転体外半径導出部21、静的負荷半径導出部22、および回転体転動抵抗導出部4を包含する。回転体発熱エネルギデータ生成部1の構成は図1に示されるものと同様である。
【0026】
回転体外半径導出部21において、荷重を負荷していないときの回転体外半径(R0 )を有限要素法により求める。静的負荷半径導出部22において、荷重を負荷したときの負荷半径、すなわち回転体中心軸と路面との距離R1 を求める。それらにもとづき、回転体走行距離導出部3において、関係式:L=2π{K(R1 −R0 )+R0 }、に従い回転体が1回転したときの走行距離Lを求める。ここに係数Kは、回転体の動的負荷半径を求めるための係数であり、実験データと一致するよう0〜1の範囲で適宜選定することが可能である。
【0027】
回転体転動抵抗導出部4において、データ生成部1からの回転体の1回転時の発熱エネルギ(Ed )のデータと、走行距離導出部3からの回転体の1回転時の走行距離(L)にもとづき、関係式:
RR=Ed /Lに従う除算を行い、転動抵抗RRを求める。
【0028】
上記の演算を行う一つの態様として、コンピュータを使用して演算を行うことが可能である。その場合には、例えば下記のような構成を用いることが可能である。
コンピュータにより粘弾性材料を含む回転体の発熱エネルギを求める装置は、形状データ、材料データ、境界データ、および荷重データを入力する入力部、形状データ、材料データ、境界データ、および荷重データを記憶する入力データ記憶部、入力データ記憶部からデータを取得して粘弾性材料を含む回転体の応力およびひずみを演算する応力、ひずみ演算部、該応力を記憶する応力記憶部、該ひずみを記憶するひずみ記憶部、該応力記憶部から応力を、ひずみ記憶部からひずみを取得し、局所座標を参照した応力およびひずみへ座標変換する局所座標応力、局所座標ひずみ演算部、該局所座標応力を記憶する局所座標応力記憶部、該局所座標ひずみを記憶する局所座標ひずみ記憶部、該局所座標応力記憶部から回転体一周分の局所座標応力データを、該局所座標ひずみ記憶部から回転体一周分の局所座標ひずみデータを取得し、回転体一周分の局所座標応力データおよび局所座標ひずみデータを記憶する一周分データ記憶部、一周分データ記憶部から局所座標応力データおよび局所座標ひずみデータを取得し、一周分の局所座標応力、局所座標ひずみの有限次数のフーリエ級数展開の演算を行い、各フーリエ次数ごとに曲線の振幅、位相を演算し、材料の損失係数に応じた位相遅れをひずみ値に与えてフーリエ次数ごとのヒステリシスループの面積を演算するヒステリシスループ面積データ演算部、ヒステリシスループ面積データを記憶するヒステリシスループ面積データ記憶部、該ヒステリシスループ面積データ記憶部から各フーリエ次数ごとのヒステリシスループ面積データを取得し、フーリエ次数と該ヒステリシスループ面積データから回転体の発熱エネルギ密度を演算する回転体発熱エネルギ密度データ演算部、該回転体発熱エネルギ密度データを記憶する回転体発熱エネルギ密度データ記憶部、該回転体発熱エネルギ密度データ記憶部から取得した該回転体発熱エネルギ密度データにて発熱エネルギ密度特性が近似される、当該位置を含む領域の体積を演算する体積データ演算部、該体積データを記憶する体積データ記憶部、該回転体発熱エネルギ密度データ記憶部から該回転体発熱エネルギ密度データを、該体積データ記憶部から該体積データを取得して発熱エネルギを演算する発熱エネルギ演算部、および演算結果を出力する出力部を具備する。
【0029】
また、前記の装置において、粘弾性体材料の損失係数に応対する位相遅れの値として、少くとも温度依存性、周波数依存性、およびひずみ振幅依存性のいずれかに対応する値が用いられる。
また、前記の装置において、フーリエ次数とヒステリシスループ面積の該総和の導出は関係式:
Figure 0003969821
iはフーリエ級数展開の次数、
ここに、Sn は面積、nは次数、An f は応力の振幅、An g はひずみの振幅、Bn f は応力の位相、Bn g はひずみの位相、δは位相遅れである、
に従って行われる。
また、前記の装置において、該フーリエ級数展開の次数は10〜100に選択される。
また、前記の装置において、各成分ごとの該Sc の総和と体積Vの積Ediは関係式:
Figure 0003969821
に従って行われる。
また、前記の装置において、該発熱エネルギを記憶する発熱エネルギ記憶部、荷重を負荷していないときの回転体の外半径、および荷重を負荷したときの負荷半径を、有限要素法により演算しその結果を用いて回転体が一回転したときの走行距離を演算する走行距離演算部、該走行距離を記憶する走行距離記憶部、発熱エネルギ記憶部から発熱エネルギを、走行距離記憶部から走行距離を取得して回転体の転動抵抗を演算する転動抵抗演算部、および演算結果を出力する出力部、をさらに具備する。
また、前記の装置において、該回転体はタイヤである。
【0030】
本発明による方法および装置の効果の試験が行われた。
試験は下記の条件により行われた。
タイヤサイズ(カッコ内はリムサイズ):
185/60R13(13×5 1/2JJ),185/65R14(14×5 1/2JJ),195/70R14(14×6JJ),175/70R15(15×5J),175/80R15(15×5J),185/65R15(15×5 1/2JJ),185/70R15(15×5 1/2JJ),195/65R15(15×6JJ)
内圧:210kPa
荷重:2.45,3.43,4,41kN
上記の8サイズの乗用車用ラジアルタイヤについて、内圧1水準、荷重3水準にて転動抵抗の測定、およびシミュレーションを行い、測定結果とシミュレーション結果との相関係数を求めた。相関係数は高い方が良いのである。
転動抵抗試験法として、ドラム表面が平滑な、鋼製でかつ直径が1707mmであるドラム試験機を用い、周辺温度を21±2℃に制御し、速度80km/hで走行させ、その際の転がり抵抗を測定することが行われた。この場合、転動抵抗シミュレーションにおける係数kはk=1とした。
試験の結果として、例1すなわち材料損失係数の温度、周波数、ひずみ振幅依存性なしの場合は、相関係数r=0.934であり、例2すなわち材料損失係数の温度、周波数、ひずみ振幅依存性ありの場合は、相関係数r=0.948であった。これに対し従来例のひずみエネルギーをもとに転動抵抗をシミュレーションした場合は相関係数r=0.884である。
【0031】
本発明の一実施例としての粘弾性材料を含む回転体であるタイヤの発熱エネルギの特性の調査、分析の方法のフローチャートの一例が図10に示される。また本発明の一実施例とての粘弾性材料を含む回転体であるタイヤの転動抵抗の特性の調査、分析の方法のフローチャートの一例が図11に示される。
【0032】
図10のフローチャートにおいては、ステップS101において、荷重を負荷したタイヤの応力、ひずみの導出、ステップS102において、局所座標を参照した応力、ひずみの導出、ステップS103において、タイヤ一周部のデータの取り込み、ステップS104において、フーリエ級数に分解し各次数ごとに応力、ひずみの振幅、位相の演算、ステップS105においてヒステリシスループの面積Sn の演算、ステップS106において所定次数の演算の完了の判定、ステップS107において、ヒステリシスループの面積Sn と次数の積の和Sc の演算、ステップS108において、全成分演算完了の判定、ステップS109において体積Vの演算、ステップS110において発熱エネルギの演算、ステップS111において、タイヤ全体の演算完了の判定、ステップS112において、タイヤ全体の発熱エネルギの導出、がそれぞれ行われる。
【0033】
図11のフローチャートにおいては、ステップS201において、荷重を負荷していないタイヤの外半径の導出、ステップS202において、荷重を負荷したタイヤの静的負荷半径の導出、ステップS203において、タイヤ一回転の走行距離の導出、がそれぞれ行われる。ここで、導出されたタイヤ一回転の走行距離データと図10に示されるようなプロセスにより導出された発熱エネルギデータS1にもとづいて、ステップS301においてタイヤ転動抵抗の導出が行われる。
【0034】
本発明による方法および装置においては、タイヤ発熱およびタイヤ転動抵抗の忠実度の高いシミュレーションを行うことが可能である。また、応力およびひずみの各成分ごとに材料の損失係数が変えられることができ、ベルトまたはカーカス等の繊維補強材料の損失係数の異方性が取扱われることが可能である。また、タイヤの各変形周波数ごとにヒステリシスループの面積が演算されるから、タイヤの各部位ごとに異なる変形周波数が考慮されることが可能である。また、ヒステリシスループの面積を演算する際、応力およびひずみの振幅からタイヤの各変形周波数ごとに演算が行われ、材料の損失係数の周波数依存性およびひずみ振幅依存性が考慮されることが可能であり、その際タイヤの部位に応ずる温度を適宜求めることにより、材料損失係数の温度、周波数、ひずみ振幅依存性を考慮した解析を行うことが可能である。
本発明による方法および装置によれば、粘弾性材料を含む回転体の発熱エネルギ関連の特性、例えば発熱エネルギの特性、転動抵抗の特性等を適切に調査、分析することができる。
【図面の簡単な説明】
【図1】本発明の一実施例としての粘弾性材料を含む回転体の発熱エネルギの特性の調査、分析の方法を行う装置の図。
【図2】本発明の一実施例としての粘弾性材料を含む回転体の転動抵抗の特性の調査、分析の方法を行う装置の図。
【図3】本発明による粘弾性材料を含む回転体の発熱エネルギの特性の調査、分析の原理説明用の図。
【図4】粘弾性材料を含む回転体としてのタイヤの断面図、および立面図。
【図5】演算結果から得られた位置に対する応力、ひずみの分布をあらわす図。
【図6】応力曲線をフーリエ級数展開して得られる各次数の成分の曲線の図。
【図7】ひずみ曲線をフーリエ級数展開して得られる各次数の成分の曲線の図。
【図8】1次成分のヒステリシスループをあらわす図。
【図9】2次成分のヒステリシスループをあらわす図。
【図10】本発明の一実施例としての粘弾性材料を含む回転体の発熱エネルギの特性の調査、分析の方法のフローチャートの図。
【図11】本発明の一実施例としての粘弾性材料を含む回転体の転動抵抗の特性の調査、分析の方法のフローチャート図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for investigating and analyzing characteristics of heat generation energy of a rotating body including a viscoelastic material such as an automobile tire, for example, characteristics of heat generation energy, characteristics of rolling resistance, and the like.
[0002]
[Prior art]
Conventionally, for example, investigation and analysis of heat generation energy-related characteristics of rotating bodies including viscoelastic materials such as automobile tires, mechanical analysis or analysis based on a relational expression: tire heat generation = strain energy × material loss coefficient, or Strain energy is obtained by numerical analysis represented by the finite element method (Finite Element Method), tire heat generation is predicted, and this is divided by travel distance: tire rolling resistance = tire heat generation / travel distance, thereby rolling resistance. There are known methods for predicting. For this, reference can be made to, for example, Journal of the Japan Rubber Association, Vol. 56, pages 543 to 551, 1983.
[0003]
[Problems to be solved by the invention]
In the conventional method, the anisotropy of the fiber reinforced material such as the belt and the carcass cannot be handled with respect to the loss factor of the material, the deformation frequency different for each part of the tire cannot be taken into account, etc. There is a problem that the rolling resistance with high fidelity cannot be estimated for the reason.
[0004]
When analyzing the stress, strain, or energy inside a tire, a mechanical analysis is a good way to see a rough trend, but you can get detailed results for different stresses, strains, or strain energy for each part of the tire. It is inconvenient because it cannot be done. According to the numerical analysis by the finite element method, it is possible to perform a detailed analysis in the tire. Finite element methods include static analysis and dynamic analysis. The static analysis requires a short calculation time, but cannot take into account the viscoelastic effect of the material. The dynamic analysis can take into account the viscoelasticity of the material, but lacks practicality due to the long calculation time required for the analysis.
[0005]
When a periodically changing stress is applied to a viscoelastic body such as rubber, a phase difference occurs between the generated strain and the area of the hysteresis loop defined by the change in the strain with the stress generates heat due to deformation, that is, deformation. This is equivalent to the energy lost by. However, as described above, since the viscoelastic effect cannot be taken into account in the static analysis, there is a problem that heat generation cannot be obtained from the area of the hysteresis loop.
[0006]
One object of the present invention is to provide a method and apparatus for appropriately investigating and analyzing the heat energy-related characteristics of a rotating body including a viscoelastic material, such as heat energy characteristics, rolling resistance characteristics, and the like. .
Another object of the present invention is to use a practical static finite element analysis with a short calculation time, and from the area of the hysteresis loop of stress and strain, the high-fidelity rotating body heat generation energy and rotating body rolling resistance. It is to provide a method and apparatus for performing estimation.
[0007]
The method and apparatus according to the present invention can be used to investigate and analyze the characteristics of heat generation energy and rolling resistance of rotating bodies including viscoelastic materials such as rolls, conveyor belts, endless tracks (crawlers), as well as automobile tires. Is also applicable.
[0008]
According to the method and apparatus of the present invention, it is possible to perform a simulation with high fidelity of tire heat generation and tire rolling resistance.
In the method and apparatus according to the present invention, the loss factor of the material can be changed for each component indicating the direction of stress and strain, and the anisotropy of the loss factor of a fiber reinforced material such as a belt or carcass is handled. Is possible. Further, since the area of the hysteresis loop is calculated for each deformation frequency of the tire, a different deformation frequency can be considered for each part of the tire.
[0009]
Thereby, in the method and apparatus according to the present invention, the fidelity of the simulation result can be higher than the conventional strain energy based method.
Further, in the method and apparatus according to the present invention, when calculating the area of the hysteresis loop, the calculation is performed for each deformation frequency of the tire from the stress and strain amplitude, and the frequency dependence and strain amplitude dependence of the material loss factor are calculated. Therefore, it is possible to perform an analysis in consideration of the temperature, frequency, and strain amplitude dependence of the material loss coefficient by appropriately obtaining the temperature corresponding to the tire part.
[0010]
Further, in the method and apparatus according to the present invention, it is possible to obtain a simulation result with higher fidelity by considering the temperature, frequency, and strain amplitude dependence of the material loss coefficient.
[0011]
[Means for Solving the Problems]
In the present invention, investigation of the characteristics of the heating energy of a rotating body comprising a viscoelastic material, a method of analysis, (1) the stress of the rotating body including a viscoelastic body in the use conditions, and calculates the strain, ( 2) Calculate the stress and strain components at one point in the cross-section by calculating the stress and strain with reference to the local coordinates. (3) Calculate the stress and strain at the points adjacent in the circumferential direction one by one. (4) Calculate the finite-order Fourier series expansion of the stress and strain for one round, and calculate the amplitude and phase of the curve for each Fourier order. Based on the calculation of the area of the hysteresis loop for each Fourier order with the phase delay corresponding to the loss factor of the material applied to the strain value, the sum of the product of the Fourier order and the hysteresis loop area is derived. (5) Deriving the heat energy density at the position by repeatedly executing the above series of calculation processes (1) to (4) for all components of stress and strain and calculating the sum of each component, (6) Deriving the heat generation energy in the region by calculating the product of the volume of the region including the position and the heat generation energy density, where the heat generation energy density characteristic is approximated by the heat generation energy density, and (7) Heat generation of a rotating body including a viscoelastic material, wherein the series of operations (1) to (6) described above and the derivation process are repeatedly executed for the entire rotating body to derive heat generation energy of the entire rotating body. A method for investigating and analyzing energy characteristics is provided.
[0012]
The present invention is also a method for investigating and analyzing the rolling resistance characteristics of a rotating body including a viscoelastic material,
(1) Calculate the stress and strain of the rotating body including the viscoelastic body under operating conditions,
(2) Calculate the stress and strain components at one point in the cross-section by converting the calculated stress and strain into stress and strain referring to local coordinates,
(3) Subsequent to the calculation, the stress and strain at points adjacent in the circumferential direction are sequentially calculated to obtain the stress and strain for one round, thereby deriving a curve of stress and strain change characteristics,
(4) Calculate a finite order Fourier series expansion of stress and strain for one round, calculate the amplitude and phase of the curve for each Fourier order,
(5) Calculate the sum of the product of the Fourier order and the hysteresis loop area based on the calculation of the area of the hysteresis loop for each Fourier series by giving the phase lag according to the loss factor of the material to the strain value,
(6) The above-described series of calculation processes (1) to (5) are repeatedly executed for all components of stress and strain, and the sum of each component is calculated to derive the heat generation energy density at the position,
(7) Deriving heat generation energy in the region by calculating the product of the volume of the region including the position and the heat generation energy density, where the heat generation energy density characteristic is approximated by the heat generation energy density,
(8) The above-described series of calculation and derivation processes (1) to (7) are repeatedly executed for the entire rotating body to derive the heat generation energy of the entire rotating body,
(9) The outer radius of the rotating body when no load is applied and the load radius when the load is applied are calculated by the finite element method, and the travel distance when the rotating body makes one revolution is calculated using the result. Derived,
(10) Deriving the rolling resistance of the rotating body based on the derived heat generation energy during one rotation of the rotating body and the travel distance when the rotating body makes one rotation;
There is provided a method for investigating and analyzing the characteristics of rolling element rolling resistance including a viscoelastic material.
[0013]
In the present invention, the rotating body in which the stress and strain of the rotating body including the viscoelastic material are calculated based on the data supply from the shape data supply unit, the material data supply unit, the boundary data supply unit, and the load data supply unit. Stress / strain calculation unit,
Coordinate conversion stress, strain calculation unit in which coordinate conversion to stress and strain is performed with reference to local coordinates in response to the output of the rotating body stress, strain calculation unit,
Rotating body stress, strain calculation, coordinate transformation stress, and strain calculation are sequentially performed for one rotation of the rotating body, and the stress and strain data for one rotation of the rotating body are derived and accumulated,
Hysteresis loop area derivation unit in which the area of the hysteresis loop is calculated based on the stress and strain data for one round,
A rotating body heat energy density data deriving unit that receives the output of the hysteresis loop area deriving unit and calculates the heat energy density of the rotating body;
A volume data deriving unit in which the volume of a region including the position is calculated, in which the heat generation energy density characteristic is approximated by the rotating body heat generation energy density data; and
The heat generation energy density data deriving unit of the rotating body, the heat generation energy data deriving unit which receives the output of the data deriving unit and calculates the heat generation energy of the rotating body,
A device for investigating and analyzing the heat energy characteristics of a rotating body including a viscoelastic material is provided.
[0014]
In the present invention, the rotator stress in which the stress and strain of the rotator including the viscoelastic material is calculated based on the data supply from the shape data supply unit, the material data supply unit, the boundary data supply unit, and the load data supply unit. , Strain calculation section,
Coordinate conversion stress, strain calculation unit in which coordinate conversion to stress and strain is performed with reference to local coordinates in response to the output of the rotating body stress, strain calculation unit,
Rotating body stress, strain calculation, coordinate transformation stress, and strain calculation are sequentially performed for one rotation of the rotating body, and the stress and strain data for one rotation of the rotating body are derived and accumulated,
Hysteresis loop area derivation unit in which the area of the hysteresis loop is calculated based on the stress and strain data for one round,
A rotating body heat energy density data deriving unit that receives the output of the hysteresis loop area deriving unit and calculates the heat energy density of the rotating body;
A volume data deriving unit in which the volume of a region including the position is calculated, in which the heat generation energy density characteristic is approximated by the rotating body heat generation energy density data; and
A heat generating energy data deriving unit for receiving the output of the rotating body heat energy density data deriving unit and the volume data deriving unit to calculate the heat generating energy of the rotating body;
An outer radius deriving unit for deriving the outer radius of the rotating body that is not loaded;
A static load radius deriving unit for deriving a static load radius of a rotating body loaded with a load;
A traveling distance deriving section for one rotation of the rotating body derived based on the derived outer radius and static load radius, and the derived rotating body heat energy data and one rotation of the rotating body Rotating body rolling resistance deriving unit from which rolling resistance of the rotating body is derived based on the travel distance,
An apparatus for investigating and analyzing the rolling resistance characteristics of a rotating body including a viscoelastic material is provided.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of an apparatus for conducting a method for investigating and analyzing the characteristics of heat generation energy of a rotating body including a viscoelastic material as one embodiment of the present invention. FIG. 2 shows an example of an apparatus for investigating and analyzing rolling resistance characteristics of a rotating body including a viscoelastic material as one embodiment of the present invention.
[0016]
To assist in understanding the description of the apparatus of FIG. 1, the principle of investigation and analysis of the heat energy characteristics of a rotating body including a viscoelastic material according to the present invention will be described with reference to FIG.
3 shows the stress and strain characteristics of the viscoelastic body with the position as the horizontal coordinate, and the right diagram shows the hysteresis loop of stress and strain with the horizontal coordinate and strain as the vertical coordinate. Represents the characteristics.
[0017]
As shown in the left figure, in the viscoelastic body, the strain phase is delayed by δ with respect to the stress, where 0 <δ <π / 2. As shown in the diagram on the right, the hysteresis loop of the viscoelastic body is an ellipse, and the area A of the ellipse is energy lost during one cycle of deformation, and this lost energy is A = π · f · g · sinδ. This is equivalent to heat generation energy. Here, f is the amplitude of stress, and g is the amplitude of strain.
Thus, if the stress amplitude f, the strain amplitude g, and the phase difference δ are known, the heat generation energy can be calculated. Therefore, the stress and strain are obtained by analysis using a static finite element method.
The characteristics of the heat generation energy of a rotating body containing a viscoelastic material are described in, for example, Shigeo Iwayanagi “Rheology” Asakura Shoten.
[0018]
In the calculation of the heat generation energy, the process of developing the Fourier series of stress and strain and obtaining the area of the hysteresis loop for each order will be described with reference to FIGS.
The upper drawing of FIG. 4 shows a cross-sectional view of the tire 60 as a rotating body including a viscoelastic material. For each element 60e, three in the tire circumferential direction r, the element width direction s, and the element thickness direction t. Indicates that one is considered. The lower part of FIG. 4 shows an elevation view of the tire 6 as seen from the direction of the rotation axis. FIG. 5 is a curve showing an example of stress distribution and strain distribution obtained from the calculation result. FIG. 6 is a curve of components of first order, second order,... Obtained by Fourier series expansion of the stress curve in FIG. FIG. 7 is a curve of primary, secondary,... Components obtained by Fourier series expansion of the distortion curve of FIG. FIG. 8 shows a hysteresis loop of the primary component based on the stress and strain of the primary component, and FIG. 9 shows a hysteresis loop of the secondary component based on the stress and strain of the secondary component.
[0019]
Based on the principle as described above, investigation and analysis of the characteristics of heat generation energy of the tire as a rotating body including a viscoelastic material is performed. First, the stress and strain characteristics of a rotating body loaded with a load are analyzed by a finite element method, and the stress and strain with reference to local coordinates are obtained for each element of the rotating body. Next, the stress and strain of one component at the center of one element in the cross section of the rotating body are obtained, and the stress and strain at points adjacent to the circumferential direction are obtained in turn, and the stress f (θ) and strain for one turn of the rotating body are obtained. g (θ) is obtained. The stress f (θ) and the strain g (θ) are expanded to a finite-order Fourier series, and the amplitude An and the phase Bn are obtained for each order. In this case, the order for performing the Fourier series expansion is 10 to 100. If it is less than the 10th order, an accurate result cannot be obtained, and if it is more than 100th, the accuracy of the result does not change, but only the calculation time increases. The 20th to 50th orders are preferably selected.
[0020]
Strain For g (theta), in terms of giving a phase delay to comply to the loss factor of the material, the area S n of the hysteresis loop was calculated for each order, the sum S c of the product of order n and the area S n based on it The relational expression:
S n = π · A n f · A n g · sin (B n f −B n g + δ)
S c = Σn · S n
Ask according to.
[0021]
Stress, repeated over the course for all components of the strain, the sum of the sum S c of each component determined by the emission energy density this, the product E di of the volume V of the entire element obtained the exothermic energy density ,
Figure 0003969821
And this E di is defined as the heat generation energy at that position.
Next, the above process is repeated for the entire rotating body, and the heat generation energy E d of the entire rotation body, that is, the heat generation energy when the rotation body makes one rotation is obtained.
[0022]
The apparatus for investigating and analyzing the heat generation energy characteristics of a rotating body including a viscoelastic material shown in FIG. 1 includes a rotating body heat generation energy data generation unit 1, which is a shape data supply unit. 111, material data supply unit 112, boundary data supply unit 113, load data supply unit 114, rotating body stress, strain calculation unit 12, local coordinate transformation stress, strain derivation unit 13, one-round data derivation unit, hysteresis loop area derivation And a rotating body heat energy density data deriving section 16, a rotating body volume data deriving section 17, and a rotating body heat generating energy data deriving section 18.
[0023]
In the calculation unit 12, calculation of the rotator stress and strain is performed based on the shape data, material data, boundary data, and load data. In the stress / strain derivation unit 13, an operation is performed so as to convert the stress / strain to local stress with reference to local coordinates, and the stress / strain in one element in the cross section is obtained. The data deriving unit 14 sequentially obtains stresses and strains at adjacent points in the circumferential direction, and obtains a change characteristic curve by obtaining stresses and strains for one round.
[0024]
The hysteresis loop area calculation unit 15 gives a phase lag (δ) corresponding to the loss factor of the material for the strain value, and calculates the area (S n ) of the hysteresis loop for each Fourier order. Based on this, the sum (S c ) of the products of the Fourier order (n) and the area (S n ) is obtained.
In the rotator exothermic energy data deriving unit 16, the above-described calculation process is repeated for all components of stress and strain to obtain a product (E di ) of the sum and volume of the sum S c for each component. Let di ) be the heat generation energy at that position.
The above calculation process is repeated for the entire rotating body, and the heat generation energy of the entire rotation body, that is, the heat generation energy (E d ) when the rotation body makes one rotation is obtained.
[0025]
The apparatus for investigating and analyzing the rolling resistance characteristics of a rotating body including a viscoelastic material shown in FIG. 2 includes a rotating body heat generation energy data generating unit 1, a rotating body external radius deriving unit 21, and a static load radius deriving. The unit 22 and the rotating body rolling resistance deriving unit 4 are included. The configuration of the rotating body heat energy data generation unit 1 is the same as that shown in FIG.
[0026]
The rotating body outer radius deriving unit 21 obtains the rotating body outer radius (R 0 ) when no load is applied by the finite element method. The static load radius deriving unit 22 obtains a load radius when a load is applied, that is, a distance R 1 between the rotating body central axis and the road surface. Based on these, the rotating body travel distance deriving unit 3 obtains the travel distance L when the rotating body makes one rotation according to the relational expression: L = 2π {K (R 1 −R 0 ) + R 0 }. Here, the coefficient K is a coefficient for obtaining the dynamic load radius of the rotating body, and can be appropriately selected within a range of 0 to 1 so as to coincide with the experimental data.
[0027]
In the rotating body rolling resistance deriving unit 4, the heat generation energy (E d ) data for one rotation of the rotating body from the data generating unit 1 and the traveling distance of the rotating body in one rotation from the traveling distance deriving unit 3 ( L), the relational expression:
Division according to RR = E d / L is performed to determine the rolling resistance RR.
[0028]
As one aspect of performing the above calculation, it is possible to perform the calculation using a computer. In that case, for example, the following configuration can be used.
An apparatus for obtaining heat generation energy of a rotating body including a viscoelastic material by a computer stores an input unit for inputting shape data, material data, boundary data, and load data, shape data, material data, boundary data, and load data Input data storage unit, stress for obtaining data from the input data storage unit and calculating the stress and strain of a rotating body including a viscoelastic material, strain calculation unit, stress storage unit for storing the stress, strain for storing the strain A storage unit, a stress from the stress storage unit, a strain from the strain storage unit, and a local coordinate stress that converts coordinates to a stress and a strain with reference to a local coordinate, a local coordinate strain calculation unit, and a local that stores the local coordinate stress A coordinate stress storage unit, a local coordinate strain storage unit for storing the local coordinate strain, and a local coordinate response for one rotation of the rotating body from the local coordinate stress storage unit The data is acquired from the local coordinate strain storage unit for one round of the rotating body, and the one-round data storage unit for storing the local coordinate stress data and the local coordinate strain data for one round of the rotating body; Obtain local coordinate stress data and local coordinate strain data from the part, perform a finite order Fourier series expansion of local coordinate stress and local coordinate strain for one round, and calculate the amplitude and phase of the curve for each Fourier order. A hysteresis loop area data calculation unit for calculating a hysteresis loop area for each Fourier order by giving a phase delay corresponding to a loss factor of the material to a strain value, a hysteresis loop area data storage unit for storing hysteresis loop area data, and the hysteresis Hysteresis loop area data for each Fourier order from the loop area data storage A rotating body heating energy density data calculating unit for calculating the heating energy density of the rotating body from the Fourier order and the hysteresis loop area data, a rotating body heating energy density data storage unit for storing the rotating body heating energy density data, A volume data calculation unit for calculating a volume of a region including the position, whose heat generation energy density characteristics are approximated by the rotation body heat generation energy density data acquired from the rotation body heat generation energy density data storage unit, and storing the volume data A volume data storage unit, a heat generation energy calculation unit for calculating the heat generation energy by acquiring the volume heat generation energy density data from the rotation body heat generation energy density data storage unit and the volume data from the volume data storage unit, and a calculation An output unit for outputting the result is provided.
[0029]
In the above-described apparatus, a value corresponding to at least one of temperature dependency, frequency dependency, and strain amplitude dependency is used as the value of the phase delay corresponding to the loss coefficient of the viscoelastic material.
In the above apparatus, the derivation of the sum of the Fourier order and the hysteresis loop area is a relational expression:
Figure 0003969821
i is the order of the Fourier series expansion,
Here, the S n area, n represents the order, A n f is the stress amplitude, A n g is the amplitude of strain, B n f is the stress phase, B n g is the strain phase, [delta] is the phase lag ,
Done according to
In the above apparatus, the order of the Fourier series expansion is selected from 10 to 100.
In the above-described apparatus, the product E di of the sum of S c and the volume V for each component is a relational expression:
Figure 0003969821
Done according to
Further, in the above-described apparatus, the heat generation energy storage unit for storing the heat generation energy, the outer radius of the rotating body when no load is applied, and the load radius when the load is applied are calculated by a finite element method. Using the result, a travel distance calculation unit that calculates a travel distance when the rotating body makes one rotation, a travel distance storage unit that stores the travel distance, a heat generation energy from the heat generation energy storage unit, and a travel distance from the travel distance storage unit A rolling resistance calculation unit that obtains and calculates the rolling resistance of the rotating body and an output unit that outputs a calculation result are further provided.
In the above apparatus, the rotating body is a tire.
[0030]
The effectiveness of the method and apparatus according to the invention was tested.
The test was conducted under the following conditions.
Tire size (rim size in parentheses):
185 / 60R13 (13 × 5 1 / 2JJ), 185 / 65R14 (14 × 5 1 / 2JJ), 195 / 70R14 (14 × 6JJ), 175 / 70R15 (15 × 5J), 175 / 80R15 (15 × 5J) , 185 / 65R15 (15 × 5 1 / 2JJ), 185 / 70R15 (15 × 5 1 / 2JJ), 195 / 65R15 (15 × 6JJ)
Internal pressure: 210kPa
Load: 2.45, 3.43, 4, 41 kN
With respect to the above-mentioned 8-size radial tires for passenger cars, the rolling resistance was measured and simulated at an internal pressure level of 1 and a load level of 3, and the correlation coefficient between the measurement results and the simulation results was determined. A higher correlation coefficient is better.
As a rolling resistance test method, a drum tester having a smooth drum surface and made of steel and having a diameter of 1707 mm was used, the ambient temperature was controlled to 21 ± 2 ° C., and the vehicle was run at a speed of 80 km / h. The rolling resistance was measured. In this case, the coefficient k in the rolling resistance simulation is k = 1.
As a result of the test, in the case of Example 1, that is, the material loss coefficient does not depend on temperature, frequency, and strain amplitude, the correlation coefficient r = 0.934, and in Example 2, the material loss coefficient depends on temperature, frequency, and strain amplitude. In the case where there was a property, the correlation coefficient r = 0.948. On the other hand, when the rolling resistance is simulated based on the strain energy of the conventional example, the correlation coefficient r is 0.884.
[0031]
FIG. 10 shows an example of a flowchart of a method for investigating and analyzing the characteristics of heat generation energy of a tire which is a rotating body including a viscoelastic material as one embodiment of the present invention. FIG. 11 shows an example of a flowchart of a method for investigating and analyzing rolling resistance characteristics of a tire which is a rotating body including a viscoelastic material as one embodiment of the present invention.
[0032]
In the flowchart of FIG. 10, in step S101, the stress and strain of a tire loaded with a load are derived. In step S102, the stress and strain are derived with reference to local coordinates. In step S103, the data of the tire circumference is captured. in step S104, the stress for each degree decomposed into Fourier series, the amplitude of the distortion, the calculation of the phase, the calculation of the area S n of the hysteresis loop in step S105, the determination of the completion of a predetermined order of operations in step S106, in step S107 , calculation of the area S n and the sum S c orders of the product of the hysteresis loop, at step S108, the determination of all components arithmetic operation completion, operation of the volume V in step S109, calculation of the emission energy in step S110, in step S111, the tire Determination of the operation completion body, in step S112, the derivation of exothermic energy of the whole tire, but is carried out, respectively.
[0033]
In the flowchart of FIG. 11, in step S201, the outer radius of a tire that is not loaded is derived, in step S202, the static load radius of a loaded tire is derived, and in step S203, the tire travels one revolution. Distance derivation is performed respectively. Here, tire rolling resistance is derived in step S301 based on the derived travel distance data of one rotation of the tire and the heat generation energy data S1 derived by the process as shown in FIG.
[0034]
In the method and apparatus according to the present invention, it is possible to perform a high-fidelity simulation of tire heat generation and tire rolling resistance. Further, the loss factor of the material can be changed for each component of stress and strain, and the anisotropy of the loss factor of a fiber reinforced material such as a belt or a carcass can be handled. Further, since the area of the hysteresis loop is calculated for each deformation frequency of the tire, a different deformation frequency can be considered for each part of the tire. In addition, when calculating the area of the hysteresis loop, the calculation is performed for each deformation frequency of the tire from the amplitude of the stress and strain, and the frequency dependency and strain amplitude dependency of the loss factor of the material can be taken into consideration. In this case, it is possible to perform analysis in consideration of the temperature, frequency, and strain amplitude dependence of the material loss coefficient by appropriately obtaining the temperature corresponding to the tire part.
According to the method and apparatus of the present invention, it is possible to appropriately investigate and analyze the heat energy related characteristics of the rotating body including the viscoelastic material, such as the heat energy characteristics and the rolling resistance characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram of an apparatus for conducting a method for investigating and analyzing characteristics of heat generation energy of a rotating body including a viscoelastic material as one embodiment of the present invention.
FIG. 2 is a diagram of an apparatus for performing a method of investigating and analyzing rolling resistance characteristics of a rotating body including a viscoelastic material as one embodiment of the present invention.
FIG. 3 is a diagram for explaining the principle of investigation and analysis of heat generation energy characteristics of a rotating body including a viscoelastic material according to the present invention.
FIG. 4 is a cross-sectional view and an elevation view of a tire as a rotating body including a viscoelastic material.
FIG. 5 is a diagram showing a distribution of stress and strain with respect to a position obtained from a calculation result.
FIG. 6 is a diagram of a curve of each order component obtained by Fourier series expansion of a stress curve.
FIG. 7 is a diagram of a curve of each order component obtained by Fourier series expansion of a strain curve.
FIG. 8 is a diagram showing a hysteresis loop of a primary component.
FIG. 9 is a diagram showing a hysteresis loop of a secondary component.
FIG. 10 is a flowchart of a method for investigating and analyzing the characteristics of heat generation energy of a rotating body including a viscoelastic material as one embodiment of the present invention.
FIG. 11 is a flowchart of a method for investigating and analyzing rolling resistance characteristics of a rotating body including a viscoelastic material as one embodiment of the present invention.

Claims (22)

粘弾性材料を含む回転体の発熱エネルギの特性の調査、分析の方法であって、
(1)使用条件下における粘弾性体を含む回転体の応力、ひずみを演算し、
(2)局所座標を参照した応力、ひずみに変換する演算を行い断面内の一点における応力、ひずみの成分を演算し、
(3)円周方向に隣接する諸点の応力、ひずみを順次演算し一周分の応力、ひずみを得ることにより応力、ひずみの変化特性の曲線を導出し、一周分の応力、ひずみの有限次数のフーリエ級数展開の演算を行い、各フーリエ次数ごとに曲線の振幅、位相を演算し、
(4)材料の損失係数に応じた位相遅れをひずみ値に与えての各フーリエ次数ごとのヒステリシスループの面積の演算にもとづきフーリエ次数とヒステリシスループ面積の積の総和を導出し、
(5)以上の一連の(1)〜(4)の演算過程を応力、ひずみの全成分について反復実行し各成分ごとの該総和を演算することにより当該位置における発熱エネルギ密度を導出し、
(6)当該位置の発熱エネルギ密度にて発熱エネルギ密度特性が近似される、当該位置を含む領域の体積と発熱エネルギ密度の積を演算することにより、当該領域における発熱エネルギを導出し、
(7)以上の一連の(1)〜(6)の演算および導出の過程を回転体の全体について反復実行し回転体全体の発熱エネルギを導出する、
ことを特徴とする粘弾性材料を含む回転体の発熱エネルギの特性の調査、分析の方法。
A method for investigating and analyzing the heat energy characteristics of a rotating body containing a viscoelastic material,
(1) Calculate the stress and strain of a rotating body including a viscoelastic body under operating conditions,
(2) Calculate the stress and strain components at one point in the cross-section by calculating the stress and strain referring to the local coordinates,
(3) Calculate the stress and strain change characteristics by sequentially calculating the stress and strain of points adjacent to each other in the circumferential direction and obtaining the stress and strain for one round. Calculate the Fourier series expansion, calculate the amplitude and phase of the curve for each Fourier order,
(4) Deriving the sum of the product of the Fourier order and the hysteresis loop area based on the calculation of the area of the hysteresis loop for each Fourier order by giving the phase lag according to the loss factor of the material to the strain value,
(5) The calculation process of the series of (1) to (4) described above is repeatedly executed for all components of stress and strain, and the sum of each component is calculated to derive the heat energy density at the position,
(6) Deriving heat generation energy in the region by calculating a product of the volume of the region including the position and the heat generation energy density, in which the heat generation energy density characteristic is approximated by the heat generation energy density of the position,
(7) The series of operations (1) to (6) described above and the derivation process are repeatedly executed for the entire rotating body to derive the heat generation energy of the entire rotating body.
A method of investigating and analyzing the characteristics of heat generation energy of a rotating body including a viscoelastic material.
粘弾性体材料の損失係数に対応する位相遅れの値として、少くとも温度依存性、周波数依存性、およびひずみ振幅依存性のいずれかに対応する値が用いられる、請求項1記載の方法。The method according to claim 1, wherein a value corresponding to at least one of temperature dependency, frequency dependency, and strain amplitude dependency is used as the value of the phase delay corresponding to the loss factor of the viscoelastic material. フーリエ次数とヒステリシスループ面積の該総和の導出は関係式:
Figure 0003969821
ここに、Sc は面積、nは次数、iはフーリエ級数展開の次数、An f は応力の振幅、An g はひずみの振幅、Bn f は応力の位相、Bn g はひずみの位相、δは位相遅れである、
に従って行われる、請求項1または2記載の方法。
The derivation of the sum of Fourier order and hysteresis loop area is a relational expression:
Figure 0003969821
Where S c is the area, n is the order, i is the order of the Fourier series expansion, A n f is the amplitude of the stress, A n g is the amplitude of the strain, B n f is the phase of the stress, and B n g is the strain Phase, δ is phase lag,
The method according to claim 1 or 2, wherein the method is performed according to
該フーリエ級数展開の次数は10〜100に選択される、請求項1〜3のいずれかに記載の方法。The method according to claim 1, wherein the order of the Fourier series expansion is selected to be 10-100. 各成分ごとの該Sc の総和と体積Vの積Ediは関係式:
Figure 0003969821
に従って行われる、請求項1記載の方法。
The product E di of the sum of S c and volume V for each component is a relational expression:
Figure 0003969821
The method of claim 1, wherein the method is performed according to:
粘弾性材料を含む回転体の転動抵抗の特性の調査、分析の方法であって、
(1)使用条件下における粘弾性体を含み回転体の応力、ひずみを演算し、
(2)該演算された応力、ひずみを局所座標を参照した応力、ひずみに変換する演算を行い断面内の一点における応力、ひずみの成分を演算し、
(3)該演算に引続き円周方向に隣接する諸点の応力、ひずみを順次演算し一周分の応力、ひずみを得ることにより応力、ひずみの変化特性の曲線を導出し、
(4)一周分の応力、ひずみの有限次数のフーリエ級数展開の演算を行い各フーリエ次数ごとに曲線の振幅、位相を演算し、
(5)材料の損失係数に応じた位相遅れをひずみ値に与えての各フーリエ級数ごとのヒステリシスループの面積の演算にもとづきフーリエ次数とヒステリシスループ面積の積の総和を演算し、
(6)以上の一連の(1)〜(5)の演算過程を応力、ひずみの全成分について反復実行し各成分ごとの総和を演算することにより当該位置における発熱エネルギ密度を導出し、
(7)当該位置の発熱エネルギ密度にて発熱エネルギ密度特性が近似される、当該位置を含む領域の体積と発熱エネルギ密度の積を演算することにより、当該領域における発熱エネルギを導出し、
(8)以上の一連の(1)〜(7)の演算および導出の過程を回転体の全体について反復実行し回転体全体の発熱エネルギを導出し、
(9)荷重を負荷していない回転体の外半径、および荷重を負荷したときの負荷半径を、有限要素法により演算しその結果を用いて回転体が一回転したときの走行距離を導出し、
(10)該導出された回転体一回転時の発熱エネルギと回転体が一回転したときの走行距離にもとづき回転体の転動抵抗を導出する、
ことを特徴とする粘弾性材料を含む回転体転動抵抗の特性の調査、分析の方法。
A method for investigating and analyzing rolling resistance characteristics of a rotating body including a viscoelastic material,
(1) Calculate the stress and strain of the rotating body including the viscoelastic body under operating conditions,
(2) Calculate the stress and strain components at one point in the cross-section by converting the calculated stress and strain into stress and strain referring to local coordinates,
(3) Subsequent to the calculation, the stress and strain at points adjacent in the circumferential direction are sequentially calculated to obtain the stress and strain for one round, thereby deriving a curve of stress and strain change characteristics,
(4) Calculate a finite order Fourier series expansion of stress and strain for one round, calculate the amplitude and phase of the curve for each Fourier order,
(5) Calculate the sum of the product of the Fourier order and the hysteresis loop area based on the calculation of the area of the hysteresis loop for each Fourier series by giving the phase lag according to the loss factor of the material to the strain value,
(6) The above-described series of calculation processes (1) to (5) are repeatedly executed for all components of stress and strain, and the sum of each component is calculated to derive the heat generation energy density at the position,
(7) Deriving heat generation energy in the region by calculating the product of the volume of the region including the position and the heat generation energy density, where the heat generation energy density characteristic is approximated by the heat generation energy density of the position,
(8) The above-described series of calculation and derivation processes (1) to (7) are repeatedly executed for the entire rotating body to derive the heat generation energy of the entire rotating body,
(9) The outer radius of the rotating body that is not loaded and the load radius when the load is loaded are calculated by the finite element method, and the travel distance when the rotating body makes one revolution is derived using the result. ,
(10) Deriving the rolling resistance of the rotating body based on the derived heat generation energy during one rotation of the rotating body and the travel distance when the rotating body makes one rotation;
A method of investigating and analyzing the characteristics of rolling element rolling resistance including viscoelastic materials.
粘弾性材料の損失係数に対応する位相遅れの値として、少くとも温度依存性、周波数依存性、およびひずみ振幅依存性のいずれかに対応する値が用いられる請求項6記載の方法。The method according to claim 6, wherein a value corresponding to at least one of temperature dependency, frequency dependency, and strain amplitude dependency is used as the value of the phase delay corresponding to the loss coefficient of the viscoelastic material. フーリエ次数とヒステリシスループ面積の該総和の導出は関係式:
Figure 0003969821
ここに、Sc は面積、nは次数、iはフーリエ級数展開の次数、An f は応力の振幅、An g はひずみの振幅、Bn f は応力の位相、Bn g はひずみの位相、δは位相遅れである、
に従って行われる、請求項6または7記載の方法。
The derivation of the sum of Fourier order and hysteresis loop area is a relational expression:
Figure 0003969821
Where S c is the area, n is the order, i is the order of the Fourier series expansion, A n f is the amplitude of the stress, A n g is the amplitude of the strain, B n f is the phase of the stress, and B n g is the strain Phase, δ is phase lag,
The method according to claim 6 or 7, wherein the method is performed according to
該フーリエ級数展開の次数は10〜100に選択される、請求項6〜8のいずれかに記載の方法。The method according to any one of claims 6 to 8, wherein the order of the Fourier series expansion is selected from 10 to 100. 各成分ごとの該Sc の総和と体積Vの積
diは関係式:
Figure 0003969821
に従って行われる、請求項6〜9のいずれかに記載の方法。
The product E di of the sum of S c and volume V for each component is a relational expression:
Figure 0003969821
10. The method according to any one of claims 6 to 9, wherein the method is carried out according to:
該回転体が一回転したときの走行距離Lの導出は、関係式:
L=2π{K(R1 −R0 )+R0
ここにR0 は荷重を負荷していないときの該回転体の外半径、R1 は荷重を負荷したときの負荷半径、Kは0〜1の範囲にある係数である、
に従って行われる、請求項6〜10のいずれかに記載の方法。
The derivation of the travel distance L when the rotating body makes one rotation is expressed by a relational expression:
L = 2π {K (R 1 −R 0 ) + R 0 }
Here, R 0 is the outer radius of the rotating body when no load is applied, R 1 is the load radius when the load is applied, and K is a coefficient in the range of 0 to 1.
The method according to any one of claims 6 to 10, which is performed according to
該回転体がタイヤである請求項1〜11のいずれかに記載の方法。The method according to claim 1, wherein the rotating body is a tire. 形状データ供給部、材料データ供給部、境界データ供給部、および荷重データ供給部からのデータ供給にもとづき粘弾性材料を含む回転体の応力およびひずみが演算される回転体応力、ひずみ演算部、
該回転体応力、ひずみ演算部の出力を受け局所座標を参照した応力およびひずみへの座標変換が行われる座標変換応力、ひずみ演算部、
以上の回転体応力、ひずみ演算と座標変換応力、ひずみ演算とを回転体一周について順次行い回転体一周分の応力、ひずみデータが導出され蓄積される一周分データ導出部、
該一周分の応力、ひずみデータにもとづきヒステリシスループの面積の演算が行われるヒステリシスループ面積導出部、
該ヒステリシスループ面積導出部の出力を受け回転体の発熱エネルギ密度の演算が行われる回転体発熱エネルギ密度データ導出部、および、
該回転体発熱エネルギ密度データにて発熱エネルギ密度特性が近似される、当該位置を含む領域の体積である体積データの演算が行われる体積データ導出部、および、
該回転体発熱エネルギ密度データ導出部、該体積データ導出部の出力を受け回転体の発熱エネルギの演算が行われる発熱エネルギデータ導出部、
を具備することを特徴とする粘弾性材料を含む回転体の発熱エネルギの特性の調査、分析の装置。
Rotating body stress, strain calculating unit for calculating stress and strain of rotating body including viscoelastic material based on data supply from shape data supplying unit, material data supplying unit, boundary data supplying unit, and load data supplying unit,
Coordinate conversion stress, strain calculation unit in which coordinate conversion to stress and strain is performed with reference to local coordinates in response to the output of the rotating body stress, strain calculation unit,
Rotating body stress, strain calculation, coordinate transformation stress, and strain calculation are sequentially performed for one rotation of the rotating body, and the stress and strain data for one rotation of the rotating body are derived and accumulated,
Hysteresis loop area derivation unit in which the area of the hysteresis loop is calculated based on the stress and strain data for one round,
A rotating body heat energy density data deriving section that receives the output of the hysteresis loop area deriving section and that calculates the heat energy density of the rotating body; and
A volume data deriving unit for calculating volume data that is a volume of a region including the position, in which the heat generation energy density characteristic is approximated by the rotating body heat generation energy density data; and
A heat generating energy data deriving unit for receiving the output of the rotating body heat energy density data deriving unit and the volume data deriving unit to calculate the heat generating energy of the rotating body;
A device for investigating and analyzing the characteristics of heat generation energy of a rotating body including a viscoelastic material.
形状データ供給部、材料データ供給部、境界データ供給部、および荷重データ供給部からのデータ供給にもとづき粘弾性材料を含む回転体の応力およびひずみが演算される回転体応力、ひずみ演算部、
該回転体応力、ひずみ演算部の出力を受け局所座標を参照した応力およびひずみへの座標変換が行われる座標変換応力、ひずみ演算部、
以上の回転体応力、ひずみ演算と座標変換応力、ひずみ演算とを回転体一周について順次行い回転体一周分の応力、ひずみデータが導出され蓄積される一周分データ導出部、
該一周分の応力、ひずみデータにもとづきヒステリシスループの面積の演算が行われるヒステリシスループ面積導出部、
該ヒステリシスループ面積導出部の出力を受け回転体の発熱エネルギ密度の演算が行われる回転体発熱エネルギ密度データ導出部、
該回転体発熱エネルギ密度データにて発熱エネルギ密度特性が近似される、当該位置を含む領域の体積の演算が行われる体積データ導出部、および、
該回転体発熱エネルギ密度データ導出部、該体積データ導出部の出力を受け回転体の発熱エネルギの演算が行われる発熱エネルギデータ導出部、
荷重を負荷していないときの回転体の外半径が導出される外半径導出部、
荷重を負荷した回転体の静的負荷半径が導出される静的負荷半径導出部、
該導出された外半径および静的負荷半径にもとづき回転体一回転の走行距離が導出される回転体一回転時走行距離導出部、および
該導出された回転体発熱エネルギデータおよび回転体一回転の走行距離にもとづき回転体の転動抵抗が導出される回転体転動抵抗導出部、
を具備することを特徴とする粘弾性材料を含む回転体の転動抵抗の特性の調査、分析の装置。
Rotating body stress, strain calculating unit for calculating stress and strain of rotating body including viscoelastic material based on data supply from shape data supplying unit, material data supplying unit, boundary data supplying unit, and load data supplying unit,
Coordinate conversion stress, strain calculation unit in which coordinate conversion to stress and strain is performed with reference to local coordinates in response to the output of the rotating body stress, strain calculation unit,
Rotating body stress, strain calculation, coordinate transformation stress, and strain calculation are sequentially performed for one rotation of the rotating body, and the stress and strain data for one rotation of the rotating body are derived and accumulated,
Hysteresis loop area derivation unit in which the area of the hysteresis loop is calculated based on the stress and strain data for one round,
A rotating body heat energy density data deriving unit that receives the output of the hysteresis loop area deriving unit and calculates the heat energy density of the rotating body;
A volume data deriving unit in which the volume of a region including the position is calculated, in which the heat generation energy density characteristic is approximated by the rotating body heat generation energy density data; and
A heat generating energy data deriving unit for receiving the output of the rotating body heat energy density data deriving unit and the volume data deriving unit to calculate the heat generating energy of the rotating body;
An outer radius deriving section from which the outer radius of the rotating body is derived when no load is applied;
A static load radius deriving unit for deriving a static load radius of a rotating body loaded with a load;
A traveling distance deriving section for one rotation of the rotating body derived based on the derived outer radius and static load radius, and the derived rotating body heat energy data and one rotation of the rotating body Rotating body rolling resistance deriving unit from which rolling resistance of the rotating body is derived based on the travel distance,
A device for investigating and analyzing rolling resistance characteristics of a rotating body including a viscoelastic material.
該回転体がタイヤである、請求項13または14記載の装置。The apparatus according to claim 13 or 14, wherein the rotating body is a tire. 形状データ、材料データ、境界データ、および荷重データを入力する入力部、
形状データ、材料データ、境界データ、および荷重データを記憶する入力データ記憶部、
入力データ記憶部からデータを取得して粘弾性材料を含む回転体の応力およびひずみを演算する応力、ひずみ演算部、
該応力を記憶する応力記憶部、
該ひずみを記憶するひずみ記憶部、
該応力記憶部から応力を、ひずみ記憶部からひずみを取得し、局所座標を参照した応力およびひずみへ座標変換する局所座標応力、局所座標ひずみ演算部、
該局所座標応力を記憶する局所座標応力記憶部、
該局所座標ひずみを記憶する局所座標ひずみ記憶部、
該局所座標応力記憶部から回転体一周分の局所座標応力データを、該局所座標ひずみ記憶部から回転体一周分の局所座標ひずみデータを取得し、回転体一周分の局所座標応力データおよび局所座標ひずみデータを記憶する一周分データ記憶部、
一周分データ記憶部から局所座標応力データおよび局所座標ひずみデータを取得し、一周分の局所座標応力、局所座標ひずみの有限次数のフーリエ級数展開の演算を行い、各フーリエ次数ごとに曲線の振幅、位相を演算し、材料の損失係数に応じた位相遅れをひずみ値に与えてフーリエ次数ごとのヒステリシスループの面積を演算するヒステリシスループ面積データ演算部、
ヒステリシスループ面積データを記憶するヒステリシスループ面積データ記憶部、
該ヒステリシスループ面積データ記憶部から各フーリエ次数ごとのヒステリシスループ面積データを取得し、フーリエ次数と該ヒステリシスループ面積データから回転体の発熱エネルギ密度を演算する回転体発熱エネルギ密度データ演算部、
該回転体発熱エネルギ密度データを記憶する回転体発熱エネルギ密度データ記憶部、
該回転体発熱エネルギ密度データ記憶部から取得した該回転体発熱エネルギ密度データにて発熱エネルギ密度特性が近似される、当該位置を含む領域の体積を演算する体積データ演算部、
該体積データを記憶する体積データ記憶部、
該回転体発熱エネルギ密度データ記憶部から該回転体発熱エネルギ密度データを、該体積データ記憶部から該体積データを取得して発熱エネルギを演算する発熱エネルギ演算部、および
演算結果を出力する出力部
を具備することを特徴とするコンピュータにより粘弾性材料を含む回転体の発熱エネルギを求める装置。
Input section for inputting shape data, material data, boundary data, and load data,
An input data storage unit for storing shape data, material data, boundary data, and load data;
Stress, strain calculation unit that acquires data from the input data storage unit and calculates the stress and strain of the rotating body containing viscoelastic material,
A stress storage unit for storing the stress;
A strain storage unit for storing the strain;
A stress from the stress storage unit, a strain from the strain storage unit, a local coordinate stress for converting the stress into a stress and a strain with reference to local coordinates, a local coordinate strain calculation unit,
A local coordinate stress storage unit for storing the local coordinate stress;
A local coordinate strain storage unit for storing the local coordinate strain;
The local coordinate stress data for one rotation of the rotating body is acquired from the local coordinate stress storage unit, the local coordinate strain data for one rotation of the rotating body is acquired from the local coordinate strain storage unit, and the local coordinate stress data and local coordinates for one rotation of the rotating body are acquired. One round data storage unit for storing strain data,
Obtain local coordinate stress data and local coordinate strain data from the one-round data storage unit, perform local series stress for one round, Fourier series expansion of a finite order of local coordinate strain, the amplitude of the curve for each Fourier order, Hysteresis loop area data calculation unit that calculates the phase, gives the phase lag according to the loss factor of the material to the strain value, and calculates the area of the hysteresis loop for each Fourier order,
Hysteresis loop area data storage unit for storing hysteresis loop area data;
A rotating body heat energy density data calculation unit that obtains hysteresis loop area data for each Fourier order from the hysteresis loop area data storage unit, and calculates a heat generation energy density of the rotating body from the Fourier order and the hysteresis loop area data;
A rotating body heat generating energy density data storage unit for storing the rotating body heat generating energy density data;
A volume data calculation unit for calculating a volume of a region including the position where the heat generation energy density characteristic is approximated by the rotation body heat generation energy density data acquired from the rotation body heat generation energy density data storage unit;
A volume data storage unit for storing the volume data;
A heat generation energy calculation unit that calculates the heat generation energy by acquiring the volume heat generation energy density data from the rotation body heat generation energy density data storage unit and the volume data from the volume data storage unit, and an output unit that outputs a calculation result An apparatus for obtaining heat generation energy of a rotating body including a viscoelastic material by a computer.
粘弾性体材料の損失係数に対応する位相遅れの値として、少くとも温度依存性、周波数依存性、およびひずみ振幅依存性のいずれかに対応する値が用いられる、請求項16記載の装置。The apparatus according to claim 16, wherein a value corresponding to at least one of temperature dependence, frequency dependence, and strain amplitude dependence is used as the value of the phase delay corresponding to the loss factor of the viscoelastic material. フーリエ次数とヒステリシスループ面積の該総和の導出は関係式:
Figure 0003969821
iはフーリエ級数展開の次数、
ここに、Sn は面積、nは次数、An f は応力の振幅、An g はひずみの振幅、Bn f は応力の位相、Bn g はひずみの位相、δは位相遅れである、
に従って行われる、請求項16または17記載の装置。
The derivation of the sum of Fourier order and hysteresis loop area is a relational expression:
Figure 0003969821
i is the order of the Fourier series expansion,
Here, the S n area, n represents the order, A n f is the stress amplitude, A n g is the amplitude of strain, B n f is the stress phase, B n g is the strain phase, [delta] is the phase lag ,
The device according to claim 16 or 17, wherein the device is performed according to:
該フーリエ級数展開の次数は10〜100に選択される、請求項16または17記載の装置。18. An apparatus according to claim 16 or 17, wherein the order of the Fourier series expansion is selected from 10 to 100. 各成分ごとの該Sc の総和と体積Vの積Ediは関係式:
Figure 0003969821
に従って行われる、請求項16〜19のいずれかに記載の装置。
The product E di of the sum of S c and volume V for each component is a relational expression:
Figure 0003969821
20. The device according to any one of claims 16 to 19, which is performed according to:
該発熱エネルギを記憶する発熱エネルギ記憶部、
荷重を負荷していないときの回転体の外半径、および荷重を負荷したときの負荷半径を、有限要素法により演算しその結果を用いて回転体が一回転したときの走行距離を演算する走行距離演算部、
該走行距離を記憶する走行距離記憶部、
発熱エネルギ記憶部から発熱エネルギを、走行距離記憶部から走行距離を取得して回転体の転動抵抗を演算する転動抵抗演算部、および
演算結果を出力する出力部、
をさらに具備する、請求項16〜20のいずれかに記載の装置。
A heat generation energy storage unit for storing the heat generation energy;
Travel that calculates the outer radius of the rotating body when no load is applied and the load radius when a load is applied using the finite element method and calculates the travel distance when the rotating body makes one revolution using the result Distance calculator,
A mileage storage unit for storing the mileage;
A heating resistance calculating unit that calculates the rolling resistance of the rotating body by obtaining the heating energy from the heating energy storage unit and the travel distance from the travel distance storage unit, and an output unit that outputs a calculation result;
21. The apparatus according to any of claims 16 to 20, further comprising:
該回転体がタイヤである請求項16〜21のいずれかに記載の装置。The apparatus according to any one of claims 16 to 21, wherein the rotating body is a tire.
JP04050698A 1998-02-23 1998-02-23 Method and apparatus for investigation and analysis of characteristics related to heat generation energy of rotating body including viscoelastic material Expired - Fee Related JP3969821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04050698A JP3969821B2 (en) 1998-02-23 1998-02-23 Method and apparatus for investigation and analysis of characteristics related to heat generation energy of rotating body including viscoelastic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04050698A JP3969821B2 (en) 1998-02-23 1998-02-23 Method and apparatus for investigation and analysis of characteristics related to heat generation energy of rotating body including viscoelastic material

Publications (2)

Publication Number Publication Date
JPH11237332A JPH11237332A (en) 1999-08-31
JP3969821B2 true JP3969821B2 (en) 2007-09-05

Family

ID=12582445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04050698A Expired - Fee Related JP3969821B2 (en) 1998-02-23 1998-02-23 Method and apparatus for investigation and analysis of characteristics related to heat generation energy of rotating body including viscoelastic material

Country Status (1)

Country Link
JP (1) JP3969821B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103595A (en) * 2007-10-24 2009-05-14 Yokohama Rubber Co Ltd:The Method of predicting running heat generation, and method of predicting running resistance force for belt body
JP2011008516A (en) * 2009-06-25 2011-01-13 Yokohama Rubber Co Ltd:The Analysis information display method, analysis information-displaying computer program and analysis information display device
CN109116004A (en) * 2018-08-29 2019-01-01 江苏通用科技股份有限公司 A method of using RPA quantitatively characterizing vulcanizate dynamic power loss density

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913964B2 (en) * 2001-08-31 2012-04-11 東洋ゴム工業株式会社 Measured value estimation method and program
JP4608306B2 (en) * 2004-12-21 2011-01-12 住友ゴム工業株式会社 Tire simulation method
JP2006213284A (en) * 2005-02-07 2006-08-17 Bridgestone Corp Tire performance prediction method
JP4635668B2 (en) * 2005-03-18 2011-02-23 横浜ゴム株式会社 Tire performance prediction method, tire performance prediction computer program, and tire / wheel assembly model creation method
JP5245478B2 (en) * 2008-03-18 2013-07-24 横浜ゴム株式会社 Method for predicting running heat of belt body and running resistance prediction method
JP5564889B2 (en) * 2009-10-20 2014-08-06 横浜ゴム株式会社 Viscoelasticity test method, tire simulation method, and tire simulation apparatus
JP5533020B2 (en) * 2010-02-25 2014-06-25 横浜ゴム株式会社 METHOD FOR PREDICTING TIRE ROLLING RESISTANCE AND METHOD FOR ANALYZING, AND PREDICTION DEVICE AND ANALYSIS DEVICE FOR PREDICTING TIRE ROLLING RESISTANCE
JP6412437B2 (en) * 2014-05-12 2018-10-24 株式会社神戸製鋼所 Tire rolling resistance prediction method and tire rolling resistance prediction apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103595A (en) * 2007-10-24 2009-05-14 Yokohama Rubber Co Ltd:The Method of predicting running heat generation, and method of predicting running resistance force for belt body
JP2011008516A (en) * 2009-06-25 2011-01-13 Yokohama Rubber Co Ltd:The Analysis information display method, analysis information-displaying computer program and analysis information display device
CN109116004A (en) * 2018-08-29 2019-01-01 江苏通用科技股份有限公司 A method of using RPA quantitatively characterizing vulcanizate dynamic power loss density
CN109116004B (en) * 2018-08-29 2021-07-16 江苏通用科技股份有限公司 Method for quantitatively representing dynamic energy loss density of vulcanized rubber by adopting RPA (resilient reactive powder)

Also Published As

Publication number Publication date
JPH11237332A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
JP3969821B2 (en) Method and apparatus for investigation and analysis of characteristics related to heat generation energy of rotating body including viscoelastic material
Wei et al. Transient dynamic behaviour of finite element tire traversing obstacles with different heights
Raju et al. Evaluation of fatigue life of aluminum alloy wheels under radial loads
JP4163236B2 (en) Method and apparatus for evaluating tire cornering characteristics
JP5504912B2 (en) Tire usage condition evaluation method and apparatus, and tire wear prediction method and apparatus
US20090043517A1 (en) Method and device for calculating magnitude of cornering force generated in wheel
JP6090336B2 (en) Vehicle vibration analysis method and vibration analysis apparatus
JP5493439B2 (en) Tire rolling resistance evaluation method, tire evaluation system using the same, and tire rolling resistance evaluation program
JP4699682B2 (en) Tire temporal change prediction method, apparatus, program, and medium
CN111504663B (en) Method for measuring longitudinal and smooth relaxation length of tire based on transfer function
US7469200B2 (en) Method and apparatus for predicting belt separation failure in aging tires by computer simulation
JP5245478B2 (en) Method for predicting running heat of belt body and running resistance prediction method
Sandu et al. Hybrid soft soil tire model (HSSTM). Part III: Model parameterization and validation
JP5564889B2 (en) Viscoelasticity test method, tire simulation method, and tire simulation apparatus
JP2004533346A (en) Analysis and control method of tire uniformity
Bolarinwa et al. On finite element tyre modal analysis
Liang et al. An effect study of passenger car radial tire contour design theory on tire force and moment properties
JP2007131209A (en) Model for numerical analysis of tire, its forming method, method for analyzing rolling resistance of tire, and model for numerical analysis of rolling resistance of tire
Liu et al. Modeling of tread block contact mechanics using linear viscoelastic theory
Mange et al. Identify challenges in vibration measurements for rotating tyres using a finite element model
McBride Granda A wave propagation approach for prediction of tire-pavement interaction noise
Ali Rolling resistance estimation for PCR tyre design using the finite element method
Matsubara et al. Evaluation of spring properties of tire sidewall under changes in inflation pressure
JP6312975B2 (en) Tire durability evaluation method and design method using the same
TANAKA et al. Theoretical Predictions of Horizontal and Vertical Frequencies of a Rotating Tire Cavity Resonance Using Two Complementary Models

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees