JP3969352B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP3969352B2
JP3969352B2 JP2003173918A JP2003173918A JP3969352B2 JP 3969352 B2 JP3969352 B2 JP 3969352B2 JP 2003173918 A JP2003173918 A JP 2003173918A JP 2003173918 A JP2003173918 A JP 2003173918A JP 3969352 B2 JP3969352 B2 JP 3969352B2
Authority
JP
Japan
Prior art keywords
layer
electrode
air electrode
support layer
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003173918A
Other languages
Japanese (ja)
Other versions
JP2003331875A (en
Inventor
浩明 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003173918A priority Critical patent/JP3969352B2/en
Publication of JP2003331875A publication Critical patent/JP2003331875A/en
Application granted granted Critical
Publication of JP3969352B2 publication Critical patent/JP3969352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質型燃料電池及びその製造方法に関する。
【0002】
【従来の技術】
平板型の固体電解質型燃料電池のセルを構成する三層膜を支える構造には、自立膜方式と支持膜方式がある。
【0003】
自立膜方式は、図9の三層膜の部分断面図に示すように、燃料極1、固体電解質膜2及び空気極3で構成された三層膜4のうち、燃料極1と空気極3の各電極よりも大きな厚みを有する固体電解質膜2が三層膜4の構造を支えている。
【0004】
一方、支持膜方式は、固体電解質膜以外の部分で三層膜の構造を支えるものであり、図10(a)の三層膜の部分断面図に示すように、空気極3の厚みを燃料極1や固体電解質膜2より厚くするか、図10(b)に示すように、燃料極1の厚みを固体電解質膜2や空気極3より厚くして、三層膜4の構造を支える。
【0005】
【発明が解決しようとする課題】
三層膜を支える構造として、自立膜方式は構造的に簡単であるが、固体電解質膜が厚いために電池の内部抵抗が高くなる、という問題があった。
【0006】
一方、支持膜方式では、固体電解質膜自体の厚みを薄くできるので、電池の内部抵抗を低く抑えることができる。
【0007】
しかしながら、空気極を支持層とする場合、例えば、空気極材料の(La,Sr)MnO3は、一般に固体電解質膜の材料に用いられるYSZ(イットリア安定化ジルコニア)より強度が低い。
【0008】
しかも、空気極は電極として空気ガスを通過させるために多孔質になっているので、この空気極に自立膜方式における固体電解質膜と同等の支持強度を持たせようとすると、その厚みをかなり厚くする必要がある。これは、空気極の代わりに燃料極を支持層とする場合も同様である。
【0009】
そのため、支持膜方式の場合は、燃料電池の発電の基本単位であるセルの厚みが自立膜方式の場合より厚くなり、結果的に固体電解質型燃料電池の体積を増加させるという問題があった。
【0010】
また、電極としての電気特性とこの電極が接合される固体電解質膜との反応性を十分考慮しなければならず、このような考慮と同時に、電極にガスを供給し、隣接するセル同士を電気的に導通するために付設するインターコネクタとの互いの熱膨張係数を調整することは困難であった。
【0011】
そこで、本発明の目的は、固体電解質膜を支持層としない構造でありながら、固体電解質膜を支持層とする構造と同程度の支持強度を有し、体積の増加を抑えて、かつ、容易に支持層とインターコネクタとの熱膨張係数を調整できる、固体電解質型燃料電池とその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明の請求項1における固体電解質型燃料電池は、固体電解質膜の一方の面に多孔質の空気極が配設され、他方の面に多孔質の燃料極が配設されてなる三層膜と、該三層膜の前記空気極または前記燃料極に一方面が接合された、酸化イットリウムを3モル%添加した酸化ジルコニウムを主成分とする支持層と、該支持層の他方面に接合された多孔質の集電層とを備え、前記支持層の主面厚み方向に形成され、前記空気極もしくは前記燃料極を構成する多孔質材料および/または前記集電層を構成する多孔質材料が充填された孔を介して、前記燃料極と前記集電層、または前記空気極と前記集電層とが電気的に接続されていることを特徴とする。
【0013】
本発明は、このような構成により、三層膜の固体電解質膜、空気極及び燃料極のいずれも支持層とせずに別の独立した、酸化イットリウムを3モル%添加した酸化ジルコニウムを主成分とする部材を支持層とするので自立膜方式の三層膜の支持構造と同程度の強度が得られ、かつ、体積の増加が抑えられる。
【0014】
そして、この支持層は支持強度が考慮されるべきであるが、空気極または燃料極を支持層とする場合とは異なり、その電気特性を考慮しなくてもよいため、支持層とインターコネクタとの熱膨張係数を調整することが従来よりも容易になる。
【0015】
また、このような固体電解質型燃料電池の製造方法として、固体電解質膜用成形体、空気極用成形体、燃料極用成形体、主面厚み方向に孔を形成した支持層用成形体及び集電層用成形体をそれぞれ積み重ねて積層成形体とし、これを圧着して前記支持層用成形体の孔に空気極用成形体材料または燃料極用成形体材料と、集電層用成形体材料とを充填すれば、支持層の孔を介して容易に空気極または燃料極と集電層とを接続導通できる。
【0016】
また、同様に、固体電解質膜用成形体、空気極用成形体、燃料極用成形体、及び主面厚み方向に孔を形成した支持層用成形体をそれぞれ積み重ねて積層成形体とし、これを焼成した後、集電層用電極材料ペーストを前記支持層の表面に塗布して集電層を形成するとともに、前記支持層に形成された孔に前記集電層用電極材料を充填すれば、支持層の孔を介して容易に空気極または燃料極と集電層とを接続導通できる。
【0017】
【発明の実施の形態】
本発明の実施の形態を実施例をもとに説明する。
(実施例1)
始めに、出発原料として、酸化ランタン、炭酸ストロンチウム、炭酸マンガン、酸化ジルコニウム、酸化イットリウム及び酸化ニッケルをそれぞれ準備した。
【0018】
次に、前記出発原料から、燃料極材料として、酸化ニッケルと、酸化イットリウムを8モル%添加した酸化ジルコニウムの混合物の粉末を調整した。そして、この粉末に結合剤(ポリビニルブチラール系バインダ)及び溶剤(エタノール及びトルエン)を適当量加えてスラリー化し、このスラリ−からドクターブレ−ド法を用いて、厚さ50μmの燃料極用グリーンシートを作製した。そして、このグリーンシートを縦160mm×横160mmの寸法にカットした。
【0019】
次に、前記出発原料から、固体電解質膜材料として、酸化イットリウムを8モル%添加した酸化ジルコニウムの粉末を調整した。そして、この粉末に、前記燃料極用グリーンシートと同様に、結合剤及び溶剤を適当量加えてスラリー化し、このスラリ−からドクターブレ−ド法を用いて、厚さ50μmの固体電解質膜用グリーンシートを作製した。そして、このグリーンシートを前記燃料極用グリーンシートと同じ縦横寸法にカットした。
【0020】
次に、前記出発原料から、空気極材料及び集電層材料として、La0.7Sr0.3MnO3の粉末を調整した。そして、この粉末に、前記燃料極用グリーンシートと同様に、結合剤及び溶剤を適当量加えてスラリー化し、このスラリ−からドクターブレ−ド法を用いて、厚さ100μmの空気極用及び集電層用グリーンシートを作製し、このグリーンシートを前記燃料極用グリーンシートと同じ縦横寸法にカットした。
【0021】
次に、前記出発原料から、支持層材料として、酸化イットリウムを3モル%添加した酸化ジルコニウムの粉末を調整した。そして、この粉末に、前記燃料極用グリーンシートと同様に、結合剤及び溶剤を適当量加えてスラリー化し、このスラリ−からドクターブレ−ド法を用いて、厚さ200μmの支持層用グリーンシートを作製し、このグリーンシートを前記燃料極用グリーンシートと同じ縦横寸法にカットした。さらに、この支持層用グリーンシ−トに対し、その周縁部を残して、直径約3mmの孔を、主面厚み方向に、孔の周端部と周端部を1mmづつ離して打ち抜き、グリーンシート一面に前記孔を形成した。
【0022】
これらの各グリーンシートを、図2の部分分解斜視図に示すように、燃料極1、固体電解質膜2、空気極3、厚み方向に形成した孔7を有する支持層5、及び集電層6の順に積み重ねて積層成形体とした。
【0023】
このときの部分断面図を図3に示す。この図3は図2の部分分解斜視図の支持層5の孔7の中心部を通るA−A線による平面でカットした部分断面図である。1は燃料極、2は固体電解質膜、3は空気極、5は支持層、6は集電層、7aは支持層5に形成された孔のひとつであり、上下を空気極3と集電層6に挟まれているが、この圧着前の段階では孔7aは空洞状態である。
【0024】
続いて、この積層成形体をプラスチック製の袋に入れた後、この袋の中を真空状態にし、温間静水圧プレス機を用いて圧着した。
【0025】
この圧着した積層成形体の部分断面図を図1に示す。本実施例では、空気極3と集電層6に共通した電極材料(La0.7Sr0.3MnO3)が用いられているが、温間静水圧プレス機による圧着時の加圧により、空洞状態であった支持層5の孔(破線で挟まれた部分)に、この電極材料が支持層5の上下にあった空気極3と集電層6から充填され、その結果、空気極3と集電層6が支持層5の孔を介して電気的に接続されている。
【0026】
次に、この圧着した積層成形体をプラスチック製の袋から取り出して、1300℃の温度で2時間焼成して、焼結体を得た。
【0027】
(実施例2)
始めに、実施例1と同様にして、燃料極、固体電解質膜、空気極及び支持層に用いる各グリーンシートを作製した。
【0028】
すなわち、各出発原料として、酸化ランタン、炭酸ストロンチウム、炭酸マンガン、酸化ジルコニウム、酸化イットリウム及び酸化ニッケルをそれぞれ準備した。そして、これら出発原料から粉末を調整し、この粉末に結合剤と溶剤を加えてスラリー化し、ドクターブレード法を用いて、燃料極用グリーンシート(厚さ50μm)、固体電解質膜用グリーンシート(厚さ50μm)、空気極用グリーンシート(厚さ100μm)及び支持層用グリーンシート(厚さ200μm)をそれぞれ作製した。得られた各グリーンシートは、これも実施例1と同様にして、縦160mm×横160mmの寸法にカットした。さらに、支持層用グリーンシ−トに対し、その周縁部を残して、直径約3mmの孔を、主面厚み方向に、孔の周端部と周端部を1mmづつ離して打ち抜き、グリーンシート一面に前記孔を形成した。
【0029】
そして、これらの各グリーンシートを、図4の部分分解斜視図に示すように、燃料極1、固体電解質膜2、空気極3、及び厚み方向に形成した孔7を有する支持層5の順に積み重ねて積層成形体とし、この積層成形体を1300℃の温度で2時間焼成して焼結体を得た。
【0030】
この焼結体の部分断面図を図5に示す。この図5は図4の部分分解斜視図の支持層5の孔7の中心部を通るB−B線による平面でカットした部分断面図である。1は燃料極、2は固体電解質膜、3は空気極、5は支持層、7aは支持層5に形成された孔のひとつであり、孔7aは空洞状態である。
【0031】
次に、集電層材料として、空気極材料と同じLa0.7Sr0.3MnO3の粉末を調整し、この粉末に溶剤を加えて、集電層用電極材料ペーストを作製した。
【0032】
そして、この集電層用電極材料ペーストを、先に得られた焼結体の支持層表面に100μmの厚さになるようにスクリーン印刷して集電層を形成し、これを乾燥後焼付した。
【0033】
この集電層を支持層表面に形成、焼付した部分断面図を図6に示す。本実施例では、空気極3と集電層6に共通した電極材料(La0.7Sr0.3MnO3)が用いられているので、集電層用電極材料ペーストの支持層表面へのスクリーン印刷により、空洞状態であった支持層5の孔(破線で挟まれた部分)に、この電極材料が充填され、その結果、空気極3と集電層6が支持層5の孔を介して電気的に接続されている。
【0034】
なお、本実施例では、支持層5の孔に充填された電極材料(La0.7Sr0.3MnO3)は多孔質であるため、多孔質の空気極3及び集電層6と同様に空気ガスの流通が可能である。
【0035】
また、本実施例では、面積256cm2(寸法:縦160mm×横160mm)、厚さ200μmの支持層を作製したが、高い強度が得られる材料として酸化イットリウムを3モル%添加した酸化ジルコニウムを用いているので、この支持層の面積をさらに400cm2 程度まで大きくしても、その厚さを500μm程度に抑えることができる。
【0036】
さらに、本実施例のように、電極を兼ねない独立した支持層には電気的特性が要求されないので、Y23を3モル%添加したZrO2の強度に優れた支持層に対して、例えば、Al23等を添加すれば、支持層の強度をさらに向上させたり、熱膨張係数を調整することが一層容易にできるようになる。
【0037】
(比較例1)
次に、比較例1として、空気極を支持層とする支持膜方式のものを作製した。
【0038】
燃料極及び固体電解質膜には実施例1及び実施例2と同じ材料、厚みのものを使用する一方、空気極には、実施例1及び実施例2と同じ材料ではあるが、独立した支持層を用いた実施例1及び実施例2と同等の支持強度を持たせるため、実施例1及び実施例2の厚みよりも厚い空気極を形成した。
【0039】
すなわち、燃料極用(厚さ50μm)、固体電解質膜用(厚さ50μm)、空気極用(厚さ1000μm)及び集電層用(厚さ10μm)の各グリーンシートを実施例1と同様にして作製した。
【0040】
なお、この比較例の構造では空気極の厚みが十分厚いため、集電層用のグリーンシートには実施例1よりも薄いもの(厚さ10μm)を用いた。
【0041】
そして、これらのグリーンシートを、燃料極、固体電解質膜、空気極、集電層の順に積み重ねて積層成形体とし、これをプラスチック製の袋に入れた後、この袋の中を真空状態にし、温間静水圧プレス機を用いて圧着した。
【0042】
続いて、この圧着した積層成形体をプラスチック製の袋から取り出して、1300℃の温度で2時間焼成して、焼結体を得た。
【0043】
得られた焼結体の部分断面図を図7に示す。1は燃料極、2は固体電解質膜、3は空気極、6は集電層を示す。
【0044】
(比較例2)
次に、比較例2として、固体電解質膜を支持層とする自立膜方式のものを作製した。
【0045】
燃料極には実施例1及び実施例2と同じ材料、厚みのものを使用する一方、固体電解質膜には、実施例1及び実施例2と同じ材料ではあるが、独立した支持層を有する支持膜方式の実施例1及び実施例2と同等の支持強度を持たせるため、実施例1及び実施例2の厚みよりも厚い固体電解質膜用グリーンシートを使用した。また、空気極の厚さは燃料極と同じとした。
【0046】
すなわち、燃料極用(厚さ50μm)、固体電解質膜用(厚さ200μm)、空気極用(厚さ50μm)及び集電層用(厚さ10μm)の各グリーンシートを実施例1と同様にして作製した。
【0047】
そして、これらのグリーンシートを、燃料極、固体電解質膜、空気極、集電層の順に積み重ねて積層成形体とし、これをプラスチック製の袋に入れた後、この袋の中を真空状態にし、温間静水圧プレス機を用いて圧着した。
【0048】
そして、この圧着した積層成形体をプラスチック製の袋から取り出して、1300℃の温度で2時間焼成し、焼結体を得た。
【0049】
得られた焼結体の部分断面図を図8に示す。1は燃料極、2は固体電解質膜、3は空気極、6は集電層を示す。
【0050】
これら実施例1、実施例2、比較例1及び比較例2について、燃料極、固体電解質膜、空気極、支持層及び集電層の各作製条件を表1に示す。
【0051】
【表1】

Figure 0003969352
【0052】
表1からわかるように、比較例1の支持層を兼ねる空気極の厚みが1000μmであるのに対し、実施例1及び実施例2の独立した支持層で支えられた空気極の厚みは100μmである。
【0053】
すなわち、比較例1の空気極厚みの1/10であり、厚み200μmの支持層と合わせても300μmとなり、比較例1の空気極厚みの1/3以下にすることができる。
【0054】
そして、残りの構成部分、すなわち、固体電解質膜50μm、燃料極50μm及び集電層100μmと合わせても合計500μmの厚みであり、比較例1の合計厚み1110μmの1/2以下に抑えることができる。
【0055】
また、比較例2の合計厚み310μmに比べて、実施例1及び実施例2の合計厚みは500μmと増すが、実施例1及び実施例2は固体電解質膜の厚みを比較例2の200μmから50μmに薄くできるので、電池の内部抵抗が抑えられ、電池性能が向上する。
【0056】
ころで、集電層は、電極とインターコネクタ(図示せず)の接触を仲介し、かつ、ガス流路の中央付近で発電された電流が電極面内の横方向に流れるときに、面内を流れる電流のロスを抑えるために設けられるものである。
【0057】
本実施例の場合は、空気極の厚みが100μmと薄く、電子が流れる際の抵抗がより大きくなるので、これを補うこと、及び電極とインターコネクタの間に独立した支持層が存在するので電極とインターコネクタの導通を図ることを目的に集電層を設けた。
【0058】
しかしながら、比較例1のような構造の場合は、独立した支持層を有しないこと、及び空気極の厚みが1000μmと厚いため抵抗が小さいことから、集電層は特に設けない場合もある。
なお、本実施例、比較例1及び比較例2の各空気極、各集電層の気孔率は約40%とした。
【0059】
また、本実施例では、支持層を空気極側に配置したが、本発明はこれに限らず、支持層を燃料極側に配置してもよい。
【0060】
さらに、図11の部分断面図に示すように、固体電解質膜2を間に挟んで、燃料極1側及び空気極3側のそれぞれの側に、孔を有する支持層5と集電層6を配置して、支持層5の孔を介して燃料極1と集電層6、空気極3と集電層6をそれぞれ電気的に接続する構造をとることもできる。
【0061】
そして、このような構造における集電体は、本実施例のグリーンシート方式、電極材料ペ−スト方式のいずれの方法でも作製することができる。
【0062】
【発明の効果】
本発明によれば、支持膜方式の固体電解質型燃料電池について、従来の空気極または燃料極を支持層とするものに比べて、厚みを1/2以下に削減することができる。
【0063】
したがって、固体電解質型燃料電池の体積を減少させて電池の小形化に貢献できるとともに、これに伴う材料コストも削減することができる。
【0064】
また、固体電解質膜を支持層とする自立膜方式のものに比べても、同程度の支持強度を得られるとともに固体電解質膜の厚みを薄くできるので電池の内部抵抗が抑えられる。
【0065】
また、本発明は、三層膜の電極を支持層とせず、独立した支持層を採用するため、構造上、空気極や燃料極の電気的特性に影響しない。
【0066】
よって、三層膜の空気極または燃料極と対峙して配設されるインターコネクタとの熱膨張係数の調整が容易になる。
【0067】
さらに、比較的簡単な製造方法で、支持層に形成された孔に空気極、燃料極または集電層の電極材料を充填して、空気極または燃料極と集電層とを電気的に接続することができる。
【図面の簡単な説明】
【図1】本発明の固体電解質型燃料電池における燃料極、固体電解質膜、空気極、支持層及び集電層の圧着後の部分断面図である。
【図2】本発明の固体電解質型燃料電池における燃料極、固体電解質膜、空気極、孔を形成した支持層及び集電層の圧着前の部分分解斜視図である。
【図3】図2のA−A線による部分断面図である。
【図4】本発明の固体電解質型燃料電池における孔を形成した支持層、空気極、固体電解質膜及び燃料極の部分分解斜視図である。
【図5】図4のB−B線による部分断面図である。
【図6】本発明の固体電解質型燃料電池における集電層、支持層、空気極、固体電解質膜及び燃料極の集電層焼付後の部分断面図である。
【図7】比較例1の燃料極、固体電解質膜、空気極、及び集電層の部分断面図である。
【図8】比較例2の燃料極、固体電解質膜、空気極、及び集電層の部分断面図である。
【図9】自立膜方式の固体電解質型燃料電池における三層膜の部分断面図である。
【図10】(a) 支持膜方式の固体電解質型燃料電池における空気極を支持層とする三層膜の部分断面図である。
(b) 支持膜方式の固体電解質型燃料電池における燃料極を支持層とする三層膜の部分断面図である。
【図11】本発明の固体電解質型燃料電池の他の実施例における部分断面図である。
【符号の説明】
1 燃料極
2 固体電解質膜
3 空気極
4 三層膜
5 支持層
6 集電層
7,7a 孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid oxide fuel cell and a method for manufacturing the same.
[0002]
[Prior art]
There are a self-supporting membrane system and a supporting membrane system as a structure that supports the three-layer membrane constituting the cells of the flat-plate solid oxide fuel cell.
[0003]
As shown in the partial cross-sectional view of the three-layer film in FIG. 9, the self-supporting film method is the fuel electrode 1 and the air electrode 3 among the three-layer film 4 composed of the fuel electrode 1, the solid electrolyte film 2, and the air electrode 3. The solid electrolyte membrane 2 having a thickness larger than each of the electrodes supports the structure of the three-layer membrane 4.
[0004]
On the other hand, the support membrane system supports the structure of the three-layer membrane at a portion other than the solid electrolyte membrane. As shown in the partial cross-sectional view of the three-layer membrane in FIG. The structure of the three-layer membrane 4 is supported by making the electrode 1 thicker than the electrode 1 and the solid electrolyte membrane 2 or by making the fuel electrode 1 thicker than the solid electrolyte membrane 2 and the air electrode 3 as shown in FIG.
[0005]
[Problems to be solved by the invention]
As a structure for supporting the three-layer film, the self-supporting film system is structurally simple, but there is a problem that the internal resistance of the battery is increased because the solid electrolyte film is thick.
[0006]
On the other hand, in the support membrane method, since the thickness of the solid electrolyte membrane itself can be reduced, the internal resistance of the battery can be kept low.
[0007]
However, when the air electrode is used as the support layer, for example, (La, Sr) MnO 3 which is an air electrode material has lower strength than YSZ (yttria stabilized zirconia) which is generally used as a material for a solid electrolyte membrane.
[0008]
Moreover, since the air electrode is porous to allow air gas to pass through as an electrode, if the air electrode is made to have a supporting strength equivalent to that of the solid electrolyte membrane in the self-supporting membrane system, its thickness is considerably increased. There is a need to. The same applies to the case where the fuel electrode is used as a support layer instead of the air electrode.
[0009]
Therefore, in the case of the support membrane method, the thickness of the cell, which is the basic unit of power generation of the fuel cell, becomes thicker than in the case of the self-supporting membrane method, resulting in a problem that the volume of the solid oxide fuel cell is increased.
[0010]
In addition, sufficient consideration must be given to the electrical characteristics of the electrode and the reactivity of the solid electrolyte membrane to which the electrode is joined. At the same time, gas is supplied to the electrode, and adjacent cells are electrically connected. It has been difficult to adjust the coefficient of thermal expansion of the interconnector provided for electrical conduction.
[0011]
Accordingly, an object of the present invention is to have a support strength comparable to that of a structure using a solid electrolyte membrane as a support layer, a structure that does not use a solid electrolyte membrane as a support layer, an increase in volume, and an easy Another object of the present invention is to provide a solid oxide fuel cell capable of adjusting the thermal expansion coefficient between the support layer and the interconnector and a method for manufacturing the same.
[0012]
[Means for Solving the Problems]
The solid oxide fuel cell according to claim 1 of the present invention is a three-layer membrane in which a porous air electrode is disposed on one surface of a solid electrolyte membrane and a porous fuel electrode is disposed on the other surface. And a support layer mainly composed of zirconium oxide to which 3 mol% of yttrium oxide is added, bonded to the air electrode or the fuel electrode of the three-layer film, and bonded to the other surface of the support layer. A porous current collector layer, formed in the thickness direction of the main surface of the support layer, and constituting the air electrode or the fuel electrode and / or the porous material constituting the current collector layer. The fuel electrode and the current collecting layer, or the air electrode and the current collecting layer are electrically connected via a filled hole.
[0013]
According to the present invention, the main component is a three-layer solid electrolyte membrane, an air electrode, and a fuel electrode, which are not independent of each other, and are independently composed of zirconium oxide to which 3 mol% of yttrium oxide is added. Since the member to be used is the support layer, the strength equivalent to that of the self-supporting three-layer support structure can be obtained, and an increase in volume can be suppressed.
[0014]
The support layer should take into account the support strength, but unlike the case where the air electrode or the fuel electrode is used as the support layer, it is not necessary to consider its electrical characteristics. It is easier than ever to adjust the thermal expansion coefficient.
[0015]
In addition, as a method for producing such a solid electrolyte fuel cell, a molded body for a solid electrolyte membrane, a molded body for an air electrode, a molded body for a fuel electrode, a molded body for a support layer having holes formed in the thickness direction of the main surface, and a collection Each of the electrode layer molded bodies is stacked to form a laminated molded body, which is pressure-bonded to the hole of the support layer molded body, the air electrode molded body material or the fuel electrode molded body material, and the current collecting layer molded body material , The air electrode or the fuel electrode can be easily connected to the current collecting layer through the hole of the support layer.
[0016]
Similarly, a molded body for a solid electrolyte membrane, a molded body for an air electrode, a molded body for a fuel electrode, and a molded body for a support layer in which holes are formed in the thickness direction of the main surface are stacked to form a laminated molded body. After firing, the current collector layer electrode material paste is applied to the surface of the support layer to form the current collector layer, and if the holes formed in the support layer are filled with the current collector layer electrode material, The air electrode or the fuel electrode can be easily connected to the current collecting layer through the hole of the support layer.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described based on examples.
Example 1
First, lanthanum oxide, strontium carbonate, manganese carbonate, zirconium oxide, yttrium oxide and nickel oxide were prepared as starting materials.
[0018]
Next, a powder of a mixture of nickel oxide and zirconium oxide to which 8 mol% of yttrium oxide was added as a fuel electrode material was prepared from the starting material. An appropriate amount of a binder (polyvinyl butyral binder) and a solvent (ethanol and toluene) are added to this powder to form a slurry. From this slurry, a green sheet for a fuel electrode having a thickness of 50 μm is obtained using a doctor blade method. Was made. And this green sheet was cut into the dimension of 160 mm long x 160 mm wide.
[0019]
Next, a zirconium oxide powder to which 8 mol% of yttrium oxide was added as a solid electrolyte membrane material was prepared from the starting material. Then, in the same manner as the fuel electrode green sheet, an appropriate amount of a binder and a solvent are added to this powder to make a slurry, and this slurry is used to form a solid electrolyte membrane green having a thickness of 50 μm using a doctor blade method. A sheet was produced. The green sheet was cut into the same vertical and horizontal dimensions as the fuel electrode green sheet.
[0020]
Next, a powder of La 0.7 Sr 0.3 MnO 3 was prepared from the starting material as an air electrode material and a current collecting layer material. Then, in the same manner as the fuel electrode green sheet, an appropriate amount of a binder and a solvent are added to this powder to form a slurry, and this slurry is used for a 100 μm thick air electrode and a collector using a doctor blade method. An electric layer green sheet was prepared, and the green sheet was cut into the same vertical and horizontal dimensions as the fuel electrode green sheet.
[0021]
Next, a zirconium oxide powder to which 3 mol% of yttrium oxide was added as a support layer material was prepared from the starting material. Then, in the same manner as the fuel electrode green sheet, an appropriate amount of a binder and a solvent are added to this powder to make a slurry, and this slurry is used to form a 200 μm thick green sheet for a support layer using a doctor blade method. The green sheet was cut into the same vertical and horizontal dimensions as the green sheet for a fuel electrode. Further, a hole having a diameter of about 3 mm is punched out from the green sheet for supporting layer, leaving a peripheral edge thereof, in the thickness direction of the main surface, with the peripheral edge and peripheral edge of the hole being separated by 1 mm. The holes were formed on one surface of the sheet.
[0022]
As shown in the partially exploded perspective view of FIG. 2, each of these green sheets has a fuel electrode 1, a solid electrolyte membrane 2, an air electrode 3, a support layer 5 having holes 7 formed in the thickness direction, and a current collecting layer 6. In this order, a laminated molded body was obtained.
[0023]
FIG. 3 shows a partial cross-sectional view at this time. FIG. 3 is a partial cross-sectional view cut along a plane along line AA passing through the center of the hole 7 of the support layer 5 in the partially exploded perspective view of FIG. 1 is a fuel electrode, 2 is a solid electrolyte membrane, 3 is an air electrode, 5 is a support layer, 6 is a current collecting layer, 7a is one of holes formed in the support layer 5, and the air electrode 3 and the current collector are arranged vertically. Although sandwiched between the layers 6, the hole 7 a is in a hollow state before this pressure bonding.
[0024]
Subsequently, the laminated molded body was put in a plastic bag, and then the bag was evacuated and pressure-bonded using a warm isostatic press.
[0025]
A partial cross-sectional view of the pressure-bonded laminated molded body is shown in FIG. In this embodiment, a common electrode material (La 0.7 Sr 0.3 MnO 3 ) is used for the air electrode 3 and the current collecting layer 6, but in a hollow state due to pressurization during pressure bonding by a warm isostatic press. The electrode material was filled in the holes (portions sandwiched between the broken lines) of the support layer 5 from the air electrode 3 and the current collection layer 6 that were above and below the support layer 5, and as a result, the air electrode 3 and the current collection Layer 6 is electrically connected through the holes in support layer 5.
[0026]
Next, the pressure-bonded laminated molded body was taken out from the plastic bag and fired at a temperature of 1300 ° C. for 2 hours to obtain a sintered body.
[0027]
(Example 2)
First, in the same manner as in Example 1, each green sheet used for the fuel electrode, the solid electrolyte membrane, the air electrode, and the support layer was produced.
[0028]
That is, lanthanum oxide, strontium carbonate, manganese carbonate, zirconium oxide, yttrium oxide and nickel oxide were prepared as starting materials. Then, a powder is prepared from these starting materials, and a binder and a solvent are added to the powder to make a slurry. Using a doctor blade method, a green sheet for a fuel electrode (thickness 50 μm), a green sheet for a solid electrolyte membrane (thickness) 50 μm), an air electrode green sheet (thickness: 100 μm), and a support layer green sheet (thickness: 200 μm). The obtained green sheets were cut into dimensions of 160 mm long × 160 mm wide in the same manner as in Example 1. Further, a hole having a diameter of about 3 mm is punched out from the green sheet for supporting layer, leaving a peripheral edge thereof, in the thickness direction of the main surface, with the peripheral edge and peripheral edge of the hole being separated by 1 mm. The hole was formed on one side.
[0029]
Then, as shown in the partially exploded perspective view of FIG. 4, these green sheets are stacked in the order of the fuel electrode 1, the solid electrolyte membrane 2, the air electrode 3, and the support layer 5 having the holes 7 formed in the thickness direction. The laminated molded body was fired at a temperature of 1300 ° C. for 2 hours to obtain a sintered body.
[0030]
FIG. 5 shows a partial cross-sectional view of this sintered body. 5 is a partial cross-sectional view cut along a plane along line BB passing through the center of the hole 7 of the support layer 5 in the partially exploded perspective view of FIG. 1 is a fuel electrode, 2 is a solid electrolyte membrane, 3 is an air electrode, 5 is a support layer, 7a is one of holes formed in the support layer 5, and the hole 7a is in a hollow state.
[0031]
Next, the same powder of La 0.7 Sr 0.3 MnO 3 as the air electrode material was prepared as the current collecting layer material, and a solvent was added to the powder to prepare a current collecting layer electrode material paste.
[0032]
Then, the current collecting layer electrode material paste was screen-printed on the surface of the support layer of the previously obtained sintered body so as to have a thickness of 100 μm to form a current collecting layer, which was dried and baked. .
[0033]
FIG. 6 shows a partial sectional view of the current collecting layer formed and baked on the surface of the support layer. In this example, since the electrode material (La 0.7 Sr 0.3 MnO 3 ) common to the air electrode 3 and the current collecting layer 6 is used, by screen printing on the surface of the support layer of the current collecting layer electrode material paste, The hole (the portion sandwiched between the broken lines) of the support layer 5 in the hollow state is filled with this electrode material. As a result, the air electrode 3 and the current collecting layer 6 are electrically connected through the holes of the support layer 5. It is connected.
[0034]
In the present embodiment, since the electrode material (La 0.7 Sr 0.3 MnO 3 ) filled in the holes of the support layer 5 is porous, the air gas is collected in the same manner as the porous air electrode 3 and the current collecting layer 6. Distribution is possible.
[0035]
Further, in this example, a support layer having an area of 256 cm 2 (dimensions: length 160 mm × width 160 mm) and a thickness of 200 μm was produced. Zirconium oxide added with 3 mol% of yttrium oxide was used as a material capable of obtaining high strength. Therefore, even if the area of the support layer is further increased to about 400 cm @ 2, the thickness can be suppressed to about 500 .mu.m.
[0036]
Further, as in this example, since an independent support layer that does not serve as an electrode does not require electrical characteristics, the support layer excellent in strength of ZrO 2 to which 3 mol% of Y 2 O 3 is added, For example, if Al 2 O 3 or the like is added, the strength of the support layer can be further improved and the thermal expansion coefficient can be adjusted more easily.
[0037]
(Comparative Example 1)
Next, as Comparative Example 1, a support membrane type having an air electrode as a support layer was produced.
[0038]
The fuel electrode and the solid electrolyte membrane are made of the same material and thickness as in Example 1 and Example 2, while the air electrode is made of the same material as in Example 1 and Example 2, but is an independent support layer. In order to have a supporting strength equivalent to that in Example 1 and Example 2 using the air electrode, an air electrode thicker than the thickness of Example 1 and Example 2 was formed.
[0039]
That is, the green sheets for the fuel electrode (thickness 50 μm), for the solid electrolyte membrane (thickness 50 μm), for the air electrode (thickness 1000 μm) and for the current collecting layer (thickness 10 μm) are the same as in Example 1. Made.
[0040]
In the structure of this comparative example, since the thickness of the air electrode is sufficiently thick, a green sheet for the current collecting layer (thickness: 10 μm) was used as compared with Example 1.
[0041]
Then, these green sheets are stacked in the order of the fuel electrode, solid electrolyte membrane, air electrode, current collecting layer to form a laminated molded body, and after putting it in a plastic bag, the inside of this bag is evacuated, Crimping was performed using a warm isostatic press.
[0042]
Subsequently, the pressure-bonded laminated molded body was taken out from the plastic bag and fired at a temperature of 1300 ° C. for 2 hours to obtain a sintered body.
[0043]
FIG. 7 shows a partial cross-sectional view of the obtained sintered body. Reference numeral 1 denotes a fuel electrode, 2 denotes a solid electrolyte membrane, 3 denotes an air electrode, and 6 denotes a current collecting layer.
[0044]
(Comparative Example 2)
Next, as Comparative Example 2, a self-supporting membrane type having a solid electrolyte membrane as a support layer was produced.
[0045]
The fuel electrode is made of the same material and thickness as in Example 1 and Example 2, while the solid electrolyte membrane is the same material as in Example 1 and Example 2, but has an independent support layer. In order to have a supporting strength equivalent to that of Example 1 and Example 2 of the membrane method, a solid electrolyte membrane green sheet thicker than the thickness of Example 1 and Example 2 was used. The thickness of the air electrode was the same as that of the fuel electrode.
[0046]
That is, the green sheets for the fuel electrode (thickness 50 μm), for the solid electrolyte membrane (thickness 200 μm), for the air electrode (thickness 50 μm) and for the current collecting layer (thickness 10 μm) are the same as in Example 1. Made.
[0047]
Then, these green sheets are stacked in the order of the fuel electrode, solid electrolyte membrane, air electrode, current collecting layer to form a laminated molded body, and after putting it in a plastic bag, the inside of this bag is evacuated, Crimping was performed using a warm isostatic press.
[0048]
Then, the pressure-bonded laminated molded body was taken out from the plastic bag and fired at a temperature of 1300 ° C. for 2 hours to obtain a sintered body.
[0049]
FIG. 8 shows a partial cross-sectional view of the obtained sintered body. Reference numeral 1 denotes a fuel electrode, 2 denotes a solid electrolyte membrane, 3 denotes an air electrode, and 6 denotes a current collecting layer.
[0050]
Table 1 shows the production conditions of the fuel electrode, the solid electrolyte membrane, the air electrode, the support layer, and the current collecting layer for Example 1, Example 2, Comparative Example 1, and Comparative Example 2.
[0051]
[Table 1]
Figure 0003969352
[0052]
As can be seen from Table 1, the thickness of the air electrode also serving as the support layer of Comparative Example 1 is 1000 μm, whereas the thickness of the air electrode supported by the independent support layers of Example 1 and Example 2 is 100 μm. is there.
[0053]
That is, it is 1/10 of the thickness of the air electrode of Comparative Example 1, and is 300 μm even when combined with the support layer having a thickness of 200 μm, and can be 1/3 or less of the thickness of the air electrode of Comparative Example 1.
[0054]
The total thickness of the remaining components, that is, the solid electrolyte membrane 50 μm, the fuel electrode 50 μm, and the current collecting layer 100 μm is 500 μm in total, and can be suppressed to ½ or less of the total thickness 1110 μm in Comparative Example 1. .
[0055]
In addition, the total thickness of Example 1 and Example 2 is increased to 500 μm as compared with the total thickness of 310 μm of Comparative Example 2, but Example 1 and Example 2 have a solid electrolyte membrane thickness of 200 μm to 50 μm of Comparative Example 2. Therefore, the internal resistance of the battery can be suppressed and the battery performance can be improved.
[0056]
On the other hand, the current collecting layer mediates the contact between the electrode and the interconnector (not shown), and when the current generated near the center of the gas channel flows in the lateral direction within the electrode surface, It is provided in order to suppress a loss of current flowing through the.
[0057]
In the case of the present embodiment, the thickness of the air electrode is as thin as 100 μm, and the resistance when electrons flow increases, so that this is compensated, and there is an independent support layer between the electrode and the interconnector. A current collecting layer was provided for the purpose of connecting the interconnector.
[0058]
However, in the case of the structure as in Comparative Example 1, there is a case where the current collecting layer is not particularly provided because it does not have an independent support layer and the resistance is small because the thickness of the air electrode is as thick as 1000 μm.
In addition, the porosity of each air electrode and each current collecting layer in this example, Comparative Example 1 and Comparative Example 2 was about 40%.
[0059]
In this embodiment, the support layer is disposed on the air electrode side. However, the present invention is not limited to this, and the support layer may be disposed on the fuel electrode side.
[0060]
Further, as shown in the partial cross-sectional view of FIG. 11, the support layer 5 and the current collecting layer 6 having holes are provided on the fuel electrode 1 side and the air electrode 3 side with the solid electrolyte membrane 2 interposed therebetween. It is also possible to adopt a structure in which the fuel electrode 1 and the current collecting layer 6 and the air electrode 3 and the current collecting layer 6 are electrically connected to each other through the holes of the support layer 5.
[0061]
The current collector having such a structure can be produced by either the green sheet method or the electrode material paste method of this embodiment.
[0062]
【The invention's effect】
According to the present invention, the thickness of the support membrane type solid oxide fuel cell can be reduced to ½ or less as compared with a conventional air electrode or fuel electrode as a support layer.
[0063]
Therefore, the volume of the solid oxide fuel cell can be reduced to contribute to the downsizing of the battery, and the material cost associated therewith can be reduced.
[0064]
Further, even when compared with a self-supporting membrane type using a solid electrolyte membrane as a support layer, the same level of support strength can be obtained and the thickness of the solid electrolyte membrane can be reduced, so that the internal resistance of the battery can be suppressed.
[0065]
Further, the present invention adopts an independent support layer without using a three-layer membrane electrode as a support layer, and therefore does not affect the electrical characteristics of the air electrode and the fuel electrode in terms of structure.
[0066]
Therefore, it becomes easy to adjust the thermal expansion coefficient with the interconnector arranged to face the air electrode or fuel electrode of the three-layer film.
[0067]
Furthermore, the air electrode, fuel electrode or current collecting layer is electrically connected to the air electrode, fuel electrode or current collecting layer by filling the holes formed in the support layer with the electrode material of the air electrode, fuel electrode or current collecting layer with a relatively simple manufacturing method. can do.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view after pressure bonding of a fuel electrode, a solid electrolyte membrane, an air electrode, a support layer, and a current collecting layer in a solid oxide fuel cell of the present invention.
FIG. 2 is a partially exploded perspective view of a fuel electrode, a solid electrolyte membrane, an air electrode, a support layer in which holes are formed, and a current collecting layer before pressure bonding in the solid oxide fuel cell of the present invention.
FIG. 3 is a partial cross-sectional view taken along line AA in FIG.
FIG. 4 is a partially exploded perspective view of a support layer, an air electrode, a solid electrolyte membrane, and a fuel electrode in which holes are formed in the solid oxide fuel cell of the present invention.
5 is a partial cross-sectional view taken along line BB of FIG.
FIG. 6 is a partial cross-sectional view of the current collector layer, support layer, air electrode, solid electrolyte membrane, and fuel electrode after the current collector layer is baked in the solid oxide fuel cell of the present invention.
7 is a partial cross-sectional view of a fuel electrode, a solid electrolyte membrane, an air electrode, and a current collecting layer of Comparative Example 1. FIG.
8 is a partial cross-sectional view of a fuel electrode, a solid electrolyte membrane, an air electrode, and a current collecting layer of Comparative Example 2. FIG.
FIG. 9 is a partial cross-sectional view of a three-layer membrane in a self-supporting membrane solid oxide fuel cell.
FIG. 10A is a partial cross-sectional view of a three-layer membrane having an air electrode as a support layer in a support membrane type solid oxide fuel cell.
(B) It is a fragmentary sectional view of the triple-layer film | membrane which uses a fuel electrode as a support layer in a solid oxide fuel cell of a support membrane system.
FIG. 11 is a partial cross-sectional view of another embodiment of the solid oxide fuel cell of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel electrode 2 Solid electrolyte membrane 3 Air electrode 4 Three-layer membrane 5 Support layer 6 Current collection layer 7 and 7a Hole

Claims (1)

固体電解質膜の一方の面に多孔質の空気極が配設され、他方の面に多孔質の燃料極が配設されてなる三層膜と、該三層膜の前記空気極または前記燃料極に一方面が接合された、酸化イットリウムを3モル%添加した酸化ジルコニウムを主成分とする支持層と、該支持層の他方面に接合された多孔質の集電層とを備え、前記支持層の主面厚み方向に形成され、前記空気極もしくは前記燃料極を構成する多孔質材料および/または前記集電層を構成する多孔質材料が充填された孔を介して、前記燃料極と前記集電層、または前記空気極と前記集電層とが電気的に接続されていることを特徴とする固体電解質型燃料電池。A three-layer membrane in which a porous air electrode is disposed on one surface of a solid electrolyte membrane and a porous fuel electrode is disposed on the other surface, and the air electrode or the fuel electrode of the three-layer membrane A support layer mainly composed of zirconium oxide to which 3 mol% of yttrium oxide is bonded, and a porous current collecting layer bonded to the other surface of the support layer. The fuel electrode and the collector are formed through holes filled with the porous material and / or the porous material constituting the current collecting layer, which are formed in the thickness direction of the main surface of the air electrode and the fuel electrode. A solid oxide fuel cell, wherein an electric layer or the air electrode and the current collecting layer are electrically connected.
JP2003173918A 2003-06-18 2003-06-18 Solid oxide fuel cell Expired - Lifetime JP3969352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003173918A JP3969352B2 (en) 2003-06-18 2003-06-18 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003173918A JP3969352B2 (en) 2003-06-18 2003-06-18 Solid oxide fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25079097A Division JP3478080B2 (en) 1997-09-16 1997-09-16 Method for manufacturing solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2003331875A JP2003331875A (en) 2003-11-21
JP3969352B2 true JP3969352B2 (en) 2007-09-05

Family

ID=29707576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003173918A Expired - Lifetime JP3969352B2 (en) 2003-06-18 2003-06-18 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3969352B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109460562B (en) * 2018-07-25 2023-01-24 贵州理工学院 Method for evaluating distribution characteristics of fragments disintegrated by satellite explosion

Also Published As

Publication number Publication date
JP2003331875A (en) 2003-11-21

Similar Documents

Publication Publication Date Title
KR101162806B1 (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
KR101083701B1 (en) Reversible Solid Oxide Fuel Cell Stack and Method for Preparing Same
US7736787B2 (en) Ceramic membranes with integral seals and support, and electrochemical cells and electrochemical cell stacks including the same
JP2008538449A5 (en)
JP5198758B2 (en) Electrochemical reactor stack and electrochemical reactor system
JP2002134131A (en) Supporting membrane type solid electrolyte fuel cell
JP3705485B2 (en) Single cell for fuel cell and solid oxide fuel cell
JP3478080B2 (en) Method for manufacturing solid oxide fuel cell
JP2001196069A (en) Fuel cell
JP5077238B2 (en) Solid oxide fuel cell support structure and solid oxide fuel cell module including the same
JP4923407B2 (en) Method for producing solid oxide fuel cell
JP5377222B2 (en) Fuel cell, cell stack device, fuel cell module and fuel cell device
JP5489673B2 (en) FUEL CELL CELL, CELL STACK DEVICE EQUIPPED WITH THE SAME, FUEL CELL MODULE, AND FUEL CELL DEVICE
JPWO2009122768A1 (en) Solid electrolyte fuel cell and manufacturing method thereof
JP4815815B2 (en) Single-chamber solid oxide fuel cell
JP5448922B2 (en) Cell stack, fuel cell module and fuel cell device
KR100317465B1 (en) Solid electrolyte fuel cell
JPH10106608A (en) Solid electrolyte fuel cell and manufacture thereof
KR100699074B1 (en) Honeycomb-type solid oxide fuel cell and method for manufacturing the same
JP3969352B2 (en) Solid oxide fuel cell
JPH0794196A (en) Solid electrolyte fuel cell stack
JP2005129281A (en) Solid electrolyte fuel battery cell
JP5326330B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
JPH06338336A (en) Conductive nonuniform hollow flat plate
JP2802196B2 (en) Method for producing fuel cell support

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

EXPY Cancellation because of completion of term