JP3968255B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP3968255B2
JP3968255B2 JP2002059897A JP2002059897A JP3968255B2 JP 3968255 B2 JP3968255 B2 JP 3968255B2 JP 2002059897 A JP2002059897 A JP 2002059897A JP 2002059897 A JP2002059897 A JP 2002059897A JP 3968255 B2 JP3968255 B2 JP 3968255B2
Authority
JP
Japan
Prior art keywords
shake
imaging
light receiving
receiving surface
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002059897A
Other languages
Japanese (ja)
Other versions
JP2003255425A (en
Inventor
邦久 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002059897A priority Critical patent/JP3968255B2/en
Publication of JP2003255425A publication Critical patent/JP2003255425A/en
Application granted granted Critical
Publication of JP3968255B2 publication Critical patent/JP3968255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は撮像装置に係り、より詳細には、撮影光学系によって被写体の像を撮像素子の受光面上に結像させ、電気信号に変換して取り込むとともに、例えば、撮影の際の手振れによって生じる受光面上での像振れを補正し、振れによる撮影への影響ができるだけ小さくなるようにした撮像装置に関するものである。
【0002】
【従来の技術】
従来、この種の撮像装置はビデオカメラやデジタルスチルカメラとして公知であり、例えばデジタルスチルカメラの場合は、CCD(電荷結合デバイス)からなる撮像素子の感度の限界により、銀塩写真のような短いシャッタ時間を実現しにくく、カメラ振れにより撮像された像に「像の流れ」のようなボケが生じやすい。
【0003】
振れ補正は通常、カメラの光軸に直交する固定された2つの軸回りの角速度を検知し、この2つの軸周りのカメラの「振れによる傾き角」を求め、この傾き角に対応する像振れを補正するように、撮影光学系に含まれる補正レンズを変位させたり、光軸の向きを調整したり、撮像素子を移動させたりすることが行われ、補正レンズ等の被駆動系の要素は、2つの軸方向に移動するような機構となっている。
【0004】
一般には、像振れを補正するための機構として、カメラの光軸に直交する異なる2方向に受光面上での結像位置が移動して生じる像振れをそれぞれ独立に補正する補正部材を備え、マイクロコンピュータ(以下、マイコンという)が角速度センサなどの振れ検知センサの出力によって2方向の振れ量をそれぞれ検出し、この検出した振れ量に基づいて像振れを解消するように補正部材により受光面上の結像位置を2方向に変位させることが行われている。
【0005】
より詳細には、振れ検知センサの検知出力によって2方向の振れ量を検出するために、マイコンは、センサ出力であるアナログ電気信号を第1の所定サンプリング周期にてデジタル変換して取り込み、この取り込んだデジタル値によって振れ量を検出する。次に、この検出した各方向の振れ量に対応する変位量を算出し、この変位量に相当する量だけ受光面上の結像位置を変位させるように補正部材を構成するアクチュエータを駆動させる駆動信号をアクチュエータに対して出力することによって、カメラ振れによって各方向に生じるであろう像振れを解消するようにしている。
【0006】
アクチュエータによって実際に作動されて像振れを補正する部材としては、像の結像位置を決める撮影光学系であるレンズ光学系中の補正レンズであったり、電子カメラにおいては、像が結像されるCCD撮像素子など、像の結像位置を変えうるものであれば何でもよい。そして、上述したセンサ出力の取り込みから補正部材の駆動までの補正動作は、いずれの方向の振れに対しても同じように行われている。
【0007】
この種のカメラには一般に、振れ補正のON/OFFモードが備わっており、カメラ使用者はこれを任意に切り換え選択することにより振れ補正機能の作動、停止を行うことができる。振れ補正モードが作動状態にある場合、常に各角速度センサにおいてはカメラの振れが検知され、この検知した振れをもとに振れ補正のための変位量を計算し、補正手段を駆動させるという処理をマイコンで行っている。
【0008】
【発明が解決しようとする課題】
ところで、補正部材の補正動作は、振れを検知するセンサの出力変化にできるだけ忠実に、追従性よく行われなければならない。このためには、マイコンがセンサ出力を取り込むサンプリング周期をできるだけ短くするとともに、マイコンが補正部材を構成するアクチュエータに対して出力し振れ補正のための変位量を決める駆動信号をできるだけ小さな階調で変化される必要があり、より精度の高い振れ補正を実現するには、マイコンには高速処理能力が求められる。
【0009】
また、撮影の際に、撮影に関する情報を音声によって記録しメモとして残すための音声録音を付加機能として持った撮像装置にあっては、これに搭載されたマイコンは一般に、振れ補正の他に、音声情報を録音するために音声信号をデジタル信号に変換して取り込み、これを記録媒体に記録する処理も行わなければならない。このため、マイコンの負担は益々重くなり、少しでも素早い撮影を行うためには、マイコンとしてより高速処理可能なものが求められることになり、これがコストアップの大きな要因となっていた。
【0010】
よって、本発明は、上述した点に鑑み、撮影に関する情報を音声録音する際に、振れの方向に対応する補正動作を変えることによって、コストアップすることなく、かつ、振れ補正の精度を実質的に損なうことなく、撮影時の音声録音を行えるようにした撮像装置を提供することを課題としている。
【0011】
【課題を解決するための手段】
上記課題を解決するためなされた本願請求項1記載の発明は、撮影光学系によって被写体の像を撮像素子の受光面上に結像させ、電気信号に変換して取り込むとともに、撮影に関する情報を音声によって録音し、受光面上での像振れを補正して撮影を行うようにした撮像装置であって、前記撮影光学系の光軸に直交する第1の方向と、前記撮像光学系の光軸に直交し、かつ前記第1の方向と直交する第2の方向の振れを検知し、該検知した2つの方向の振れの大きさに応じた検知信号をそれぞれ出力する振れ検知手段と、前記第1の方向及および第2の方向に前記受光面上の結像位置を独立に変位させる振れ補正手段と、前記振れ検知手段が出力する検知信号を周期的に取り込み、該取り込んだ検知信号に基づいて、前記振れ補正手段を駆動して前記受光面上の結像位置を前記第1の方向および第2の方向にそれぞれ変位させる変位量を、高次項を含む予測演算式より予測演算してそれぞれ決定する演算手段と、該演算手段が決定した変位量に基づき、前記受光面上の結像位置を前記第1の方向及および第2の方向に変位させて振れによる像振れを補正するように前記振れ補正手段を周期的に駆動制御する駆動制御手段とを備え、前記音声録音を行う際に一時的に、前記演算手段は、前記第1の方向と第2の方向のうち振れの生じ難い方向の前記変位量を予測演算して決定する前記予測演算式を、高次項を含まない簡略化した予測演算式に変更し、前記駆動制御手段は、前記振れの生じ難い方向に前記受光面上の結像位置を変位させる周期を長い周期に変更することを特徴とする撮像装置に存する。
【0012】
上述した請求項1記載の構成によれば、振れ検知手段が撮影光学系の光軸直交する第1の方向と、撮像光学系の光軸に直交し、かつ第1の方向と直交する第2の方向の振れを検知して2つの方向の振れの大きさに応じた検知信号をそれぞれ出力し、振れ補正手段が第1の方向及および第2の方向に受光面上の結像位置を独立に変位させ、演算手段が検知信号を周期的に取り込み、取り込んだ検知信号に基づいて、振れ補正手段を駆動して受光面上の結像位置を第1の方向及および第2の方向にそれぞれ変位させる変位量を、高次項を含む予測演算式より予測演算してそれぞれ決定し、演算手段が決定した変位量に基づき、駆動制御手段が受光面上の結像位置を第1の方向および第2の方向に変位させて振れによる像振れを補正するように振れ補正手段を駆動制御する。しかも、音声録音を行う際一時的に、演算手段は、第1の方向と第2の方向のうち振れの生じ難い方向の前記変位量を予測演算して決定する予測演算式を、高次項を含まない簡略化した予測演算式に変更し、駆動制御手段は、振れの生じ難い方向に受光面上の結像位置を変位させる周期を長い周期に変更するようになっている。したがって、音声録音を行う際に、振れ補正の精度を実質的に損なうことなく、演算手段が振れの生じ難い方向についての変位量を決定するための処理を簡略化することができるとともに、駆動制御手段が振れの生じ難い方向に変位駆動するための処理を減少することができる。
【0015】
本願請求項2記載の発明は、請求項1記載の撮像装置において、前記音声録音を行う際一時的に、前記演算手段は、前記第1の方向と第2の方向のうちの前記振れの生じ難い方向の振れに対応する前記検知信号を取り込む周期を、他方の方向に対する前記検知信号を取り込む周期よりも長い周期に変更することを特徴とする撮像装置に存する。
【0016】
請求項2記載の構成によれば、音声録音を行う際に、第1の方向と第2の方向のうちの振れの生じ難い方向の振れに対応する検知信号を取り込む周期を、他方の方向に対する検知信号を取り込む周期よりも長い周期に変更するので、周期が長くなった分、振れの生じ難い方向について予測演算して変位量を決定する負担がさらに軽減する。
【0019】
本願請求項3記載の発明は、請求項1又は2記載の撮像装置において、前記振れの生じ難い方向は、レリーズ押し込み方向と直交する方向であることを特徴とする撮像装置に存する。
【0020】
請求項3記載の構成によれば、振れの生じ難い方向がレリーズ押し込み方向と直交する方向であるので、レリーズ押し込み時の振れ補正の精度を実質的に損なうことなく、音声録音を行うことができる。
【0021】
【発明の実施の形態】
以下、図面に基づいて本発明を説明する。図1は本発明に係る撮像装置の一実施の形態を示す図であって、振れ補正機能付きデジタルスチルカメラの概略構成を模式的に示している。
【0022】
図1において、振れ補正機能付きデジタルスチルカメラは、カメラ本体に内蔵された撮影光学系11によって被写体の像を、同じくカメラ本体に内蔵された撮像素子13の受光面13a上に結像させ、電気信号に変換して取り込み、また撮影の際の手振れによって発生する像振れを補正し、振れによる撮影への影響ができるだけ小さくなるように構成されている。
【0023】
具体的には、撮影光学系11は、撮像レンズとしてズームレンズ11Aおよびフォーカスレンズ11Bとを有し、その光軸11C上には撮像素子13が配設されている。撮像光学系11により撮像素子13の受光面13a上に結像された被写体の像は、電気信号に変換されてカメラ本体に内蔵されたマイクロコンピュータ(マイコン)15に取り込まれる。
【0024】
マイコン15は、プログラムやデータを格納するメモリとこのメモリに格納したプログラムに従って動作する中央演算処理装置(マイコン)、アナログ−デジタル(AD)変換器などから構成されている。
【0025】
デジタルスチルカメラはまた、図示のように、光軸11Cに対して直交する軸xおよび光軸に直交し、かつ軸xと直交する軸yの2つの軸のまわりの角速度をそれぞれ検知し、この検知した角速度の大きさに応じた検知信号を出力するx軸角速度センサ17axおよびy軸角速度センサ17ayと、各角速度センサの出力する検知信号を所定レベルに増幅するx軸センサアンプ17bxおよびy軸センサアンプ17byとを有し、これらはカメラ本体に内蔵されている。
【0026】
x軸角速度センサ17axおよびx軸センサアンプ17bxは軸xのまわりの角速度を検知するx軸角速度検知手段17xを、y軸角速度センサ17ayおよびy軸センサアンプ17byは軸yのまわりの角速度を検知するy軸角速度検知手段17yをそれぞれ構成し、全体として、撮影光学系の光軸に直交する軸x(第1の)方向と、撮像光学系の光軸に直交し、かつ軸x方向と直交する軸y(第2の)方向との2つの方向の振れを検知し、該検知した2つの方向の振れの大きさに応じた検知信号をそれぞれ出力する振れ検知手段を構成している。
【0027】
マイコン15は、x軸角速度検知手段17xおよびy軸角速度検知手段17yが出力する検知した角速度に応じた検知信号を所定のサンプリング周期にてデジタル変換してそれぞれ取り込み、この取り込んだ検知信号を積分することによって各軸についてのカメラの「振れによる傾き角」を算出する。続いて、マイコン15は、この算出した傾き角に基づいて、撮像素子13の受光面13a上に結像された像の受光面13a上での軸x方向および軸y方向の移動量を所定の計算式によってそれぞれ求め、この求めた移動量だけ受光面上の結像位置を2つの方向にそれぞれ変位させる変位量を、x軸角速度検知手段17xおよびy軸角速度検知手段17yが検知した角速度に基いて算出する。このことによって、マイコン15は、振れ補正手段を駆動して受光面上の結像位置を2つの方向にそれぞれ変位させる変位量を検知信号に基づいてそれぞれ決定する演算手段を構成している。
【0028】
なお、マイコン15による変位量の算出は、各軸について算出した傾き角だけカメラが傾くことによって生じる受光面13a上での像の移動量、すなわち、受光面13a上での結像位置の軸x方向および軸y方向の移動量を算出することによって求める。
【0029】
デジタルスチルカメラはまた、算出した軸x方向および軸y方向の変位量に基づいて、撮像素子13の受光面13aを軸x方向と軸y方向にそれぞれ独立に移動させ、振れによって受光面13a上を移動した結像位置を元に戻すx方向補正アクチュエータ19axおよびy方向補正アクチュエータ19ayと、x方向補正アクチュエータ19axおよびy方向補正アクチュエータ19ayをそれぞれ駆動するx方向補正駆動回路19bxおよびy方向補正駆動回路19byとを有し、これらはカメラ本体に内蔵されている。x方向補正アクチュエータ19axおよびx方向補正駆動回路19bxはx方向振れ補正手段19xを、y方向補正アクチュエータ19ayおよびy方向補正駆動回路19byはy方向振れ補正手段19yをそれぞれ構成し、全体として、軸x方向および軸y方向に受光面上の結像位置を独立に変位させる振れ補正手段を構成している。
【0030】
マイコン15はまた、算出した振れ補正のための変位量に基づいて、x方向振れ補正手段19xおよびy方向振れ補正手段19yを動作させて、振れによって受光面13a上で移動した結像位置を元の位置に戻す補正駆動動作を制御する。よって、マイコン15は、振れ検知手段が出力する検知信号を取り込み、取り込んだ検知信号に基づいて、受光面上の結像位置を軸x方向および軸y方向に変位させて振れによる像振れを補正するように振れ補正手段を駆動制御する駆動制御手段として働く。
【0031】
デジタルスチルカメラはさらに、振れ補正機能の作動、停止を選択する選択手段として、カメラ本体の外側に設けられた振れ補正ボタン21の操作によってオンオフされる図示しないスイッチを備える他、撮像光学系11の撮像レンズとしてズームレンズ11Aおよびフォーカスレンズ11Bを駆動してズームおよびフォーカスをそれぞれ制御するズーム制御部23Aおよびフォーカス制御部23Bを有し、これらはカメラ本体に内蔵されている。
【0032】
マイコン15はまた、振れ補正ボタン21の操作によってオンオフされる図示しないスイッチの信号に基づいて行う振れ補正のための処理の他、カメラ本体の外側に設けられたズーム操作ボタン25Aおよびレリーズ操作ボタン25Bの操作に基づいて、ズーム制御部23Aやフォーカス制御部23Bを介して、撮像光学系11のズームレンズ11Aおよびフォーカスレンズ11Bをそれぞれズーム駆動およびフォーカス駆動するなどの他の処理も行う。
【0033】
マイコン15はさらに、録音操作ボタン25CのON操作によって、音声録音部23Cにおいて撮影に関する情報を音声によって記録できるようにする。このために、音声録音部23Cはマイクロホンと記録媒体としての録音用メモリとを有し、マイクロホンに入力された音声入力をデジタル変換して取り込み、これを録音用メモリに書き込む処理を行う。なお、録音用メモリとしては、各種のものが考えられ、撮像した像を記録するイメージ記録用メモリの一部を利用して記録する他、別個のメモリに記録することも可能である。
【0034】
以上の構成において、振れ補正ボタン21のオンによって、振れ補正機能が働かされているときの通常の振れ補正では、マイコン15は、撮像素子13に対する撮影光学系11の光軸11Cおよび互いに直交する2つの軸xおよび軸yまわりに振れが発生すると、x軸角速度センサ17ax、x軸センサアンプ17bxからなるx軸角速度検知手段17x、および、y軸角速度センサ17ay、y軸センサアンプ17byからなるy軸角速度検知手段17yがそれぞれ発生する角速度に応じた検知信号を第1の所定サンプリング周期にてデジタル変換して取り込む。そして、マイコン15は、この取り込んだ検知信号に基づいて傾き角を検出し、この傾き角を基に振れ量とそれに対する振れ補正のための変位量を算出する。
【0035】
さらに、マイコン15は、この算出した振れ補正のための変位量に基づいて、振れ補正手段19x、19yの補正駆動回路19bx、19byに対して駆動信号を出力して、補正アクチュエータ19ax、19ayを駆動させる。駆動された補正アクチュエータ19ax、19ayは、撮像素子13を光軸11Cに直交する平面内を移動させて、x軸方向である水平方向およびy軸方向である鉛直方向の振れ補正動作を行う。
【0036】
また、振れ補正動作を行っているマイコン15は、この間に、録音操作ボタン25CのON操作されたときには、音声録音部23Cにおいてマイクロホンを介して入力された撮影に関する音声情報をデジタル変換して取り込み、これを録音用メモリに書き込む処理を行うが、この際、振れ補正動作のための処理を一旦変更する。
【0037】
すなわち、マイコン15は、録音操作ボタン25CがON操作されるまで、マイコン15では角速度検出、振れ量演算、振れ補正のための変位量演算、振れ補正駆動の通常処理を常時行っているが、録音操作ボタン25CがON操作されると、それまで同じ第1の所定サンプリング周期にてデジタル変換して取り込んでいたy軸角速度検知手段17yが発生する角速度に応じた検知信号を第1の所定サンプリング周期よりも長い第2の所定のサンプリング周期にてデジタル変換して取り込むように変更する。すなわち、マイコン15が各方向の振れを示す検知信号を取り込むサンプリング周期が、各方向に対して個別に設定できるようになっている。
【0038】
このことによって、マイコン15は、y軸周りの角速度検出、水平方向の振れ量演算、振れ補正のための変位量演算、振れ補正駆動の処理を、通常のときの処理よりも長い周期で行うようになり、結果として、音声録音を行う際に、振れ補正手段19xおよび19yが受光面上の結像位置を軸x方向および軸y方向に変位させる周期を互いに異ならせる。
【0039】
ところで、振れ補正は、露光時のカメラの振れによる像のボケを防ぐためのものであるが、カメラ振れについて分析したところ、レリーズ操作に伴う手振れの場合には、カメラの形状や形態、例えば大きさ、重量、レリーズボタンの位置、操作感などの違うカメラによって、その起き易さに方向性があることを認識するに至った。例えば、レリーズボタンの押し込み方向には手振れは起き易いが、押し込み方向と直交する方向には、それに比べて振れが起こりにくく、起こっても振れ量は小さいことが分かった。
【0040】
このようにカメラの振れに方向性がある場合、いずれの方向に対しても同じ補正動作を行わせることは必ずしも必要であるとはいえないので、振れ量の小さい方向の振れ補正の周期を長くし、制御精度を一旦低下させても不都合はない。むしろ、一方向とはいえ、振れ補正動作の周期を一時長くしたときには、マイコン15の処理負担を軽減できるようになるので、撮影に関する情報を音声録音する際に、振れの方向性に対応させて補正動作を変えることによって、コストアップすることなく、かつ、振れ補正の精度を実質的に損なうことなく、撮影時の音声録音を行えるようになる。
【0041】
以上、振れ補正機能付きデジタルスチルカメラの概略を説明したが、その詳細を、マイコン15が行う処理を示す図2のフローチャートを参照して以下説明する。
【0042】
マイコン15は、振れ補正ボタン21のONによって振れ補正処理が開始し、x軸角速度検知手段17xおよびy軸角速度検知手段17yが発生する角速度に応じた検知信号をそれぞれサンプリングする周期TxsおよびTysをともに第1の周期T1に設定し(ステップS1)、この第1のサンプリング周期T1にて駆動制御処理を行う(ステップS2)。この駆動制御処理を行っているときに、録音操作ボタン25CがONすると(ステップS3がYESのとき)、x軸角速度検知手段17xが発生する角速度に応じた検知信号をサンプリングする周期Txsをそのままに、y軸角速度検知手段17yが発生する角速度に応じた検知信号をサンプリングする周期Tysを第1の周期T1よりも長い第2の周期T2に変更する(ステップS4)。なお、y軸角速度検知手段17yが発生する角速度に応じた検知信号に基づいて傾き角を検出し、この傾き角を基に振れ量とそれに対する振れ補正のための変位量は、受光面上の結像位置の水平方向の振れを補正するためのものであるが、水平方向はレリーズ押し方向と直交する方向であって、鉛直方向の振れに比べて極めて小さいので、サンプリング周期が長くなっても補正精度の上で問題が少ない。
【0043】
そして、以後、録音操作ボタン25CがOFFとなり(ステップS3がNOとなるまで)、再び、x軸角速度検知手段17xおよびy軸角速度検知手段17yが発生する角速度に応じた検知信号をそれぞれサンプリングする周期TxsおよびTysがともに第1の周期T1に設定されるまで(ステップS1)、x軸角速度検知手段17xおよびy軸角速度検知手段17yがそれぞれ発生する角速度に応じた検知信号をサンプリングする周期TxsおよびTysを第1の周期T1および第2の周期T2にして駆動制御処理を行う(ステップS2)。
【0044】
このように、検知信号のサンプリング信号を長くすることによって、サンプリングして取り込まれる角速度の頻度が少なくなり、取り込んだ角速度に基づいて変位量を算出する回数も少なく、かつ算出した変位量に基づいて受光面上の結像位置を2方向に変位させて振れによる像振れを補正するように振れ補正手段を駆動制御する周期も長くなる。よって、振れ補正手段が受光面上の結像位置を軸x方向および軸y方向に変位させる周期を互いに異なるようになって、マイコン15としてはその分余裕ができ、コストアップすることなく、かつ、振れ補正の精度を実質的に損なうことなく、撮影時の音声録音を行えるようになる。
【0045】
なお、y軸角速度検知手段17yが発生する角速度に応じた検知信号をサンプリングする周期Tysを第1の周期T1よりも長い第2の周期T2に変更したとき、駆動制御処理(ステップS2)において、このサンプリングによって取り込んだ角速度に応じた検知信号に基づいて傾き角を検出し、この傾き角を基に振れ量とそれに対する振れ補正のための変位量を算出するための演算式の簡略化も同時に行うことができる(ステップS4中の括弧内)。このようにした場合、駆動制御処理において、変位量を算出する負担がその分軽減されるようになる。
【0046】
上述した演算式の簡略化に関し、変位量の算出について以下概説する。振れ補正のための変位量を算出する演算としては、角速度検出手段による傾き角から単に変位量を算出すると言った簡単なものではなく、振れ補正駆動手段の機構に基因する線形および非線形の特性を是正する演算の要求もあり、補正演算時間が増大する傾向にある。例えば触れ補正駆動手段の機構的な動作遅れを是正するために導入する予測演算としては、簡単な線形式としても最低限以下の式の演算が必要になる。
【0047】
今、図3に示すように、予測後の変位量をV[i] 、予測前の変位量をv[i] 、予測時間をt、予測に用いる振れデータの時間間隔をΔtとすると、予測後の変位量V[i] は、次式(1)の演算によって算出される。
V[i] =v[i] +va[i]×t+vaa[i] ×t2 +vaaa[i]×t3 (1)
va[i] =(v[i] −v[i-1] )/Δt (1−1)
vaa[i] =(va[i]−va[i-1])/Δt (1−2)
vaaa[i]=(vaa[i] −vaa[i-1] )/Δt (1−3)
ただし、水平方向の振れ量は、鉛直方向の振れに比べて極めて小さいことを考慮すると、振れの小さい水平方向においては、振れ補正駆動手段の機構的な動作遅れの像振れに対する影響も極めて小さいといえる。なお、図3中、Δt1は鉛直方向補正周期、Δt2は水平方向補正周期である。
【0048】
このことから、振れの小さい水平方向においては、振れ補正駆動手段の機構的な動作遅れを是正する精度を、振れの大きい鉛直方向と同じにすることは無意味である。また、式1中の一次(係数は式1−1)から三次(係数は式1−3)までの各項では高次項になるほど演算処理が多くなる。なお、予測精度の影響は低次項の方が大きい。
【0049】
よって、振れの小さい水平方向においては、予測演算式(1)での高次項の演算を行わない演算式の簡略化を行っても、像振れ補正精度に対する影響は極めて小さく、しかも駆動制御処理全体における変位量を算出する負担が大きく軽減される。
【0050】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、音声録音を行う際一時的に、撮影光学系の光軸に直交する第1の方向と、撮像光学系の光軸に直交し、かつ第1の方向と直交する第2の方向との2つの方向のうち振れの生じ難い方向の補正動作を変え、振れ補正のための変位量を決定するための処理を簡略化するとともに、振れ補正手段を駆動制御する処理を減少するので、マイコンの処理負担が軽減し、コストアップすることなく、かつ、振れ補正の精度を実質的に損なうことなく、撮影時の音声録音を行える。
【0052】
請求項2記載の発明によれば、音声録音を行う際一時的に、検知信号を取り込む周期を長い周期に変更するので、検知信号を取り込む周期が長くなった分、予測演算して変位量を決定する負担がさらに減らせ、マイコンの処理負担をさらに軽減できる。
【0054】
請求項3記載の発明によれば、レリーズ押し込み時の振れ補正の精度を実質的に損なうことなく、撮影時の音声録音を行える。
【図面の簡単な説明】
【図1】本発明による振れ補正機能付き撮像装置の一実施の形態におけるカメラ本体の概略構成を示すブロック図である。
【図2】本発明による振れ補正機能付き撮像装置の一実施の形態における図1中のマイコンが行う処理を示すフローチャートである。
【図3】機構的な動作遅れを是正するために導入する予測演算の仕方を説明するための説明図で、(a)は鉛直方向振れ波形、(b)は水平方向振れ波形をそれぞれ示す。
【符号の説明】
11 撮影光学系
11C 光軸
13 撮像素子
13a 受光面
15 マイコン(駆動制御手段、演算手段)
17x,17y 振れ検知手段(角速度検知手段)
19x,19y 振れ補正手段
21 振れ補正ボタン
23C 音声録音部
25C 録音操作ボタン
x,y 軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an imaging apparatus, and more particularly, to forming an image of a subject on a light receiving surface of the imaging device by the imaging optical system, fetches into an electric signal, for example, by camera shake during shooting correcting the image blur on the light receiving surface resulting impact on imaging by deflection is related to imaging device which is to be as small as possible.
[0002]
[Prior art]
Conventionally, this type of image pickup apparatus is known as a video camera or a digital still camera. For example, in the case of a digital still camera, due to the limit of sensitivity of an image pickup device composed of a CCD (charge coupled device), it is as short as a silver salt photograph. It is difficult to realize the shutter time, and blurs such as “image flow” tend to occur in an image captured by camera shake.
[0003]
Shake correction usually detects angular velocities around two fixed axes perpendicular to the optical axis of the camera, determines the camera's "tilt angle due to shake" around these two axes, and image shake corresponding to this tilt angle. The correction lens included in the photographic optical system is displaced, the direction of the optical axis is adjusted, and the image sensor is moved. The mechanism moves in two axial directions.
[0004]
In general, as a mechanism for correcting image blur, a correction member that independently corrects the image blur generated by moving the imaging position on the light receiving surface in two different directions orthogonal to the optical axis of the camera, A microcomputer (hereinafter referred to as “microcomputer”) detects a shake amount in two directions based on the output of a shake detection sensor such as an angular velocity sensor, and a correction member on the light receiving surface so as to eliminate the image shake based on the detected shake amount. The image forming position is displaced in two directions.
[0005]
More specifically, in order to detect the amount of shake in two directions based on the detection output of the shake detection sensor, the microcomputer digitally converts the analog electrical signal that is the sensor output at the first predetermined sampling period, and acquires this. The shake amount is detected by the digital value. Next, a displacement amount corresponding to the detected shake amount in each direction is calculated, and driving for driving the actuator constituting the correction member so as to displace the imaging position on the light receiving surface by an amount corresponding to the displacement amount. By outputting a signal to the actuator, image blur that may occur in each direction due to camera shake is eliminated.
[0006]
The member that is actually actuated by the actuator to correct the image blur is a correction lens in a lens optical system that is a photographing optical system that determines the image formation position of the image, or an image is formed in an electronic camera. Any device that can change the image formation position, such as a CCD image sensor, may be used. Then, the above-described correction operation from taking in the sensor output to driving the correction member is performed in the same manner with respect to the shake in any direction.
[0007]
This type of camera is generally provided with a shake correction ON / OFF mode, and the camera user can operate and stop the shake correction function by arbitrarily switching and selecting the mode. When the shake correction mode is in the operating state, each angular velocity sensor always detects camera shake, calculates a displacement amount for shake correction based on the detected shake, and drives the correction means. It is done with a microcomputer.
[0008]
[Problems to be solved by the invention]
By the way, the correction operation of the correction member must be performed as faithfully as possible to the output change of the sensor that detects the shake and with good followability. For this purpose, the microcomputer captures the sensor output by shortening the sampling cycle as much as possible, and the microcomputer outputs to the actuator that constitutes the correction member and changes the drive signal that determines the displacement amount for shake correction with the smallest possible gradation. In order to achieve more accurate shake correction, the microcomputer is required to have high-speed processing capability.
[0009]
In addition, in an imaging device having an additional function of voice recording for recording information about shooting by voice and leaving it as a memo at the time of shooting, in general, the microcomputer installed in this is not only shake correction, In order to record audio information, the audio signal must be converted into a digital signal and captured, and recorded on a recording medium. For this reason, the burden on the microcomputer becomes heavier, and in order to perform shooting as quickly as possible, a microcomputer capable of high-speed processing is required, which has been a major factor in increasing the cost.
[0010]
Therefore, in view of the above-described points, the present invention substantially reduces the accuracy of shake correction without increasing the cost by changing the correction operation corresponding to the direction of shake when recording information related to shooting. without prejudice to, and an object of the invention to provide a the imaging device to allow a voice recording during shooting.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 of the present application forms an image of a subject on a light receiving surface of an image pickup device by a shooting optical system, converts it into an electric signal, and captures information related to shooting as sound. recording by a imaging device which is to perform the correction for shooting the image blur on the light receiving surface, a first direction perpendicular to the optical axis of the imaging optical system, the imaging optical system A shake detection unit that detects a shake in a second direction perpendicular to the optical axis and perpendicular to the first direction, and outputs a detection signal corresponding to the magnitude of the shake in the detected two directions; The shake correction means for independently displacing the imaging position on the light receiving surface in the first direction and the second direction, and the detection signal output from the shake detection means are periodically fetched, and the fetched detection signal based on, driving the stabilization means Calculating means for predicting and determining displacement amounts for displacing the imaging position on the light receiving surface in the first direction and the second direction, respectively, using a prediction calculation expression including a high-order term; Is periodically driven so as to correct the image blur due to the shake by displacing the imaging position on the light receiving surface in the first direction and the second direction based on the displacement amount determined by Drive control means for controlling, and when performing the voice recording, the calculation means temporarily calculates the displacement amount in a direction in which vibration is unlikely to occur in the first direction and the second direction. The prediction calculation formula to be determined is changed to a simplified prediction calculation formula that does not include higher-order terms, and the drive control means sets a cycle for displacing the imaging position on the light receiving surface in a direction in which the shake is unlikely to occur. Taking you and changing the long cycle Apparatus resides in.
[0012]
According to the above-described configuration of the first aspect, the shake detection unit has the first direction orthogonal to the optical axis of the imaging optical system and the first direction orthogonal to the optical axis of the imaging optical system and orthogonal to the first direction. 2 detects a shake in two directions and outputs a detection signal corresponding to the magnitude of the shake in the two directions, and the shake correction means sets the imaging position on the light receiving surface in the first direction and the second direction. Displacement is performed independently, and the calculation means periodically captures the detection signal, and based on the captured detection signal, the shake correction means is driven to move the imaging position on the light receiving surface in the first direction and the second direction. A displacement amount to be displaced is determined by predicting and calculating from a prediction calculation formula including a high-order term, and based on the displacement amount determined by the calculating means, the drive control means determines the imaging position on the light receiving surface in the first direction and vibration so as to correct the image blur due to shake is displaced in the second direction Driving and controlling the correction means. In addition, when performing voice recording, the calculation means temporarily calculates a high-order term using a prediction calculation formula that predicts and determines the amount of displacement in the direction in which vibration is unlikely to occur in the first direction and the second direction. The driving control means changes the period for displacing the imaging position on the light receiving surface to a longer period in a direction in which it is difficult for vibration to occur. Therefore, when performing voice recording, it is possible to simplify the process for determining the amount of displacement in the direction in which the arithmetic means hardly causes vibration without substantially impairing the accuracy of shake correction, and drive control. It is possible to reduce processing for driving the means in a direction in which it is difficult for vibration to occur.
[0015]
According to a second aspect of the present invention, in the imaging apparatus according to the first aspect, when the voice recording is performed, the calculation unit temporarily generates the shake in the first direction and the second direction. The imaging apparatus is characterized in that a period for capturing the detection signal corresponding to a difficult direction shake is changed to a period longer than a period for capturing the detection signal in the other direction .
[0016]
According to the configuration of the second aspect, when performing voice recording, the period for capturing the detection signal corresponding to the shake in the direction in which the shake is difficult to occur in the first direction and the second direction is set to the other direction. Since the period is changed to a period longer than the period in which the detection signal is captured, the burden of determining the displacement amount by predicting and calculating the direction in which the vibration hardly occurs is further reduced.
[0019]
The invention of claim 3 Symbol placement, in an imaging apparatus according to claim 1 or 2 wherein the resulting hard direction of the shake lies in an imaging device you being a direction perpendicular to the release push-in direction .
[0020]
According to the configuration of claim 3 Symbol placement, so hard to generate the direction of deflection is in the direction perpendicular to the release push-in direction, without substantially compromising the accuracy of the release push during shake correction, that perform voice recording it can.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of an imaging apparatus according to the present invention, and schematically shows a schematic configuration of a digital still camera with a shake correction function.
[0022]
In FIG. 1, a digital still camera with a shake correction function forms an image of a subject on a light receiving surface 13a of an image pickup device 13 that is also built in the camera body by means of a photographing optical system 11 built in the camera body. The image is converted into a signal and captured, and image blur caused by camera shake at the time of shooting is corrected, so that the influence of shooting on shooting is minimized.
[0023]
Specifically, the photographing optical system 11 includes a zoom lens 11A and a focus lens 11B as imaging lenses, and an imaging element 13 is disposed on the optical axis 11C. The image of the subject formed on the light receiving surface 13a of the image sensor 13 by the imaging optical system 11 is converted into an electric signal and taken into a microcomputer 15 built in the camera body.
[0024]
The microcomputer 15 includes a memory for storing programs and data, a central processing unit (microcomputer) that operates according to the program stored in the memory, an analog-digital (AD) converter, and the like.
[0025]
The digital still camera also detects angular velocities around two axes, an axis x orthogonal to the optical axis 11C and an axis y orthogonal to the optical axis and orthogonal to the axis x , as shown in the figure. An x-axis angular velocity sensor 17ax and a y-axis angular velocity sensor 17ay that output a detection signal corresponding to the magnitude of the detected angular velocity, and an x-axis sensor amplifier 17bx and a y-axis sensor that amplify the detection signal output from each angular velocity sensor to a predetermined level. And an amplifier 17by, which are built in the camera body.
[0026]
The x-axis angular velocity sensor 17ax and the x-axis sensor amplifier 17bx detect the x-axis angular velocity detection means 17x that detects the angular velocity around the axis x, and the y-axis angular velocity sensor 17ay and the y-axis sensor amplifier 17by detect the angular velocity around the axis y. Each of the y-axis angular velocity detection means 17y is configured, and as a whole, the axis x (first) direction orthogonal to the optical axis of the imaging optical system, the optical axis of the imaging optical system, and the axis x direction are orthogonal. A shake detection unit is configured to detect a shake in two directions with respect to the axis y (second) direction and to output a detection signal corresponding to the detected magnitude of the shake in the two directions.
[0027]
The microcomputer 15 digitally converts detection signals corresponding to the detected angular velocities output by the x-axis angular velocity detection means 17x and the y-axis angular velocity detection means 17y at a predetermined sampling period, and integrates the acquired detection signals. Thus, the “tilt angle due to shake” of the camera for each axis is calculated. Subsequently, based on the calculated inclination angle, the microcomputer 15 determines the movement amount of the image formed on the light receiving surface 13a of the image sensor 13 in the axis x direction and the axis y direction on the light receiving surface 13a. Based on the angular velocities detected by the x-axis angular velocity detecting means 17x and the y-axis angular velocity detecting means 17y, the displacement amounts for respectively displacing the imaging position on the light receiving surface in two directions by the calculated movement amounts are obtained. And calculate. In this way, the microcomputer 15 constitutes a calculation unit that drives the shake correction unit to determine the displacement amount for displacing the imaging position on the light receiving surface in two directions, respectively, based on the detection signal.
[0028]
The calculation of the displacement amount by the microcomputer 15 is the amount of movement of the image on the light receiving surface 13a caused by the inclination of the camera by the inclination angle calculated for each axis, that is, the axis x of the image forming position on the light receiving surface 13a. It is obtained by calculating the amount of movement in the direction and the axis y direction.
[0029]
The digital still camera also moves the light receiving surface 13a of the image sensor 13 independently in the axis x direction and the axis y direction based on the calculated displacement amount in the axis x direction and the axis y direction. The x-direction correction actuator 19ax and the y-direction correction actuator 19ay that return the image forming position that has moved to the original position, and the x-direction correction drive circuit 19bx and the y-direction correction drive circuit that drive the x-direction correction actuator 19ax and the y-direction correction actuator 19ay, respectively. 19by, and these are built in the camera body. The x-direction correction actuator 19ax and x-direction correction drive circuit 19bx the x direction stabilization means 19x, y-direction correction actuator 19ay and y-direction correction drive circuit 19by constitute respectively the y-direction blur correction unit 19y, as a whole, axis x And a shake correction means for independently displacing the imaging position on the light receiving surface in the direction and the axis y direction.
[0030]
The microcomputer 15 also operates the x-direction shake correction unit 19x and the y-direction shake correction unit 19y based on the calculated displacement amount for shake correction, and the imaging position moved on the light receiving surface 13a due to the shake is restored. The correction driving operation for returning to the position is controlled. Therefore, the microcomputer 15 takes in the detection signal output by the shake detection means, and corrects the image shake due to the shake by displacing the imaging position on the light receiving surface in the x-axis direction and the y-axis direction based on the taken-in detection signal. Thus, it functions as drive control means for driving and controlling the shake correction means.
[0031]
The digital still camera further includes a switch (not shown) that is turned on and off by an operation of a shake correction button 21 provided on the outside of the camera body as selection means for selecting whether to operate or stop the shake correction function. A zoom control unit 23A and a focus control unit 23B that control the zoom and focus by driving the zoom lens 11A and the focus lens 11B as imaging lenses are included in the camera body.
[0032]
The microcomputer 15 also has a zoom operation button 25A and a release operation button 25B provided outside the camera body, in addition to a process for shake correction performed based on a signal of a switch (not shown) that is turned on / off by the operation of the shake correction button 21. Based on this operation, other processes such as zoom driving and focus driving of the zoom lens 11A and the focus lens 11B of the imaging optical system 11 are performed via the zoom control unit 23A and the focus control unit 23B, respectively.
[0033]
Further, the microcomputer 15 can record information related to shooting by voice in the voice recording unit 23C by turning on the recording operation button 25C. For this purpose, the voice recording unit 23C has a microphone and a recording memory as a recording medium, performs a process of digitally converting and inputting the voice input inputted to the microphone, and writing this into the recording memory. Various recording memories are conceivable. The recording memory can be recorded using a part of the image recording memory for recording a captured image, or can be recorded in a separate memory.
[0034]
In the above configuration, in the normal shake correction when the shake correction function is activated by turning on the shake correction button 21, the microcomputer 15 and the optical axis 11 </ b> C of the imaging optical system 11 with respect to the image sensor 13 and 2 orthogonal to each other. When vibration occurs around one axis x and y, the x-axis angular velocity sensor 17ax and the x-axis angular velocity detector 17x including the x-axis sensor amplifier 17bx, and the y-axis including the y-axis angular velocity sensor 17ay and the y-axis sensor amplifier 17by. Detection signals corresponding to the angular velocities generated by the angular velocity detection means 17y are digitally converted and captured at a first predetermined sampling period. Then, the microcomputer 15 detects the tilt angle based on the acquired detection signal, and calculates the shake amount and the displacement amount for correcting the shake based on the tilt angle.
[0035]
Further, the microcomputer 15 outputs a drive signal to the correction drive circuits 19bx and 19by of the shake correction means 19x and 19y based on the calculated displacement amount for shake correction and drives the correction actuators 19ax and 19ay. Let The driven correction actuators 19ax and 19ay move the imaging device 13 in a plane orthogonal to the optical axis 11C to perform a shake correction operation in the horizontal direction that is the x-axis direction and the vertical direction that is the y-axis direction.
[0036]
In addition, when the recording operation button 25C is turned ON during this time, the microcomputer 15 performing the shake correction operation digitally converts and captures audio information regarding shooting input through the microphone in the audio recording unit 23C. The process of writing this in the recording memory is performed. At this time, the process for the shake correction operation is temporarily changed.
[0037]
That is, until the recording operation button 25C is turned ON, the microcomputer 15 always performs normal processing of angular velocity detection, shake amount calculation, displacement amount calculation for shake correction, and shake correction drive. When the operation button 25C is turned on, a detection signal corresponding to the angular velocity generated by the y-axis angular velocity detecting means 17y that has been digitally converted and captured at the same first predetermined sampling cycle is output to the first predetermined sampling cycle. The digital conversion is performed at a second predetermined sampling period longer than the predetermined sampling period. That is, the sampling period at which the microcomputer 15 takes in the detection signal indicating the shake in each direction can be set individually for each direction.
[0038]
Thus, the microcomputer 15 performs the angular velocity detection around the y-axis, the horizontal shake amount calculation, the displacement amount calculation for shake correction, and the shake correction drive processing at a cycle longer than the normal processing. As a result, when performing voice recording, the shake correction means 19x and 19y change the period at which the imaging position on the light receiving surface is displaced in the axis x direction and the axis y direction.
[0039]
By the way, shake correction is to prevent blurring of the image due to camera shake at the time of exposure, but when camera shake is analyzed, the camera shape and form, for example, large in the case of camera shake due to the release operation, are analyzed. Now, with different cameras such as weight, release button position, operation feeling, etc., we have come to recognize that there is a direction in how easy it is to get up. For example, it has been found that hand shake is likely to occur in the pushing direction of the release button, but shake is less likely to occur in the direction orthogonal to the pushing direction, and the amount of shake is small even if it occurs.
[0040]
When the camera shake has directionality as described above, it is not always necessary to perform the same correction operation in any direction, so the shake correction cycle in the direction with a small shake amount is lengthened. However, there is no problem even if the control accuracy is once lowered. Rather, in one direction, if the period of shake correction operation is temporarily increased, the processing load on the microcomputer 15 can be reduced. Therefore, when recording information related to shooting, the direction of the shake is made to correspond. By changing the correction operation, it is possible to perform voice recording at the time of shooting without increasing the cost and without substantially impairing the accuracy of shake correction.
[0041]
The outline of the digital still camera with a shake correction function has been described above, and details thereof will be described below with reference to the flowchart of FIG.
[0042]
The microcomputer 15 starts the shake correction process when the shake correction button 21 is turned on, and both the periods Txs and Tys for sampling the detection signals corresponding to the angular velocities generated by the x-axis angular velocity detection means 17x and the y-axis angular velocity detection means 17y, respectively. The first cycle T1 is set (step S1), and the drive control process is performed in the first sampling cycle T1 (step S2). If the recording operation button 25C is turned on during this drive control process (YES in step S3), the period Txs for sampling the detection signal corresponding to the angular velocity generated by the x-axis angular velocity detector 17x is left as it is. The cycle Tys for sampling the detection signal corresponding to the angular velocity generated by the y-axis angular velocity detector 17y is changed to a second cycle T2 longer than the first cycle T1 (step S4). The tilt angle is detected based on a detection signal corresponding to the angular velocity generated by the y-axis angular velocity detecting means 17y, and the shake amount and the displacement amount for shake correction based on the tilt angle are determined on the light receiving surface. This is to correct the horizontal shake of the imaging position, but the horizontal direction is perpendicular to the release push direction and is extremely small compared to the vertical shake, so even if the sampling period is long There are few problems in terms of correction accuracy.
[0043]
Thereafter, the recording operation button 25C is turned off (until NO in step S3), and again, the sampling period corresponding to the angular velocity generated by the x-axis angular velocity detector 17x and the y-axis angular velocity detector 17y is sampled again. Until both Txs and Tys are set to the first cycle T1 (step S1), the cycles Txs and Tys for sampling the detection signals corresponding to the angular velocities generated by the x-axis angular velocity detector 17x and the y-axis angular velocity detector 17y, respectively. The drive control process is performed with the first cycle T1 and the second cycle T2 (step S2).
[0044]
In this way, by increasing the sampling signal of the detection signal, the frequency of the angular velocity that is sampled and captured is reduced, the number of times that the displacement amount is calculated based on the captured angular velocity is small, and based on the calculated displacement amount. The period for driving and controlling the shake correction means to lengthen the image forming position on the light receiving surface in two directions to correct the image shake due to the shake becomes longer. Therefore, the period at which the shake correction means displaces the image forming position on the light receiving surface in the axis x direction and the axis y direction is different from each other. In addition, voice recording can be performed without substantially losing the accuracy of shake correction.
[0045]
When the cycle Tys for sampling the detection signal according to the angular velocity generated by the y-axis angular velocity detector 17y is changed to the second cycle T2 longer than the first cycle T1, in the drive control process (step S2), At the same time, simplification of the calculation formula for detecting the tilt angle based on the detection signal corresponding to the angular velocity captured by this sampling and calculating the shake amount and the displacement amount for correcting the shake based on the tilt angle is also performed. Can be done (in parentheses in step S4). In this case, in the drive control process, the burden of calculating the displacement amount is reduced accordingly.
[0046]
Regarding the simplification of the above-described arithmetic expression, the calculation of the displacement amount will be outlined below. The calculation for calculating the amount of displacement for shake correction is not a simple calculation in which the amount of displacement is simply calculated from the inclination angle by the angular velocity detection means, but linear and nonlinear characteristics due to the mechanism of the shake correction drive means. There is also a demand for calculation to correct, and the correction calculation time tends to increase. For example, as a prediction calculation to be introduced to correct the mechanical operation delay of the touch correction driving means, a calculation of the following formula is required at least as a simple linear form.
[0047]
Now, as shown in FIG. 3, assuming that the displacement amount after prediction is V [i], the displacement amount before prediction is v [i], the prediction time is t, and the time interval of shake data used for prediction is Δt. The subsequent displacement amount V [i] is calculated by the calculation of the following equation (1).
V [i] = v [i] + va [i] × t + vaa [i] × t 2 + vaaa [i] × t 3 (1)
va [i] = (v [i] -v [i-1]) / [Delta] t (1-1)
vaa [i] = (va [i] -va [i-1]) / Δt (1-2)
vaaa [i] = (vaa [i] −vaa [i−1]) / Δt (1-3)
However, considering that the amount of shake in the horizontal direction is extremely small compared to the shake in the vertical direction, the influence of the mechanical operation delay of the shake correction drive means on the image shake is extremely small in the horizontal direction where the shake is small. I can say that. In FIG. 3, Δt1 is a vertical direction correction cycle, and Δt2 is a horizontal direction correction cycle.
[0048]
For this reason, in the horizontal direction where the shake is small, it is meaningless to make the accuracy of correcting the mechanical operation delay of the shake correction drive means the same as in the vertical direction where the shake is large. Further, in each term from the first order (coefficient is formula 1-1) to the third order (coefficient is formula 1-3) in formula 1, the higher the higher order term, the more calculation processing is performed. Note that the effect of prediction accuracy is greater in the low-order terms.
[0049]
Therefore, in the horizontal direction where the shake is small, even if the calculation formula that does not perform the calculation of the high-order term in the prediction calculation formula (1) is simplified, the influence on the image shake correction accuracy is extremely small, and the entire drive control process is performed. The burden of calculating the amount of displacement at is greatly reduced.
[0050]
【The invention's effect】
As described above, according to the first aspect of the present invention, when voice recording is performed, the first direction orthogonal to the optical axis of the imaging optical system and the optical axis of the imaging optical system temporarily, In addition, the processing for determining the displacement amount for shake correction is simplified by changing the correction operation in the direction in which the shake is difficult to occur among the two directions of the first direction and the second direction orthogonal to the first direction. Since the processing for driving and controlling the correction means is reduced, the processing load on the microcomputer is reduced , and voice recording at the time of shooting can be performed without increasing the cost and without substantially impairing the accuracy of shake correction.
[0052]
According to the invention of claim 2 Symbol placement, temporarily making a voice recording, since changing the period for capturing a detection signal to a long period, minutes of the period for taking the detection signal becomes longer, the amount of displacement and the prediction computation determining the load further Herase can further reduce the processing load of the microcomputer.
[0054]
According to the invention of claim 3 Symbol placement, without compromising the accuracy of the release push during blur correction substantially perform the sound recording at the time of shooting.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of a camera body in an embodiment of an imaging apparatus with a shake correction function according to the present invention.
2 is a flowchart showing processing performed by the microcomputer in FIG. 1 in the embodiment of the imaging apparatus with a shake correction function according to the present invention.
FIGS. 3A and 3B are explanatory diagrams for explaining a prediction calculation method introduced to correct a mechanical operation delay, in which FIG. 3A shows a vertical shake waveform, and FIG. 3B shows a horizontal shake waveform.
[Explanation of symbols]
11 photographing optical system 11C optical axis 13 imaging element 13a light receiving surface 15 microcomputer (drive control means, calculation means)
17x, 17y shake detection means (angular velocity detection means)
19x, 19y Shake correction means 21 Shake correction button 23C Voice recording unit 25C Recording operation button x, y axis

Claims (3)

撮影光学系によって被写体の像を撮像素子の受光面上に結像させ、電気信号に変換して取り込むとともに、撮影に関する情報を音声によって録音し、受光面上での像振れを補正して撮影を行うようにした撮像装置であって、
前記撮影光学系の光軸に直交する第1の方向と、前記撮像光学系の光軸に直交し、かつ前記第1の方向と直交する第2の方向の振れを検知し、該検知した2つの方向の振れの大きさに応じた検知信号をそれぞれ出力する振れ検知手段と、
前記第1の方向及および第2の方向に前記受光面上の結像位置を独立に変位させる振れ補正手段と、
前記振れ検知手段が出力する検知信号を周期的に取り込み、該取り込んだ検知信号に基づいて、前記振れ補正手段を駆動して前記受光面上の結像位置を前記第1の方向および第2の方向にそれぞれ変位させる変位量を、高次項を含む予測演算式より予測演算してそれぞれ決定する演算手段と、
該演算手段が決定した変位量に基づき、前記受光面上の結像位置を前記第1の方向及および第2の方向に変位させて振れによる像振れを補正するように前記振れ補正手段を周期的に駆動制御する駆動制御手段とを備え、
前記音声録音を行う際に一時的に、前記演算手段は、前記第1の方向と第2の方向のうち振れの生じ難い方向の前記変位量を予測演算して決定する前記予測演算式を、高次項を含まない簡略化した予測演算式に変更し、前記駆動制御手段は、前記振れの生じ難い方向に前記受光面上の結像位置を変位させる周期を長い周期に変更する
ことを特徴とする撮像装置。
To form an image of a subject on a light receiving surface of the imaging device by the imaging optical system, fetches into an electric signal, the information on imaging recorded by audio, imaging to correct the image blur on the light receiving surface a imaging device which is to perform,
A shake in a first direction orthogonal to the optical axis of the imaging optical system and a second direction orthogonal to the optical axis of the imaging optical system and orthogonal to the first direction is detected, and the detected 2 Shake detection means for outputting a detection signal corresponding to the magnitude of shake in one direction,
Shake correcting means for independently displacing the imaging position on the light receiving surface in the first direction and the second direction;
The detection signal output from the shake detection unit is periodically fetched, and the shake correction unit is driven based on the fetched detection signal to set the imaging position on the light receiving surface in the first direction and the second direction. Calculating means for determining the amount of displacement to be displaced in each direction by predicting and calculating from a predictive calculation formula including a high-order term,
Based on the amount of displacement determined by the calculation means, the shake correction means is periodically moved so as to correct the image shake due to the shake by displacing the imaging position on the light receiving surface in the first direction and the second direction. A drive control means for controlling the drive automatically,
When the voice recording is performed, the calculation means temporarily calculates the prediction calculation formula that predicts and determines the displacement amount in a direction in which vibration is unlikely to occur between the first direction and the second direction. It is changed to a simplified prediction calculation formula that does not include a high-order term, and the drive control means changes a period for displacing the imaging position on the light receiving surface in a direction in which the shake is difficult to occur, to a long period. It is that imaging device.
前記音声録音を行う際一時的に、前記演算手段は、前記第1の方向と第2の方向のうちの前記振れの生じ難い方向の振れに対応する前記検知信号を取り込む周期を、他方の方向に対する前記検知信号を取り込む周期よりも長い周期に変更する
ことを特徴とする請求項1記載の撮像装置。
When performing the voice recording, the calculation means temporarily sets a period for taking in the detection signal corresponding to a shake in a direction in which the shake is difficult to occur in the first direction and the second direction in the other direction. imaging device according to claim 1, wherein the change in a period longer than the period of capturing the detection signal against the.
前記振れの生じ難い方向は、レリーズ押し込み方向と直交する方向である
ことを特徴とする請求項1又は2記載の撮像装置。
The resulting hard the direction of deflection is an imaging apparatus according to claim 1 or 2, wherein the a direction perpendicular to the release push-in direction.
JP2002059897A 2002-03-06 2002-03-06 Imaging device Expired - Fee Related JP3968255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002059897A JP3968255B2 (en) 2002-03-06 2002-03-06 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002059897A JP3968255B2 (en) 2002-03-06 2002-03-06 Imaging device

Publications (2)

Publication Number Publication Date
JP2003255425A JP2003255425A (en) 2003-09-10
JP3968255B2 true JP3968255B2 (en) 2007-08-29

Family

ID=28669419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002059897A Expired - Fee Related JP3968255B2 (en) 2002-03-06 2002-03-06 Imaging device

Country Status (1)

Country Link
JP (1) JP3968255B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142421A (en) * 1989-10-30 1991-06-18 Minolta Camera Co Ltd Camera
JPH03243070A (en) * 1990-02-21 1991-10-30 Konica Corp Camera
JP3543998B2 (en) * 1994-06-15 2004-07-21 キヤノン株式会社 Camera and camera control method
JP3566486B2 (en) * 1997-03-07 2004-09-15 キヤノン株式会社 Lens device and optical apparatus having the same
JPH11183952A (en) * 1997-12-24 1999-07-09 Canon Inc Camera provided with vibration-proof function
JP4011723B2 (en) * 1998-03-20 2007-11-21 キヤノン株式会社 Imaging method and apparatus, and storage medium
JP2001290183A (en) * 2000-04-04 2001-10-19 Canon Inc Vibrationproof controller and camera having it

Also Published As

Publication number Publication date
JP2003255425A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP3925415B2 (en) Image processing apparatus and method, recording medium, and program
JP5259172B2 (en) Camera shake correction control circuit and imaging apparatus equipped with the same
JP6091255B2 (en) Blur amount detection device and imaging device
JP5409342B2 (en) Imaging apparatus and control method thereof
JP6682360B2 (en) Anti-vibration control device, optical device, anti-vibration control method, and anti-vibration control program
JP5930684B2 (en) Information processing apparatus and method, and program
JP4311013B2 (en) Blur correction camera system and camera
JP6824710B2 (en) Zoom control device and zoom control method, imaging device
JP2006343639A (en) Digital camera
JP2011114486A (en) Imaging device
JP2009008936A (en) Imaging device
JP2009118164A (en) Camera
JP3968255B2 (en) Imaging device
JP2012013778A (en) Imaging apparatus
JP4827610B2 (en) Image blur correction apparatus, control method therefor, and imaging apparatus
JP4499686B2 (en) Image processing apparatus and method, recording medium, and program
JP3896015B2 (en) Image pickup device with shake correction function
JP2006203493A (en) Image movement correction device
JP6759019B2 (en) Blur correction device and its control method, imaging device
JP5699806B2 (en) Imaging device
JP6555937B2 (en) Image processing apparatus, control method therefor, and imaging apparatus
JP3919170B2 (en) Imaging device
JP2002131797A (en) Image pickup device and vibration restraining method
KR101144872B1 (en) Apparatus and method for prdicting the smallest point of time of tremble in digital camera
JP4665541B2 (en) Imaging apparatus and camera shake correction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees