JP3966934B2 - Carbon monoxide gas purification method - Google Patents

Carbon monoxide gas purification method Download PDF

Info

Publication number
JP3966934B2
JP3966934B2 JP00468997A JP468997A JP3966934B2 JP 3966934 B2 JP3966934 B2 JP 3966934B2 JP 00468997 A JP00468997 A JP 00468997A JP 468997 A JP468997 A JP 468997A JP 3966934 B2 JP3966934 B2 JP 3966934B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
monoxide gas
sodium hydroxide
concentration
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00468997A
Other languages
Japanese (ja)
Other versions
JPH10194716A (en
Inventor
雅裕 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Chemicals Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP00468997A priority Critical patent/JP3966934B2/en
Publication of JPH10194716A publication Critical patent/JPH10194716A/en
Application granted granted Critical
Publication of JP3966934B2 publication Critical patent/JP3966934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Industrial Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は一酸化炭素ガスの精製方法に関する。更に詳しくは、コークスから製造した一酸化炭素ガスを充分に精製すると同時に精製工程から排出される廃液中のCOD負荷量が低い環境にやさしい一酸化炭素ガスの精製方法に関する。
【0002】
【従来の技術】
工業的な一酸化炭素ガスの製造法として、コークスからの製造が一般に知られている。しかしながら、コークスから製造した一酸化炭素ガス中には、コークスに含まれる硫黄分に由来するH2 S、COS、CS2 等の硫黄化合物が不純物として数ppm〜数千ppm含まれている。このような硫黄系不純物を含む一酸化炭素ガスを化学品の原料として使用すると、これら硫黄系不純物が大きな問題になる。例えば特開平1−275630号には、かかる硫黄系不純物を除去した一酸化炭素ガスを用いてホスゲンを製造し、このホスゲンを原料としたポリカーボネート樹脂の製造方法が開示されている。また、ガス中の硫黄系不純物の除去方法として、水酸化ナトリウム水溶液での吸収反応が一般に知られている(特公昭59−46554号)。ガス中の硫黄分の除去能力は水酸化ナトリウム水溶液の温度が高いほうが効率的である。しかしながら、一酸化炭素ガスの場合は、水酸化ナトリウム水溶液による精製中に、副反応により蟻酸が発生する。その発生量は水酸化ナトリウム水溶液の温度が高いほど多くなる。この蟻酸のCODは0.2〜0.4g/gであり、例えば蟻酸100g/リットルのCODは20,000〜40,000mg/リットルになる。このようにCODが高い値となると、環境破壊の原因になる可能性があり問題になる。
【0003】
【発明が解決しようとする課題】
本発明の課題は、コークスから製造した一酸化炭素ガスからH2 S、COS、CS2 等の硫黄系不純物を実質的に悪影響のない5ppm以下程度にまで除去し、且つ工程から出る廃液中のCOD負荷量が低い環境にやさしい一酸化炭素ガスの精製方法を提供するにある。
【0004】
本発明者は、コークスから製造した一酸化炭素ガスに水酸化ナトリウム水溶液を接触させて硫黄系不純物を除去する際に排出される廃水酸化ナトリウム水溶液中に含まれるCOD負荷原因物質である蟻酸の生成の抑制方法、及び一酸化炭素ガス中の硫黄系不純物の除去方法について鋭意検討を重ねた結果、驚くべきことに、一酸化炭素ガスと水酸化ナトリウム水溶液を接触させる際の水酸化ナトリウム水溶液の水酸化ナトリウム濃度、温度、圧力を調整することによって、一酸化炭素ガス中の硫黄系不純物が充分に除去され、同時にCODに悪影響を及ぼす蟻酸の生成を効率よく抑制し得ることを究明し、この知見に基いて更に検討を重ねた結果本発明に到達した。
【0005】
【課題を解決するための手段】
本発明は、コークスから製造した一酸化炭素ガスに水酸化ナトリウム水溶液を接触させて一酸化炭素ガスから不純物を除去するに当り、水酸化ナトリウム水溶液の水酸化ナトリウム濃度を1〜30重量%、水酸化ナトリウム水溶液の温度を25〜60℃、系内の絶対圧力を1〜5kgf/cmの範囲に保持することを特徴とする一酸化炭素ガスの精製方法である。
【0006】
本発明にあっては一酸化炭素ガスと水酸化ナトリウム水溶液を接触させるに当り、水酸化ナトリウム水溶液中の水酸化ナトリウム濃度を1〜30重量%、好ましくは5〜20重量%、特に好ましくは5〜15重量%にする。水酸化ナトリウム濃度が1重量%よりも低くしたり、30重量%よりも高くすると、いずれの場合も蟻酸の生成量を低く抑制できるものの不純物の除去が充分に行なわれ難くなり、目的を達成し得ない。
【0007】
また、水酸化ナトリウム水溶液の温度を25〜60℃にする。水酸化ナトリウム水溶液の温度を25℃よりも低くすると、蟻酸の生成量を低く抑制できるものの不純物の除去が充分に行なわれ難くなり、水酸化ナトリウム水溶液の温度を60℃よりも高くすると、蟻酸の生成量が増加し、目的を達成し得ない。
【0008】
更に、本発明では系内の絶対圧力を1〜5kgf/cm2 、好ましくは2〜4kgf/cm2 にする。この圧力を1kgf/cm2 よりも低くすると蟻酸の生成量は低く抑制することができるが、不純物が充分に除去され難く、またこの圧力を5kgf/cm2 よりも高くすると蟻酸の生成量が増加し、目的を達し得ない。しかも圧力が1〜5kgf/cm2 の範囲外の場合は装置が複雑になる。
【0009】
このように、コークスから製造した一酸化炭素ガスに、特定の濃度、温度に保持した水酸化ナトリウム水溶液を特定の圧力の下に接触させることによって、一酸化炭素ガス中の硫黄系不純物の濃度を5ppm以下にし、且つ廃液中のCOD負荷原因物質の一つである蟻酸濃度を60g/リットル以下にすることを可能にしたものであり、これら三つの条件のいずれか一つを欠いてもかかる効果は達成されない。
【0010】
本発明の方法を実施するに使用する装置には気・液接触用装置が任意に採用され、例えば交流接触型ガス吸収塔等が好ましい。
【0011】
【発明の実施の形態】
以下、実施例及び比較例により本発明を更に詳しく説明する。なお、ガス中硫黄分濃度の分析及び廃アルカリ水溶液中の蟻酸濃度の測定はガスクロマトグラフィーを用いて行い、検出限界以下(0.1ppm)のものをNDとした。
【0012】
[実施例1]
本実施例では交流接触型ガス吸収塔を用いて一酸化炭素ガスの精製を行った。充填材にテラレットを用い、一酸化炭素ガスの硫黄含有量は、H2 Sが1,500ppm、COSが15ppm、CS2 が5ppmであった。一酸化炭素ガスの流量は100リットル・N/分、系内の圧力は3.0kgf/cm2 (絶対圧)、水酸化ナトリウム水溶液中の水酸化ナトリウム濃度は10重量%、水酸化ナトリウム水溶液の温度は55℃、各塔での水酸化ナトリウム水溶液の循環量は15リットル/分、水酸化ナトリウム水溶液の抜取り量は50ml/分とした。得られた結果を表1に示す。
【0013】
[実施例2]
水酸化ナトリウム水溶液の温度を40℃にする以外は実施例1と同様の条件で一酸化炭素ガスの精製を行った。得られた結果を表1に示す。
【0014】
[実施例3]
水酸化ナトリウム水溶液の温度を30℃にする以外は実施例1と同様の条件で一酸化炭素ガスの精製を行った。得られた結果を表1に示す。
【0015】
[実施例4]
系内の圧力を1.5kgf/cm2 (絶対圧)にする以外は実施例1と同様の条件で一酸化炭素ガスの精製を行った。得られた結果を表1に示す。
【0016】
[比較例1]
水酸化ナトリウム水溶液の温度を75℃にする以外は実施例1と同様の条件で一酸化炭素ガスの精製を行った。得られた結果を表1に示す。
【0017】
[比較例2]
水酸化ナトリウム水溶液の温度を5℃にする以外は実施例1と同様の条件で一酸化炭素ガスの精製を行った。得られた結果を表1に示す。
【0018】
[比較例3]
水酸化ナトリウム水溶液中の水酸化ナトリウム濃度を0.5重量%にする以外は実施例1と同様の条件で一酸化炭素ガスの精製を行った。得られた結果を表1に示す。
【0019】
[比較例4]
水酸化ナトリウム水溶液中の水酸化ナトリウム濃度を40重量%にする以外は実施例1と同様の条件で一酸化炭素ガスの精製を行った。得られた結果を表1に示す。
【0020】
[比較例5]
系内の圧力をを7.0kgf/cm2 にする以外は実施例1と同様の条件で一酸化炭素ガスの精製を行った。得られた結果を表1に示す。
【0021】
【表1】

Figure 0003966934
【0022】
【発明の効果】
本発明によれば、コークスから製造した一酸化炭素ガス中の硫黄系不純物を極めて容易に且つ充分(5ppm以下)に除去することができ、しかも廃液中の蟻酸濃度を60g/リットル以下とCOD負荷量を充分に低くし、環境にやさしいプロセスの提供が可能になり、その奏する工業的効果は格別なものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying carbon monoxide gas. More specifically, the present invention relates to a method for refining carbon monoxide gas that is sufficiently environmentally friendly and sufficiently purifies carbon monoxide gas produced from coke and at the same time has a low COD load in the waste liquid discharged from the refining process.
[0002]
[Prior art]
As an industrial method for producing carbon monoxide gas, production from coke is generally known. However, the carbon monoxide gas produced from coke contains several ppm to several thousand ppm of sulfur compounds such as H 2 S, COS, and CS 2 derived from sulfur contained in the coke as impurities. When carbon monoxide gas containing such sulfur-based impurities is used as a raw material for chemical products, these sulfur-based impurities become a big problem. For example, Japanese Patent Application Laid-Open No. 1-275630 discloses a method for producing a polycarbonate resin by producing phosgene using carbon monoxide gas from which such sulfur impurities have been removed, and using the phosgene as a raw material. As a method for removing sulfur-based impurities in gas, an absorption reaction with an aqueous sodium hydroxide solution is generally known (Japanese Patent Publication No. 59-46554). The ability to remove sulfur in the gas is more efficient when the temperature of the aqueous sodium hydroxide solution is higher. However, in the case of carbon monoxide gas, formic acid is generated by a side reaction during purification with an aqueous sodium hydroxide solution. The amount generated increases as the temperature of the aqueous sodium hydroxide solution increases. The COD of this formic acid is 0.2 to 0.4 g / g. For example, the COD of formic acid 100 g / liter is 20,000 to 40,000 mg / liter. Thus, when COD becomes a high value, it may become a cause of environmental destruction, and becomes a problem.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to remove sulfur-based impurities such as H 2 S, COS, and CS 2 from carbon monoxide gas produced from coke to about 5 ppm or less with substantially no adverse effect, and in the waste liquid discharged from the process. An object of the present invention is to provide an environment-friendly carbon monoxide gas purification method having a low COD load.
[0004]
The present inventor has produced formic acid that is a COD load causative substance contained in a waste sodium hydroxide aqueous solution discharged when a sodium hydroxide aqueous solution is brought into contact with carbon monoxide gas produced from coke to remove sulfur impurities. As a result of intensive investigations on the method of suppressing carbon and the removal of sulfur-based impurities in carbon monoxide gas, surprisingly, as a result, the water of the sodium hydroxide aqueous solution when contacting the carbon monoxide gas and the sodium hydroxide aqueous solution By adjusting sodium oxide concentration, temperature, and pressure, it was found that sulfur-based impurities in carbon monoxide gas can be sufficiently removed, and at the same time, the production of formic acid that adversely affects COD can be efficiently suppressed. As a result of further investigation based on this, the present invention has been reached.
[0005]
[Means for Solving the Problems]
In the present invention, when removing an impurity from a carbon monoxide gas by contacting a carbon monoxide gas produced from coke with a sodium hydroxide aqueous solution, the sodium hydroxide concentration of the sodium hydroxide aqueous solution is 1 to 30% by weight, A method for purifying carbon monoxide gas, characterized in that the temperature of an aqueous sodium oxide solution is 25 to 60 ° C. and the absolute pressure in the system is maintained in the range of 1 to 5 kgf / cm 2 .
[0006]
In the present invention, when contacting the carbon monoxide gas and the aqueous sodium hydroxide solution, the sodium hydroxide concentration in the aqueous sodium hydroxide solution is 1 to 30% by weight, preferably 5 to 20% by weight, particularly preferably 5%. ˜15 wt%. When the sodium hydroxide concentration is lower than 1% by weight or higher than 30% by weight, in any case, the amount of formic acid produced can be suppressed to a low level, but it is difficult to remove impurities sufficiently and the object is achieved. I don't get it.
[0007]
Further, the temperature of the sodium hydroxide aqueous solution is set to 25 to 60 ° C. If the temperature of the sodium hydroxide aqueous solution is lower than 25 ° C. , the amount of formic acid produced can be suppressed to a low level, but it is difficult to remove impurities sufficiently. If the temperature of the sodium hydroxide aqueous solution is higher than 60 ° C. , the formic acid The production amount increases and the objective cannot be achieved.
[0008]
Furthermore, in the present invention, the absolute pressure in the system is 1 to 5 kgf / cm 2 , preferably 2 to 4 kgf / cm 2 . If this pressure is lower than 1 kgf / cm 2, the amount of formic acid produced can be suppressed to a low level, but impurities are not sufficiently removed, and if this pressure is higher than 5 kgf / cm 2, the amount of formic acid produced increases. However, the purpose cannot be achieved. Moreover, when the pressure is outside the range of 1 to 5 kgf / cm 2 , the apparatus becomes complicated.
[0009]
In this way, the concentration of sulfur-based impurities in the carbon monoxide gas can be reduced by bringing the aqueous solution of sodium hydroxide maintained at a specific concentration and temperature into contact with the carbon monoxide gas produced from coke under a specific pressure. This makes it possible to reduce the formic acid concentration, which is one of the COD load-causing substances in the waste liquid, to 60 g / liter or less, and this effect is obtained even if any one of these three conditions is missing. Is not achieved.
[0010]
The apparatus used for carrying out the method of the present invention arbitrarily adopts a gas / liquid contact apparatus, and for example, an AC contact type gas absorption tower is preferable.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The analysis of the sulfur concentration in the gas and the measurement of the formic acid concentration in the waste alkaline aqueous solution were performed using gas chromatography, and ND below the detection limit (0.1 ppm) was determined.
[0012]
[Example 1]
In this example, carbon monoxide gas was purified using an AC contact gas absorption tower. Terralet was used as the filler, and the sulfur content of the carbon monoxide gas was 1,500 ppm for H 2 S, 15 ppm for COS, and 5 ppm for CS 2 . The flow rate of carbon monoxide gas is 100 liters / N / min, the pressure in the system is 3.0 kgf / cm 2 (absolute pressure), the concentration of sodium hydroxide in the aqueous sodium hydroxide solution is 10% by weight, The temperature was 55 ° C., the circulation amount of the sodium hydroxide aqueous solution in each tower was 15 liters / minute, and the extraction amount of the sodium hydroxide aqueous solution was 50 ml / minute. The obtained results are shown in Table 1.
[0013]
[Example 2]
Carbon monoxide gas was purified under the same conditions as in Example 1 except that the temperature of the aqueous sodium hydroxide solution was 40 ° C. The obtained results are shown in Table 1.
[0014]
[Example 3]
Carbon monoxide gas was purified under the same conditions as in Example 1 except that the temperature of the aqueous sodium hydroxide solution was 30 ° C. The obtained results are shown in Table 1.
[0015]
[Example 4]
Carbon monoxide gas was purified under the same conditions as in Example 1 except that the pressure in the system was 1.5 kgf / cm 2 (absolute pressure). The obtained results are shown in Table 1.
[0016]
[Comparative Example 1]
Carbon monoxide gas was purified under the same conditions as in Example 1 except that the temperature of the aqueous sodium hydroxide solution was 75 ° C. The obtained results are shown in Table 1.
[0017]
[Comparative Example 2]
Carbon monoxide gas was purified under the same conditions as in Example 1 except that the temperature of the aqueous sodium hydroxide solution was 5 ° C. The obtained results are shown in Table 1.
[0018]
[Comparative Example 3]
Carbon monoxide gas was purified under the same conditions as in Example 1 except that the sodium hydroxide concentration in the aqueous sodium hydroxide solution was 0.5 wt%. The obtained results are shown in Table 1.
[0019]
[Comparative Example 4]
Carbon monoxide gas was purified under the same conditions as in Example 1 except that the sodium hydroxide concentration in the aqueous sodium hydroxide solution was 40% by weight. The obtained results are shown in Table 1.
[0020]
[Comparative Example 5]
Carbon monoxide gas was purified under the same conditions as in Example 1 except that the pressure in the system was 7.0 kgf / cm 2 . The obtained results are shown in Table 1.
[0021]
[Table 1]
Figure 0003966934
[0022]
【The invention's effect】
According to the present invention, sulfur-based impurities in carbon monoxide gas produced from coke can be removed very easily and sufficiently (5 ppm or less), and the formic acid concentration in the waste liquid is 60 g / liter or less and COD load. The amount can be made sufficiently low to provide an environmentally friendly process, and its industrial effect is exceptional.

Claims (5)

コークスから製造した一酸化炭素ガスに水酸化ナトリウム水溶液を接触させて一酸化炭素ガスから不純物を除去するに当り、水酸化ナトリウム水溶液の水酸化ナトリウム濃度を1〜30重量%、水酸化ナトリウム水溶液の温度を25〜60℃、系内の絶対圧力を1〜5kgf/cmの範囲に保持することを特徴とする一酸化炭素ガスの精製方法。In removing the impurities from the carbon monoxide gas by contacting the carbon monoxide gas produced from coke with the sodium hydroxide aqueous solution, the sodium hydroxide concentration of the sodium hydroxide aqueous solution is 1 to 30% by weight. A method for purifying carbon monoxide gas, characterized in that the temperature is maintained at 25 to 60 ° C. and the absolute pressure in the system is maintained within a range of 1 to 5 kgf / cm 2 . 水酸化ナトリウム水溶液の水酸化ナトリウム濃度が、5〜15重量%である請求項1記載の一酸化炭素ガスの精製方法。  The method for purifying carbon monoxide gas according to claim 1, wherein the sodium hydroxide concentration of the aqueous sodium hydroxide solution is 5 to 15 wt%. 水酸化ナトリウム水溶液の温度が、40〜60℃である請求項1又は2記載の一酸化炭素ガスの精製方法。The method for purifying carbon monoxide gas according to claim 1 or 2, wherein the temperature of the sodium hydroxide aqueous solution is 40 to 60 ° C. 系内の保持圧力が、絶対圧力で2〜4kgf/cm2 である請求項1〜3のいずれか1項記載の一酸化炭素ガスの精製方法。The holding pressure in the system is 2 to 4 kgf / cm 2 in absolute pressure. The method for purifying carbon monoxide gas according to any one of claims 1 to 3. 精製後の一酸化炭素ガス中の硫黄系不純物の濃度が5ppm以下で、且つ精製後の水酸化ナトリウム水溶液中の蟻酸濃度が60g/リットル以下である請求項1〜4のいずれか1項記載の一酸化炭素ガスの精製方法。The concentration of sulfur impurities in the carbon monoxide gas after purification is 5 ppm or less, and the formic acid concentration in the aqueous sodium hydroxide solution after purification is 60 g / liter or less. A method for purifying carbon monoxide gas.
JP00468997A 1997-01-14 1997-01-14 Carbon monoxide gas purification method Expired - Fee Related JP3966934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00468997A JP3966934B2 (en) 1997-01-14 1997-01-14 Carbon monoxide gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00468997A JP3966934B2 (en) 1997-01-14 1997-01-14 Carbon monoxide gas purification method

Publications (2)

Publication Number Publication Date
JPH10194716A JPH10194716A (en) 1998-07-28
JP3966934B2 true JP3966934B2 (en) 2007-08-29

Family

ID=11590868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00468997A Expired - Fee Related JP3966934B2 (en) 1997-01-14 1997-01-14 Carbon monoxide gas purification method

Country Status (1)

Country Link
JP (1) JP3966934B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079820C (en) * 1998-11-23 2002-02-27 烟台万华聚氨酯股份有限公司 Desulfurizing process

Also Published As

Publication number Publication date
JPH10194716A (en) 1998-07-28

Similar Documents

Publication Publication Date Title
JP2005502460A5 (en)
EP0505607B1 (en) Sulfur dioxide removal process with gypsum and magnesium hydroxide production
EP2734283B1 (en) Method for removing impurities from flue gas condensate
JPS59169920A (en) Improvement of collection of co2 from flue gas
JP2003514666A (en) Method and apparatus for producing polycarbonate by recycling brine
CN110734164A (en) ship wastewater treatment system and treatment method thereof
JP3600458B2 (en) Treatment of flue gas desulfurization wastewater
JP3066403B2 (en) Method for removing sulfur dioxide from flue gas
CN110330164A (en) A kind of method of alkalinity high fluorine Sewage treatment fluorine resource and sodium resource with high salt
EP0595861B1 (en) Method for producing an aqueous sodium chloride solution
JP3966934B2 (en) Carbon monoxide gas purification method
US7691351B2 (en) Method for treatment of a gas stream containing silicon tetrafluoride and hydrogen chloride
JP2005144209A (en) Fluorine-containing waste water treatment method
CA2366023A1 (en) Procedure for the purification of sulphur
SU1447267A3 (en) Method of cleaning gases of acid admixtures
JP3646328B2 (en) Treatment method of ethylenediamine-containing waste liquid
JP4021688B2 (en) Method and apparatus for treatment of wastewater containing fluorine and silicon
CN105271585A (en) Method for processing wastewater generated in a process for preparing butadiene through oxidative dehydrogenation of industrial butylene
JP4716913B2 (en) Recycling of used titanium compounds as fluorine scavengers
JP2014129566A (en) Electrolysis method for sodium chloride aqueous solution
JPH0648741A (en) Production of iron sulfide for removing mercury
JP2010180158A (en) Method and apparatus for purifying glycerin
SU1667911A1 (en) Method for purifying off-gases from hydrogen chloride and ethyl chloride
US20040062703A1 (en) Process for the recovery of sodium nitrite
JPH11290870A (en) Treatment apparatus of ammonia-hydroperoxide mixed waste solution and treatment method using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees