JP3966452B2 - LED driving circuit and light emitting device - Google Patents
LED driving circuit and light emitting device Download PDFInfo
- Publication number
- JP3966452B2 JP3966452B2 JP2001325780A JP2001325780A JP3966452B2 JP 3966452 B2 JP3966452 B2 JP 3966452B2 JP 2001325780 A JP2001325780 A JP 2001325780A JP 2001325780 A JP2001325780 A JP 2001325780A JP 3966452 B2 JP3966452 B2 JP 3966452B2
- Authority
- JP
- Japan
- Prior art keywords
- led
- capacitor
- terminal
- electrode
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Led Devices (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、LED(light emitting diode)の駆動回路さらにはLEDを低電圧で駆動する技術に関し、例えばPDA(personal digital assistant)など電池駆動の装置にLEDを搭載する場合に利用して有用な技術に関する。
【0002】
【従来の技術】
LEDの順方向電圧は1.7〜2.2V程度であるので、例えば通常の1.5V乾電池で動作する装置にLEDを搭載した場合、電池の起電力だけではLEDの安定した駆動は期待できない。
【0003】
従来、例えば1.5V程度の電源電圧でLEDを駆動する場合、電源電圧をDC/DCコンバータで昇圧して3V程度の安定した電圧を生成し、この電圧を用いてLEDの駆動を行っていた。また、LEDを駆動する場合には、抵抗をLEDと直列に接続し、LEDの順方向電流が安定するように構成されるのが一般的であった。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の構成では、供給電圧の安定化のため、DC/DCコンバータの出力端子間にチャージポンプ用のコンデンサとは別に比較的大きなコンデンサを接続したり、或いは、昇圧用のスイッチングレギュレータ回路等を付加しなくてはならないため、部品点数や回路面積が増大し、単価が高くなるという欠点があった。
【0005】
また、従来のLED駆動回路では、LEDと直列に接続された抵抗によって、大きな電力の損失が生じるという欠点があった。
また、上記従来のLED駆動回路を装置に搭載する場合には、LED駆動回路が配設されLEDと駆動回路とを配線接続するためのプリント基板のような構成が必要となるため、LEDを実装する際の自由度が小さくなるという課題もあった。
【0006】
この発明の目的は、電池1本の起電力でLEDを駆動することが可能であり、且つ、安価で抵抗損失の低減も図れるLED駆動回路を提供することにある。
この発明の他の目的は、低電圧駆動が可能であるとともに、実装上の自由度を低減させることのない発光装置を提供することにある。
この発明の前記ならびにそのほかの目的と新規な特徴については、本明細書の記述および添附図面から明らかになるであろう。
【0007】
【課題を解決するための手段】
本願において開示される発明のうち代表的なものの概要を説明すれば、下記のとおりである。
すなわち、ドレイン端子が第1電源端子に、ソース端子がLEDの第1電極に、基板電位が第2電源端子に接続される第1のNチャネルMOSFETと、該第1のNチャネルMOSFETのソース端子に一方の電極が接続されたコンデンサと、ドレイン端子がLEDの他方の電極に、ソース端子と基板電位とが第2電源端子に接続される第2のNチャネルMOSFETと、上記第1のNチャネルMOSFETのゲート端子、上記コンデンサの他方の電極および上記第2のNチャネルMOSFETのゲート端子に発振信号を供給する発振回路と、該発振回路の出力を反転するCMOSインバータとを備え、上記発振回路の出力およびCMOSインバータの出力により上記第1のNチャネルMOSFETのゲート端子と、上記コンデンサの他方の電極および上記第2のNチャネルMOSFETのゲート端子に互いに逆相関係の発振信号が供給されるように構成されたLED駆動回路である。
また、このLED駆動回路とLED素子とが一体に構成された発光装置である。
【0008】
【発明の実施の形態】
以下、本発明の好適な実施例を図面に基づいて説明する。
図1は、本発明を適用して好適なLED駆動回路の実施例を示す回路図である。
このLED駆動回路1は、順方向電圧が1.7〜2.2V程度のLEDを1.5〜3V程度の電源電圧で駆動するための駆動回路であり、例えば単結晶シリコンのような1個の半導体チップ上に形成されている。この駆動回路1は、例えば10MHz程度で発振動作するリングオシレータなどの発振回路11と、チャージポンプ用のコンデンサC1と、発振回路11の発振信号に基づきスイッチング動作してコンデンサC1の充電を行う第1のNチャネルMOSFET(以下、NMOSと云う)MN1と、発振信号によりオン・オフ動作してLED2を通して流れる貫通電流を防止する第2のNMOS MN2と、コンデンサC1の他方の電極をグランド電位GNDから電源電圧VDDに叩き上げるPMOS QP1およびNMOS QN1からなるCMOSインバータINV1と、発振回路11の出力を反転させて第2のNMOS MN2のゲート端子に供給するCMOSインバータINV2とから構成される。
【0009】
そして、上記コンデンサC1の一方の電極の接続ノードn1と、第2のNMOS MN2のドレイン端子とが、それぞれ外部端子T1,T2に接続されている。この外部端子T1,T2間にLED2が接続される。
【0010】
また、このLED駆動回路1には、電源電圧VDDが供給される電源端子とグランド電位GNDが供給される電源端子と、発振回路11をアクティブにする制御信号CONTの入力端子とが設けられている。ここで、制御信号CONTの入力端子と電源電圧VDDの電源端子とを導通させ、電源電圧VDDの供給・遮断により、発振回路11もアクティブ・非アクティブに制御させるように構成することができるる。すなわち、電源電圧VDDの供給・遮断により、LED駆動回路1のオン・オフの切り換えが自動的に行われる。
【0011】
第1のNMOS MN1は、ドレイン端子が電源電圧VDDに、基板電位がグランド電位GNDに、ソース端子がコンデンサC1の出力側の電極にそれぞれ接続されるソースホロワ接続になっている。このようにNチャネルMOSFETをソースホロワ接続で用いることで、コンデンサC1の出力側の電極が昇圧されて電源電圧VDDより高くなった場合でも、第1のNMOS MN1は十分にオフされて電源電圧VDD側へ電流が逆流しないようになっている。
コンデンサC1は、例えば数pF程度の容量のものであり、比較的小さな面積で半導体チップ上に形成することが出来る。
【0012】
第2のNMOS MN2は、電源電圧VDDとしてLED2の順方向電圧VFよりも大きな電圧が印加された場合に、LED2を介して電源電圧VDDからグランド電位GNDに貫通電流が流れるのを防止するものである。すなわち、第1のNMOS MN1がオン状態のときには、第2のNMOS MN2がオフ状態になるので、電源電圧VDDが大きくなってもLED2を通して電流は流れない。一方、第1のNMOS MN1がオフ状態のときには、第2NMOS MN2はオン状態になってコンデンサC1に充電された電流をLED2を通してグランドGND側に流す。
なお、電源電圧VDDがLEDの順方向電圧VF以下になるという保証があれば、この第2のNMOS MN2とインバータINV2とを省略することが可能である。
【0013】
この実施例では、第2のNMOS MN2をLED2のカソード側に設けずに、LED2のアノード側に設けて貫通電流を防止することも考えられるが、そのように構成すると、電源電圧VDDがLED2の順方向電圧VFよりも低い場合に、第2MOS MN2のソース電位が上昇して当該第2MOS MN2をオンすることが出来ないので、第2のNMOS MN2はLED2のカソード側に設けている。
【0014】
上述のような構成によれば、発振回路11から出力された発振信号は、第1NMOS MN1のゲート端子と、それぞれインバータINV1,INV2を介してコンデンサC1と、第2NMOS MN2のゲート端子とにそれぞれ入力される。また、第1NMOS MN1と、コンデンサC1および第2NMOS MN2との入力はそれぞれ逆相とされる。
【0015】
従って、発振信号がハイレベルのときには、第1NMOS MN1がオンされるとともにインバータINV1の出力がロウレベルにされるので、コンデンサC1の両電極間に電位差が生じてコンデンサC1が充電される。ここで、コンデンサC1の出力側の電極は、電源電圧VDDより第1NMOS MN1のしきい値電圧Vthだけ低い電位になり、他方の電極はグランド電位GNDになる。
なお、このとき第2NMOS MN2はオフされているので、電源電圧VDDが非常に高い場合でもLED2に貫通電流は流れない。
【0016】
次いで、発振信号がロウレベルになると、第1NMOS MN1がオフされると共にインバータINV1の出力がハイレベルにされてコンデンサC1の一方の電極の電位が押し上げられる。この電位変化が急峻であるため、コンデンサC1の反対側の電位も、電源電圧VDDの分だけ上昇されてLED2の順方向電圧VFを超える。さらに、このとき第2NMOS MN2がオンされるので、コンデンサC1からLED2を通って電流が流れてLED2が発光される。
【0017】
LED素子は、貫通電流などにより過大な電流が流れると破壊の危険が生じるが、この実施例では、LED2に流れる電流はコンデンサC1に充電されていた電荷によるもので、コンデンサC1の出力側の電極に比較的高い電圧が生じた場合でも、LED2に過大な電流は流れない。すなわち、この実施例の駆動回路1によれば、LED2に印加される電圧は安定しないが、LED2に流れる電流は安定し、比較的安定した発光が得られる。
【0018】
図2は、実施例のLED駆動回路を備えたLED発光装置を示す平面図である。
この実施例のLED発光装置は、p形半導体とn形半導体とを接合し電極を設けて形成されたLED発光体210を、電極221〜224が設けられたチップ230上に固定してなるLED発光素子としてのLEDチップ200と、上記LED駆動回路1が形成された半導体チップ100と、を樹脂モールドで一体化したものである。さらに、各電極間が金線WRなどにより結線されその上も樹脂で封止されている。
【0019】
図3には、上記のLED発光装置の印加電圧−光量の特性を、従来のLEDと比較したグラフを示す。この図において、実線は実施例のLED発光装置の特性を、点線は従来のLEDの特性をそれぞれ示している。
図3に示すように、実施例のLED発光装置によれば、電源電圧VDDが約0.9V以上で発光し、3V程度までなだらかに発光量が増加していくという特性が得られる。これより従来のLEDでは、発光に1.7V以上の電圧が必要であり電池一本では駆動できないのに対して、本実施例の発光装置は電池一本でも駆動可能になることが分る。
【0020】
さらに、従来のLEDでは、発光を開始する電圧を超えると急激に電流が増加するという特性を有しているため、実際の回路では、抵抗等をLEDに直列に接続して電流を安定させる必要があったが、本実施例のLED発光装置では、電源電圧VDDからLEDを通してグランドGNDへ貫通電流が流れない構成になっており、電源電圧VDDが大きくなっても急激な電流が流れないので、安定した発光を大きな抵抗損失なく得ることが出来る。
【0021】
また、図2のような構造のLED発光装置によれば、大きさや形を従来のLED発光素子とほぼ同様にできるため、従来のLED発光素子と同様の取り扱いで実装することが出来る。また、発光させるのに従来のような高い電圧を必要とせず、低電圧駆動が可能になっているが、駆動回路を配設するプリント配線等が不要なので、あたかも、順方向電圧の低いLEDのように扱うことができ、発光装置を実装する上での設計自由度も増える。
【0022】
図4には、本発明に係るLED駆動回路の変形例を示す。
このLED駆動回路の変形例は、外部端子T1,T2に図1の駆動回路1とは極性を反転させた電圧が発生されるようにしたものであり、チャージポンプ用のコンデンサC1には負の電圧が生じるようになっている。従って、コンデンサC1の一方の電極が接続される外部端子T4にはLED2のカソード側の電極が接続される。
【0023】
この変形例のLED駆動回路1Bにおいては、図1の第1および第2のNMOS MN1,MN2の代わりには、Pチャネル形の第1および第2のPMOS MP1,MP2を用いている。また、極性を変えたのに応じて、第1のPMOSのゲートに発振回路11の出力を直接入力させ、コンデンサC1と第2のPMOSのゲートにはインバータINV2で発振出力を反転した信号を入力させている。
【0024】
この変形例の駆動回路1Bによれば、図1の実施例でNチャネルMOSFETを用いていた部分がPチャネルMOSFETに変更されるので、MOSFETの駆動力として同様の駆動力を得ようとするとチップ面積が大きくなってしまうが、図1のLED駆動回路1と同様の作用が得られる。
【0025】
また、本発明に係るLED駆動回路のその他の変形例として、例えば青色LEDなど順方向電圧VFが高いLEDを駆動する場合や、さらに低い電源電圧でLEDを駆動する場合に、次のような回路も考えられる。すなわち、図1の第1NMOS MN1、チャージポンプ用のコンデンサC1、およびインバータINV1からなる部分を複数段設け、それぞれをカスケード接続して駆動回路を構成する。このような構成によれば、最終段のコンデンサに電源電圧VDDの3倍や4倍の電圧を生じさせることが出来るので、この電圧により順方向電圧VFが高いLEDを駆動したり、或いは電源電圧が低い場合でもLEDの駆動を行うことが出来る。
【0026】
以上のように、上記実施例のLED駆動回路によれば、電池1本でLEDを発光させることが出来るとともに、LEDに過大電流を流さないために抵抗を接続する必要もないので、消費電力の低減も図れる。
【0027】
また、図2に示したLED発光装置によれば、電気的な特性としては上記LED駆動回路による効果が同様に得られる一方、実装の際には従来のLED素子と同様に取り扱うことが出来るので、LEDを実装する上で設計自由度が低くならないという効果がある。従って、例えばPDAなど電池駆動で携帯型の電子装置に搭載する場合に、電源電圧をそのまま利用してLEDの発光が得られ、且つ、消費電力も低く抑えられるので特に効果的である。
【0028】
以上本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
例えば、実施例では、発振回路11を駆動回路に内蔵した構成を示したが、駆動回路を内部に設ける代わりに、外部で生成された発振信号を駆動回路に供給するように構成しても良い。また、チャージポンプ用のコンデンサを他の構成素子と同一チップ上に設けるのではなく、外付け端子として接続する構成としても良い。
【0029】
また、実施例では、第1のNMOS MN1とコンデンサC1とに供給される信号を互いに逆相関係にするのに、コンデンサC1の前段にインバータを設けたが、このような構成に限られず、例えば、第1NMOS MN1の前段にインバータを設け、コンデンサC1に発振回路11からの出力が直接入力されるように構成することで、これらの信号を互いに逆相関係にすることも可能である。
【0030】
また、LED素子とLED駆動回路とを一体化する方式も、図2の例に限られるものでなく、例えば、LED素子が封止されたLEDチップの裏面側に、LED駆動回路の半導体チップをモールド固着するようにしても良いし、また、駆動回路が形成された半導体チップ上にLED素子を直接固着し、各電極をワイヤーボンディング等で接続するように構成するなど、種々の変形が可能である。
【0031】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
すなわち、本発明に従うと、電池1本でLEDを発光させることが出来るとともに、駆動する際にLEDと直列に抵抗を接続する必要がなくなり消費電力の低減が図れるという効果がある。
【0032】
また、本発明の発光装置によれば、低電圧で駆動でき且つ消費電力の低減が図れるとともに、実装上1個の発光素子と変わらずに扱うことが出来るので、実装上の自由度が増すという効果がある。
【図面の簡単な説明】
【図1】本発明を適用して好適なLED駆動回路の実施例を示す回路図である。
【図2】実施例のLED駆動回路を備えたLED発光装置を示す平面図である。
【図3】実施例のLED発光装置の印加電圧−光量の関係を従来のLEDと比較したグラフである。
【図4】LED駆動回路の変形例を示す回路図である。
【符号の説明】
1 LED駆動回路
1B LED駆動回路
2 LED
11 発振回路
100 半導体チップ
200 LEDチップ
210 LED発光体
C1 コンデンサ
MN1 第1のNMOS
MN2 第2のNMOS
INV1,INV2 インバータ
MP1 第1のPMOS
MP2 第2のPMOS[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a driving circuit for an LED (light emitting diode) and further to a technique for driving the LED at a low voltage. For example, the technique is useful when the LED is mounted on a battery-driven device such as a PDA (personal digital assistant). About.
[0002]
[Prior art]
Since the forward voltage of the LED is about 1.7 to 2.2 V, for example, when the LED is mounted on a device that operates with a normal 1.5 V battery, stable driving of the LED cannot be expected only by the electromotive force of the battery. .
[0003]
Conventionally, for example, when driving an LED with a power supply voltage of about 1.5 V, the power supply voltage is boosted by a DC / DC converter to generate a stable voltage of about 3 V, and the LED is driven using this voltage. . When driving an LED, it is common to connect a resistor in series with the LED so that the forward current of the LED is stabilized.
[0004]
[Problems to be solved by the invention]
However, in the above conventional configuration, in order to stabilize the supply voltage, a relatively large capacitor is connected between the output terminals of the DC / DC converter, or a switching regulator circuit for boosting. Etc. had to be added, resulting in an increase in the number of parts and the circuit area, resulting in a higher unit price.
[0005]
Further, the conventional LED driving circuit has a drawback that a large power loss is caused by the resistor connected in series with the LED.
In addition, when the conventional LED driving circuit is mounted on the apparatus, the LED driving circuit is disposed and a configuration like a printed circuit board for wiring connection between the LED and the driving circuit is necessary. There was also a problem that the degree of freedom in doing so was reduced.
[0006]
An object of the present invention is to provide an LED driving circuit that can drive an LED with an electromotive force of one battery and that is inexpensive and can reduce resistance loss.
Another object of the present invention is to provide a light-emitting device that can be driven at a low voltage and does not reduce the degree of freedom in mounting.
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
[0007]
[Means for Solving the Problems]
Outlines of representative ones of the inventions disclosed in the present application will be described as follows.
That is, a drain terminal is connected to the first power supply terminal, a source terminal is connected to the first electrode of the LED, a substrate potential is connected to the second power supply terminal, and the source terminal of the first N channel MOSFET A capacitor to which one electrode is connected, a second N-channel MOSFET having a drain terminal connected to the other electrode of the LED, a source terminal and a substrate potential connected to a second power supply terminal, and the first N-channel An oscillation circuit for supplying an oscillation signal to the gate terminal of the MOSFET, the other electrode of the capacitor and the gate terminal of the second N-channel MOSFET, and a CMOS inverter for inverting the output of the oscillation circuit, Depending on the output and the output of the CMOS inverter, the gate terminal of the first N-channel MOSFET and the other of the capacitor Oscillation signal of opposite phase relation to each other to the gate terminal of the pole and the second N-channel MOSFET is an LED drive circuit configured to be supplied.
In addition, the LED driving circuit and the LED element are a light emitting device configured integrally.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a circuit diagram showing an embodiment of a suitable LED driving circuit to which the present invention is applied.
The LED driving circuit 1 is a driving circuit for driving an LED having a forward voltage of about 1.7 to 2.2 V with a power supply voltage of about 1.5 to 3 V. For example, one LED such as single crystal silicon is used. Formed on the semiconductor chip. The drive circuit 1 includes a
[0009]
The connection node n1 of one electrode of the capacitor C1 and the drain terminal of the second NMOS MN2 are connected to the external terminals T1 and T2, respectively. LED2 is connected between the external terminals T1 and T2.
[0010]
Further, the LED drive circuit 1 is provided with a power supply terminal to which a power supply voltage VDD is supplied, a power supply terminal to which a ground potential GND is supplied, and an input terminal for a control signal CONT that activates the
[0011]
The first NMOS MN1 has a source follower connection in which the drain terminal is connected to the power supply voltage VDD, the substrate potential is connected to the ground potential GND, and the source terminal is connected to the output side electrode of the capacitor C1. As described above, by using the N-channel MOSFET in the source follower connection, even when the output-side electrode of the capacitor C1 is boosted and becomes higher than the power supply voltage VDD, the first NMOS MN1 is sufficiently turned off and the power supply voltage VDD side The current does not flow backward.
The capacitor C1 has a capacity of about several pF, for example, and can be formed on a semiconductor chip with a relatively small area.
[0012]
The second NMOS MN2 prevents a through current from flowing from the power supply voltage VDD to the ground potential GND via the LED2 when a voltage larger than the forward voltage VF of the LED2 is applied as the power supply voltage VDD. is there. That is, when the first NMOS MN1 is on, the second NMOS MN2 is off, so that no current flows through the
Note that the second NMOS MN2 and the inverter INV2 can be omitted if there is a guarantee that the power supply voltage VDD is equal to or lower than the LED forward voltage VF.
[0013]
In this embodiment, it is conceivable that the second NMOS MN2 is not provided on the cathode side of the
[0014]
According to the configuration as described above, the oscillation signal output from the
[0015]
Therefore, when the oscillation signal is at the high level, the first NMOS MN1 is turned on and the output of the inverter INV1 is set to the low level. Therefore, a potential difference is generated between both electrodes of the capacitor C1, and the capacitor C1 is charged. Here, the electrode on the output side of the capacitor C1 becomes a potential lower than the power supply voltage VDD by the threshold voltage Vth of the first NMOS MN1, and the other electrode becomes the ground potential GND.
At this time, since the second NMOS MN2 is turned off, no through current flows through the
[0016]
Next, when the oscillation signal becomes low level, the first NMOS MN1 is turned off and the output of the inverter INV1 is set to high level to push up the potential of one electrode of the capacitor C1. Since this potential change is steep, the potential on the opposite side of the capacitor C1 is also increased by the power supply voltage VDD and exceeds the forward voltage VF of the LED2. Furthermore, since the second NMOS MN2 is turned on at this time, a current flows from the capacitor C1 through the LED2, and the LED2 emits light.
[0017]
The LED element has a risk of destruction when an excessive current flows due to a through current or the like. In this embodiment, the current flowing to the
[0018]
FIG. 2 is a plan view showing an LED light emitting device including the LED driving circuit of the embodiment.
The LED light-emitting device of this embodiment is an LED formed by fixing an LED light-emitting
[0019]
In FIG. 3, the graph which compared the characteristic of the applied voltage-light quantity of said LED light-emitting device with the conventional LED is shown. In this figure, the solid line indicates the characteristics of the LED light emitting device of the embodiment, and the dotted line indicates the characteristics of the conventional LED.
As shown in FIG. 3, according to the LED light emitting device of the embodiment, it is possible to obtain a characteristic that light is emitted when the power supply voltage VDD is about 0.9 V or more and the light emission amount is gradually increased to about 3 V. From this, it can be seen that the conventional LED requires a voltage of 1.7 V or more for light emission and cannot be driven by a single battery, whereas the light emitting device of this embodiment can be driven by a single battery.
[0020]
Furthermore, since the conventional LED has a characteristic that the current increases rapidly when the voltage at which light emission starts is exceeded, it is necessary to stabilize the current by connecting a resistor or the like in series with the LED in an actual circuit. However, in the LED light emitting device of this embodiment, the through current does not flow from the power supply voltage VDD to the ground GND through the LED, and no rapid current flows even if the power supply voltage VDD increases. Stable light emission can be obtained without a large resistance loss.
[0021]
Further, according to the LED light emitting device having the structure as shown in FIG. 2, since the size and shape can be made almost the same as those of the conventional LED light emitting element, it can be mounted by the same handling as the conventional LED light emitting element. In addition, it does not require a high voltage as in the prior art to emit light and can be driven at a low voltage. However, since a printed wiring or the like for disposing a drive circuit is unnecessary, it is as if an LED with a low forward voltage is used. The degree of freedom of design for mounting the light emitting device is also increased.
[0022]
FIG. 4 shows a modification of the LED drive circuit according to the present invention.
In this modified example of the LED driving circuit, a voltage whose polarity is reversed from that of the driving circuit 1 in FIG. 1 is generated at the external terminals T1 and T2, and a negative voltage is generated in the capacitor C1 for the charge pump. A voltage is generated. Therefore, the cathode-side electrode of the
[0023]
In the
[0024]
According to the
[0025]
As another modification of the LED driving circuit according to the present invention, for example, when driving an LED having a high forward voltage VF such as a blue LED or driving an LED with a lower power supply voltage, the following circuit is provided. Is also possible. That is, a plurality of stages including the first NMOS MN1, the charge pump capacitor C1, and the inverter INV1 in FIG. 1 are provided, and each of them is cascade-connected to constitute a drive circuit. According to such a configuration, a voltage that is three or four times the power supply voltage VDD can be generated in the final stage capacitor. Therefore, an LED having a high forward voltage VF can be driven by this voltage, or the power supply voltage can be increased. The LED can be driven even when it is low.
[0026]
As described above, according to the LED driving circuit of the above embodiment, the LED can be made to emit light with one battery, and it is not necessary to connect a resistor so that an excessive current does not flow through the LED. Reduction can also be achieved.
[0027]
Further, according to the LED light-emitting device shown in FIG. 2, while the same effect as that obtained by the LED drive circuit can be obtained in terms of electrical characteristics, it can be handled in the same manner as a conventional LED element during mounting. There is an effect that the degree of freedom of design does not become low in mounting the LED. Therefore, for example, when it is mounted on a battery-driven portable electronic device such as a PDA, light emission of the LED can be obtained using the power supply voltage as it is and the power consumption can be suppressed to be low, which is particularly effective.
[0028]
The invention made by the present inventor has been specifically described based on the embodiments. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Nor.
For example, in the embodiment, the configuration in which the
[0029]
In the embodiment, an inverter is provided in the preceding stage of the capacitor C1 in order to make the signals supplied to the first NMOS MN1 and the capacitor C1 have opposite phases, but the present invention is not limited to such a configuration. In addition, by providing an inverter in front of the first NMOS MN1 so that the output from the
[0030]
Further, the method of integrating the LED element and the LED driving circuit is not limited to the example of FIG. 2. For example, a semiconductor chip of the LED driving circuit is provided on the back side of the LED chip sealed with the LED element. Various modifications may be possible, such as fixing the mold to the LED chip directly on the semiconductor chip on which the drive circuit is formed and connecting each electrode by wire bonding or the like. is there.
[0031]
【The invention's effect】
The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.
That is, according to the present invention, the LED can be made to emit light with one battery, and there is an effect that it is not necessary to connect a resistor in series with the LED when driving, and power consumption can be reduced.
[0032]
Further, according to the light emitting device of the present invention, it can be driven at a low voltage and power consumption can be reduced, and since it can be handled as one light emitting element in mounting, the degree of freedom in mounting is increased. effective.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of an LED driving circuit suitable for applying the present invention.
FIG. 2 is a plan view showing an LED light emitting device including an LED drive circuit according to an embodiment.
FIG. 3 is a graph comparing the relationship between the applied voltage and the amount of light of the LED light emitting device of the example and a conventional LED.
FIG. 4 is a circuit diagram showing a modification of the LED drive circuit.
[Explanation of symbols]
1
11
MN2 second NMOS
INV1, INV2 Inverter MP1 First PMOS
MP2 Second PMOS
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001325780A JP3966452B2 (en) | 2001-10-24 | 2001-10-24 | LED driving circuit and light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001325780A JP3966452B2 (en) | 2001-10-24 | 2001-10-24 | LED driving circuit and light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003133592A JP2003133592A (en) | 2003-05-09 |
JP3966452B2 true JP3966452B2 (en) | 2007-08-29 |
Family
ID=19142274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001325780A Expired - Fee Related JP3966452B2 (en) | 2001-10-24 | 2001-10-24 | LED driving circuit and light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3966452B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59205820A (en) * | 1983-05-09 | 1984-11-21 | Olympus Optical Co Ltd | Constant current driving circuit |
JPH0728054B2 (en) * | 1988-05-24 | 1995-03-29 | 三菱電機株式会社 | Semiconductor integrated circuit device |
JPH06196758A (en) * | 1992-10-19 | 1994-07-15 | Alps Electric Co Ltd | Light-emitting device driving circuit |
JP3619299B2 (en) * | 1995-09-29 | 2005-02-09 | パイオニア株式会社 | Light emitting element drive circuit |
JP4600619B2 (en) * | 2000-12-19 | 2010-12-15 | ミツミ電機株式会社 | Charge pump type DC-DC converter |
-
2001
- 2001-10-24 JP JP2001325780A patent/JP3966452B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003133592A (en) | 2003-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5354625B2 (en) | Semiconductor device | |
KR100922681B1 (en) | Charge pump circuit | |
US7233191B2 (en) | JFET driver circuit and JFET driving method | |
US8080985B2 (en) | Method and apparatus for high performance switch mode voltage regulators | |
JP3912417B2 (en) | Driving circuit | |
US9136836B2 (en) | Converter including a bootstrap circuit and method | |
US7466187B2 (en) | Booster circuit | |
CN102064729B (en) | Half-bridge drive circuit | |
JP5428254B2 (en) | LED drive device | |
US7692479B2 (en) | Semiconductor integrated circuit device including charge pump circuit capable of suppressing noise | |
JP6805798B2 (en) | Overcurrent detection circuit, semiconductor device, and power supply device | |
JPH03214212A (en) | Voltage dropping circuit for semiconductor device | |
EP1484659A3 (en) | Variable output-type current source circuit | |
US7212066B2 (en) | Charge pump circuit | |
JP7002423B2 (en) | Switch circuit | |
JP3966452B2 (en) | LED driving circuit and light emitting device | |
JP2004072829A5 (en) | ||
JP3488807B2 (en) | EL element drive circuit | |
KR20060053977A (en) | Semiconductor integrated circuit and boosting method | |
US5780975A (en) | Low cost inverter with both discrete and integrated power switches | |
JP3540869B2 (en) | Starter circuit device for self-biased electronic circuits | |
KR20040019347A (en) | Output driver equipped with with a sensing resistor for measuring the current in the output driver | |
JP2010004641A (en) | Voltage booster circuit | |
JPS5899032A (en) | Semiconductor integrated circuit | |
JPS5922247B2 (en) | Electronic circuit using field effect semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070524 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |