JP3966224B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3966224B2
JP3966224B2 JP2003142255A JP2003142255A JP3966224B2 JP 3966224 B2 JP3966224 B2 JP 3966224B2 JP 2003142255 A JP2003142255 A JP 2003142255A JP 2003142255 A JP2003142255 A JP 2003142255A JP 3966224 B2 JP3966224 B2 JP 3966224B2
Authority
JP
Japan
Prior art keywords
boiling
hot water
heat pump
heating
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003142255A
Other languages
Japanese (ja)
Other versions
JP2004347171A5 (en
JP2004347171A (en
Inventor
伸一 友田
正明 古内
哲也 松山
康一 堀越
和宏 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003142255A priority Critical patent/JP3966224B2/en
Publication of JP2004347171A publication Critical patent/JP2004347171A/en
Publication of JP2004347171A5 publication Critical patent/JP2004347171A5/ja
Application granted granted Critical
Publication of JP3966224B2 publication Critical patent/JP3966224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はヒートポンプを加熱手段としたヒートポンプ給湯器に関するものである。
【0002】
【従来の技術】
従来の貯湯式電気温水器には、放熱ロスを低減させ維持費を安くするため、沸き上げ設定温度までに沸き上げるのに必要な沸き上げ時間を算出し、夜間時間帯終了時刻に沸き上げが完了するように、夜間時間帯の途中から発熱体への通電を開始させるようにしたものがある(例えば、特許文献1参照。)。
【0003】
また、従来の貯湯式ヒートポンプ給湯機には、所定の目標温度になるように水循環ポンプ8の流量をコントロールして温度調節しながら、貯湯タンク5の上部よりお湯を積層沸き上げしていくものがある(例えば、特許文献2参照。)。
【0004】
【特許文献1】
特開昭58−129146号公報(第2頁、第2図)
【特許文献2】
特開2002−147846号公報(第3−5頁、第1図)
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1に示された貯湯式電気温水器においては、発熱体を加熱手段としているため、加熱能力Wは固定値となるので、必要沸き上げ時間Hの算出に問題はないが、特許文献2に示されたヒートポンプ給湯機においては、ヒートポンプを加熱手段としているため、加熱能力Wが固定値にならないので、そのまま同じ算出式で必要沸き上げ時間Hを算出して運転した場合、状況によって沸き上げ不足が発生するという問題がある。
図4は、ヒートポンプ給湯器におけるお湯の上昇温度(沸き上げ設定温度−入水温度)と加熱能力Wの関係を表す図である。図4に示すように、ヒートポンプ給湯器の場合、特に、お湯の上昇温度(沸き上げ設定温度−入水温度)が一定値より小さくなると、ヒートポンプの加熱能力Wが低下する。これは、沸き上げ用の循環ポンプを最大流量にしても、循環ポンプがDCモータ等で構成されている場合は、最大流量があまり大きくとれないため、どうしても循環流量が不足して、沸き上げ温度のコントロールができなくなり、加熱能力Wを小さく抑えて運転するように制御されるためである。
具体的には、沸き上げ設定温度To=90℃、入水温度=60℃、通常時の加熱能力W=4.5KWとした場合、
循環流量=(860[Kcal/KWh]×4.5[KW])/((90[℃]−60[℃])×60[分/時間])
=2.15[L/分]の循環流量が必要となる。
ところが、循環ポンプの能力より、最大循環流量が2[L/分]しかない場合、2[L/分]の循環流量では、流量が不足して沸き上げ温度が高温になってしまう為、圧縮機の回転数を下げるなどにより、加熱能力を小さく抑えるように制御する。
従って、特許文献1に示される貯湯式電気温水器の算出式をそのまま特許文献2に示されるヒートポンプ給湯器に適用して必要沸き上げ時間Hを算出した場合、特許文献2のものでは、お湯の上昇温度が一定値より小さくなると、加熱能力Wが小さく変化するため、例えば、通常時の加熱能力W=4.5KWで計算され、実際の平均加熱能力が3.5KW程度で運転されると、結果的には沸き上げの開始時間を実際の加熱能力以上に遅らせていることになり、夜間時間帯の終了時刻に沸き上げを完了させることができなくなって、沸き上げ不足が発生する。
【0006】
本発明は、上記のような課題を解消するためになされたもので、沸き上げ不足の発生を防止できるヒートポンプ給湯器を提供することを目的とする。
【0007】
【課題を解決するための手段】
この発明にかかる貯湯式給湯器は、ヒートポンプの加熱能力に基づき、必要沸き上げ時間を算出し、夜間時間帯終了時間付近の特定時間に沸き上げを完了させるよう沸き上げの開始時間を制御する制御手段を備えたヒートポンプ給湯器において、前記制御手段は、その制御用データとして残湯量に対応して加熱補正係数αの値が予め記憶されている記憶部を有し、夜間時間帯の沸き上げ開始前の残湯状態から予測されるヒートポンプの平均加熱能力に対応して前記記憶部に記憶された加熱補正係数αを決定して前記必要沸き上げ時間を算出するものである。
【0008】
【発明の実施の形態】
実施の形態1.
図1は本発明の実施の形態1を示すヒートポンプ式給湯器の構成図、図2及び図3は本発明の実施の形態1における沸き上げ制御動作を示すフローチャートである。
【0009】
図1において、1は給湯器本体、2は前記本体1内に配設された貯湯タンク、3は前記貯湯タンク2の下部と接続された給水配管、3aはこの給水配管3に設けられた減圧弁、3bはこの給水配管途中に取り取り付けられ、貯湯タンク2内の給水水温を検出する水温センサ、4は前記貯湯タンク2の上部と接続された給湯配管、4aは逃し弁、5aは前記貯湯タンク2の下部配管に取り付けられ、貯湯タンク2内を全量沸き上げた場合に、ヒートポンプ本体6の加熱動作を停止するための温度を検出する加熱動作停止温度センサ、5bは前記貯湯タンク2の下部壁面(タンク上部から250Lの位置)に取り付けられ、残湯250Lの有無を検出する第1の残湯量センサ、5cは前記貯湯タンク2の下部壁面(タンク上部から100Lの位置)に取り付けられ、残湯100Lの有無を検出する第2の残湯量センサである。
【0010】
6はヒートポンプ本体、7はヒートポンプ本体6のヒートポンプサイクルで発生した熱を貯湯タンク2内の水に置換するため、冷水管8aと温水管8bとにより貯湯タンク2内の水をヒートポンプ本体6との間で循環させる循環ポンプである。ここで、循環ポンプ7はDCポンプであり、循環させる流量を調整可能である。貯湯タンク2下部に接続された冷水管8aより循環ポンプ7でヒートポンプ本体6に水が供給され、ヒートポンプ本体6で加熱された水を貯湯タンク2の上部に接続された温水管8bにより戻し貯湯タンク2内上部より貯湯する。
【0011】
9は前記貯湯タンク2内の水の沸き上げ制御を行う制御手段であり、前記水温センサ3b、加熱動作停止温度センサ5a、第1及び第2の残湯量センサ5b,5c、リモコン10からの入力値、及びヒートポンプの加熱能力に基づき、必要沸き上げ時間Hを算出し、夜間時間帯の終了時間付近の特定時間に沸き上げを完了させるように前記ヒートポンプ本体6の加熱動作開始・停止及び循環ポンプ7の運転を制御する。
【0012】
ヒートポンプ本体6のヒートポンプサイクルは圧縮機11、給湯用熱交換器12、膨張弁13、蒸発器14、アキュームレータ15を順次冷媒配管16により接続して構成されている。ここで、蒸発器14に吸熱するためにファン17が設けてあり、また、給湯用熱交換器12は圧縮機11より吐出された高圧のガス冷媒と給湯用の水とを熱交換するもので、冷媒が流れる冷媒通路12bと給湯用の水が流れる給湯用水通路12aを有する。また、18は貯湯タンクに戻すお湯の温度を検出する沸き上げ湯温センサである。
【0013】
本実施の形態1におけるヒートポンプ給湯器のリモコン10で沸き上げ設定温度を90℃に設定した場合の沸き上げ制御動作について、図2及び図3のフローチャートを用いて説明する。
なお、ここで、説明の関係上、貯湯タンク2のタンク容量A=370L、ヒートポンプの最大加熱能力W=4.5KW、沸き上げ設定温度To=90℃、給水水温Tw=15℃、残湯量Z=100L、として説明する。また、制御手段9には、その制御用データとして記憶部(図示せず)に表1に示す残湯量Zに対応して加熱補正係数αの値が予め記憶されているものとする。
【0014】
【表1】

Figure 0003966224
【0015】
まず、沸き上げ制御をスタートすると(S1)、制御手段9は、リモコン10で設定された沸き上げ設定温度Toの確認(S2)、水温センサ3bの検出温度より給水水温Twの確認(S3)、第1及び第2の残湯量センサ5b,5cの検出温度から現在の貯湯タンク2内の残湯量Zの確認(S4)、第1及び第2の残湯量センサ5b,5cの検出温度より残湯温度の確認(S5)を行う。
【0016】
次に、制御手段9はS4,S5で確認した残湯状態により、図5の残湯量Zと加熱補正係数αの関係を示す表1により、加熱補正係数αを決定する。
すなわち、残湯250Lセンサが55℃以上ならば、残湯量Zは250L以上と判断し(S6)、貯湯タンク2内に残湯が多く残っていると、入水温度は高いので、加熱能力Wは小さく抑えられて平均加熱能力Woは通常時の加熱能力Wの70%程度になると予測し、加熱補正係数αを0.7に決定する(S10)。
また、残湯250Lセンサが55℃未満で残湯100Lセンサが55℃以上ならば、残湯量Zは100L以上250L未満と判断し(S7)、入水温度はやや高いので、加熱能力Wはやや小さく抑えられて平均加熱能力Woは通常時の加熱能力Wの90%程度になると予測し、加熱補正係数αを0.9に決定する。さらに、残湯100Lセンサが55℃未満ならば、残湯量Zは100L未満と判断し(S7)、残湯がほとんどないため、入水温度は低くなり加熱能力Wは小さく抑えられることなく、通常時の加熱能力Wのほぼ100%になると予測し、加熱補正係数α=1.0に決定する(S8)。
ここで、本例では、残湯250Lセンサが60℃を検出しているときの例を示す。
上記より、加熱補正係数αは0.7となる。
【0017】
次に、必要沸き上げ時間Hを次式により計算する(S11)。
H=(A−Z)×(To−Tw)/(860×W×α)
=(370−100)×(90−15)/(860×4.5×0.7)
≒7.48時間≒7時間29分
となる。
【0018】
次に、通電開始時刻Hsを次式により計算する(S12)。
Hs=夜間時間帯終了時刻−H
=(7時00分)−(7時間29分)
=23時31分
となる。
次に、現在時刻がHs(23時31分)になったかを判断し(S13)、現在時刻がHs(23時31分)になると、ヒートポンプに通電を開始して沸き上げを開始(S14)し、加熱動作停止温度センサ5aの温度が予め設定された加熱停止温度以上になったか否か判断し(S15)、加熱停止温度以上になった時点でヒートポンプの通電を停止して沸き上げを停止し(S16)、沸き上げ完了(S17)となる。
【0019】
このように実施の形態1におけるヒートポンプ給湯器では、前記制御手段9は第1及び第2の残湯センサ5b,5cで検出される残湯状態に応じて予測されるヒートポンプの平均加熱能力Woに対応して前記制御手段9の記憶部に記憶された加熱補正係数αを決定して必要沸き上げ時間Hを算出するようにしているので、ヒートポンプ本体6への入水温度が高くなり、ヒートポンプの加熱能力Wが低下した場合でも、夜間時間帯終了時刻付近の特定時間に貯湯タンク2内全量のお湯の沸き上げを完了させることができ、沸き上げ不足の発生を防止できる。
【0020】
実施の形態2.
実施の形態1では、残湯状態から予測されるヒートポンプの平均加熱能力Woに対応して前記制御手段9の記憶部に記憶された加熱補正係数αを決定するようにしたが、残湯状態と沸き上げ設定温度Tから予測されるヒートポンプの平均加熱能力Woに対応して前記制御手段9の記憶部に記憶された加熱補正係数αを決定するようにしてもよく、また、加熱補正係数αをさらに細かく分けてもよい。
このようにすれば、貯湯タンク2内の全量沸き上げを夜間時間帯終了時刻付近の特定時間により精度高く完了させることができ、沸き上げ不足の発生を防止できる。
【0021】
【発明の効果】
以上のように、本発明に係るヒートポンプ給湯器は、ヒートポンプの加熱能力に基づき、必要沸き上げ時間Hを算出し、夜間時間帯の終了時刻付近の特定時間に沸き上げを完了させるよう沸き上げの開始時間を制御する制御手段を備えたヒートポンプ給湯器において、前記制御手段は、その制御用データとして残湯量に対応して加熱補正係数αの値が予め記憶されている記憶部を有し、夜間時間帯の沸き上げ開始前の残湯状態から予測されるヒートポンプの平均加熱能力に対応して前記記憶部に記憶された加熱補正係数αを決定して前記必要沸き上げ時間Hを算出することにより、貯湯タンク内の残湯量が多く、ヒートポンプ本体への入水温度が高くなり、ヒートポンプの加熱能力が低下した場合でも、夜間時間帯終了時刻付近の特定時間に貯湯タンク内全量のお湯の沸き上げを精度よく完了させることができ、沸き上げ不足の発生を防止できるという効果が得られる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1を示すヒートポンプ給湯器の構成図である。
【図2】 本発明の実施の形態1を示す沸き上げ制御動作のフローチャートである。
【図3】 本発明の実施の形態1を示す沸き上げ制御動作のフローチャートである。
【図4】 ヒートポンプ給湯器におけるお湯の上昇温度(沸き上げ設定温度−入水温度)と加熱能力Wの関係を表す図である。
【符号の説明】
1 給湯器本体、2 貯湯タンク、3b 水温センサ、5a 加熱動作停止温度センサ、5b 第1の残湯量センサ、5c 第2の残湯量センサ、6 ヒートポンプ本体、9 制御手段、10 リモコン、18 沸き上げ湯温センサ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump water heater using a heat pump as a heating means.
[0002]
[Prior art]
In conventional hot water storage type electric water heaters, in order to reduce heat dissipation loss and reduce maintenance costs, the boiling time required to boil up to the set boiling temperature is calculated, and boiling is performed at the end of the night time zone. There is one in which energization to the heating element is started from the middle of the night time zone so as to be completed (see, for example, Patent Document 1).
[0003]
Moreover, in the conventional hot water storage type heat pump water heater, there is one in which hot water is stacked and heated from the upper part of the hot water storage tank 5 while adjusting the temperature by controlling the flow rate of the water circulation pump 8 so as to reach a predetermined target temperature. (For example, refer to Patent Document 2).
[0004]
[Patent Document 1]
JP 58-129146 A (2nd page, FIG. 2)
[Patent Document 2]
JP 2002-147846 A (page 3-5, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, in the hot water storage type electric water heater shown in Patent Document 1, since the heating element is a heating means, the heating capacity W is a fixed value, so there is no problem in calculating the required boiling time H. In the heat pump water heater shown in Literature 2, since the heat pump is used as a heating means, the heating capacity W does not become a fixed value, so if the required boiling time H is calculated with the same calculation formula as it is, depending on the situation There is a problem of insufficient boiling.
FIG. 4 is a diagram showing the relationship between the rising temperature of hot water (boiling set temperature−incoming water temperature) and the heating capacity W in the heat pump water heater. As shown in FIG. 4, in the case of a heat pump water heater, particularly when the rising temperature of hot water (boiling set temperature−incoming water temperature) is smaller than a certain value, the heating capacity W of the heat pump decreases. This is because, even if the circulating pump for boiling is set to the maximum flow rate, if the circulating pump is configured with a DC motor or the like, the maximum flow rate cannot be increased so much that the circulating flow rate is inevitably insufficient and the boiling temperature is increased. This is because the control is not performed, and the heating power W is controlled to be small.
Specifically, when the boiling set temperature To = 90 ° C., the incoming water temperature = 60 ° C., and the normal heating capacity W = 4.5 KW,
Circulation flow rate = (860 [Kcal / KWh] x 4.5 [KW]) / ((90 [° C]-60 [° C]) x 60 [min / hour])
= 2.15 [L / min] circulation flow rate is required.
However, if the maximum circulation flow rate is only 2 [L / min] due to the capacity of the circulation pump, the circulation flow rate of 2 [L / min] is insufficient and the boiling temperature becomes high. Control the heating capacity to a low level by reducing the number of machine revolutions.
Therefore, when the required boiling time H is calculated by applying the calculation formula of the hot water storage type electric water heater shown in Patent Document 1 to the heat pump water heater shown in Patent Document 2 as it is, When the temperature rise is smaller than a certain value, the heating capacity W changes small. For example, when the normal heating capacity is calculated at a normal heating capacity of about 3.5 kW, it is calculated with a normal heating capacity W = 4.5 kW. As a result, the boiling start time is delayed more than the actual heating capacity, and the boiling cannot be completed at the end time of the night time zone, resulting in insufficient boiling.
[0006]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat pump water heater that can prevent the occurrence of insufficient boiling.
[0007]
[Means for Solving the Problems]
Hot water storage type water heater according to the present invention is based on the heating capacity of the heat pump, must boiling calculates the time, controlling the start time of the boiling to complete the boiling to a specific time near the nighttime end time control In the heat pump water heater provided with the means, the control means has a storage unit in which the value of the heating correction coefficient α is stored in advance corresponding to the amount of remaining hot water as the control data, and starts boiling at night time also of a is to determine α stored heat correction coefficient you calculate the required boiling time in the storage unit in correspondence with the average heating capacity of the heat pump to be predicted from the previous residual water conditions.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a heat pump type water heater showing Embodiment 1 of the present invention, and FIGS. 2 and 3 are flow charts showing boiling-up control operation in Embodiment 1 of the present invention.
[0009]
In FIG. 1, 1 is a hot water supply body, 2 is a hot water storage tank provided in the main body 1, 3 is a water supply pipe connected to the lower part of the hot water storage tank 2, and 3 a is a pressure reduction provided in the water supply pipe 3. A valve 3b is attached in the middle of the water supply pipe to detect the temperature of the hot water in the hot water tank 2, 4 is a hot water pipe connected to the upper part of the hot water tank 2, 4a is a relief valve, and 5a is the hot water storage. A heating operation stop temperature sensor for detecting a temperature for stopping the heating operation of the heat pump main body 6 when the entire amount of the hot water storage tank 2 is boiled up and attached to the lower pipe of the tank 2, 5 b is a lower part of the hot water storage tank 2. A first remaining hot water amount sensor 5c is attached to the wall surface (position 250L from the top of the tank) and detects the presence or absence of the remaining hot water 250L, and 5c is disposed on the lower wall surface of the hot water storage tank 2 (position 100L from the top of the tank). Ri attached a second remaining hot water sensor for detecting the presence or absence of remaining hot water 100L.
[0010]
Reference numeral 6 denotes a heat pump main body, and reference numeral 7 denotes heat generated in the heat pump cycle of the heat pump main body 6 with water in the hot water storage tank 2, so that the water in the hot water storage tank 2 is exchanged with the heat pump main body 6 by the cold water pipe 8 a and the hot water pipe 8 b. It is a circulation pump that circulates between them. Here, the circulation pump 7 is a DC pump, and the flow rate to be circulated can be adjusted. Water is supplied to the heat pump body 6 by the circulation pump 7 from the cold water pipe 8a connected to the lower part of the hot water tank 2, and the water heated by the heat pump body 6 is returned by the hot water pipe 8b connected to the upper part of the hot water tank 2. 2 Store hot water from the upper part.
[0011]
Reference numeral 9 denotes control means for controlling the boiling of water in the hot water storage tank 2, and the water temperature sensor 3 b, the heating operation stop temperature sensor 5 a, the first and second remaining hot water amount sensors 5 b and 5 c, and inputs from the remote controller 10. Based on the value and the heating capacity of the heat pump, the required boiling time H is calculated, and the heating operation start / stop of the heat pump main body 6 and the circulation pump so that the boiling is completed at a specific time near the end time of the night time zone. 7 operation is controlled.
[0012]
The heat pump cycle of the heat pump main body 6 is configured by sequentially connecting a compressor 11, a hot water supply heat exchanger 12, an expansion valve 13, an evaporator 14, and an accumulator 15 through a refrigerant pipe 16. Here, a fan 17 is provided to absorb heat in the evaporator 14, and the hot water supply heat exchanger 12 exchanges heat between the high pressure gas refrigerant discharged from the compressor 11 and hot water supply water. The refrigerant passage 12b through which the refrigerant flows and the hot water supply water passage 12a through which hot water is supplied are provided. Reference numeral 18 denotes a boiling water temperature sensor for detecting the temperature of hot water returned to the hot water storage tank.
[0013]
A boiling control operation in the case where the boiling set temperature is set to 90 ° C. with the remote controller 10 of the heat pump water heater in Embodiment 1 will be described with reference to the flowcharts of FIGS.
Here, for the sake of explanation, the tank capacity A of the hot water storage tank 2 is 370 L, the maximum heating capacity W of the heat pump is W = 4.5 kW, the boiling set temperature To = 90 ° C., the feed water temperature Tw = 15 ° C., the remaining hot water amount Z = 100L. Further, it is assumed that the control means 9 stores in advance a value of the heating correction coefficient α corresponding to the remaining hot water amount Z shown in Table 1 in a storage unit (not shown) as control data.
[0014]
[Table 1]
Figure 0003966224
[0015]
First, when the boiling control is started (S1), the control means 9 confirms the boiling set temperature To set by the remote controller 10 (S2), confirms the feed water temperature Tw from the detected temperature of the water temperature sensor 3b (S3), From the detected temperatures of the first and second remaining hot water amount sensors 5b and 5c, the current remaining hot water amount Z in the hot water storage tank 2 is confirmed (S4), and the remaining hot water is detected from the detected temperatures of the first and second remaining hot water amount sensors 5b and 5c. Check the temperature (S5).
[0016]
Next, the control means 9 determines the heating correction coefficient α according to Table 1 showing the relationship between the remaining hot water amount Z and the heating correction coefficient α in FIG. 5 according to the remaining hot water state confirmed in S4 and S5.
That is, if the remaining hot water 250L sensor is 55 ° C. or higher, the remaining hot water amount Z is determined to be 250L or higher (S6). If there is a large amount of hot water remaining in the hot water storage tank 2, the incoming water temperature is high. The average heating capacity Wo is predicted to be about 70% of the normal heating capacity W, and the heating correction coefficient α is determined to be 0.7 (S10).
If the remaining hot water 250L sensor is less than 55 ° C and the remaining hot water 100L sensor is 55 ° C or higher, the remaining hot water amount Z is determined to be 100L or higher and lower than 250L (S7), and the incoming water temperature is slightly high, so the heating capacity W is slightly small. The average heating capacity Wo is predicted to be about 90% of the normal heating capacity W, and the heating correction coefficient α is determined to be 0.9. Further, if the remaining hot water 100 L sensor is less than 55 ° C., it is determined that the remaining hot water amount Z is less than 100 L (S 7), and since there is almost no remaining hot water, the incoming water temperature is lowered and the heating capacity W is not kept small. It is predicted that the heating capacity W will be almost 100%, and the heating correction coefficient α = 1.0 is determined (S8).
Here, in this example, an example in which the remaining hot water 250L sensor detects 60 ° C. is shown.
From the above, the heating correction coefficient α is 0.7.
[0017]
Next, the required boiling time H is calculated by the following equation (S11).
H = (A−Z) × (To−Tw) / (860 × W × α)
= (370-100) x (90-15) / (860 x 4.5 x 0.7)
≒ 7.48 hours ≒ 7 hours 29 minutes.
[0018]
Next, the energization start time Hs is calculated by the following equation (S12).
Hs = Night time zone end time-H
= (7:00)-(7 hours 29 minutes)
= 23: 31.
Next, it is determined whether the current time is Hs (23:31) (S13). When the current time is Hs (23:31), energization of the heat pump is started and boiling is started (S14). Then, it is determined whether or not the temperature of the heating operation stop temperature sensor 5a is equal to or higher than a preset heating stop temperature (S15), and when the temperature exceeds the heating stop temperature, energization of the heat pump is stopped and boiling is stopped. (S16), boiling is completed (S17).
[0019]
Thus, in the heat pump water heater in the first embodiment, the control means 9 sets the average heating capacity Wo of the heat pump predicted according to the remaining hot water state detected by the first and second remaining hot water sensors 5b and 5c. Correspondingly, the heating correction coefficient α stored in the storage unit of the control means 9 is determined and the required boiling time H is calculated, so that the temperature of water entering the heat pump body 6 is increased and the heat pump is heated. Even when the capacity W decreases, the boiling of the entire amount of hot water in the hot water storage tank 2 can be completed at a specific time near the end time of the night time zone, and the occurrence of insufficient boiling can be prevented.
[0020]
Embodiment 2. FIG.
In the first embodiment, the heating correction coefficient α stored in the storage unit of the control means 9 is determined corresponding to the average heating capacity Wo of the heat pump predicted from the remaining hot water state. The heating correction coefficient α stored in the storage unit of the control means 9 may be determined corresponding to the average heating capacity Wo of the heat pump predicted from the boiling set temperature T 0 , and the heating correction coefficient α May be further subdivided.
In this way, boiling of the entire amount in the hot water storage tank 2 can be completed with high accuracy by a specific time near the end time of the night time zone, and the occurrence of insufficient boiling can be prevented.
[0021]
【The invention's effect】
As described above, the heat pump water heater according to the present invention calculates the required boiling time H based on the heating capability of the heat pump, and is heated to complete the boiling at a specific time near the end time of the night time zone. In the heat pump water heater provided with the control means for controlling the start time, the control means has a storage unit in which the value of the heating correction coefficient α is stored in advance corresponding to the amount of remaining hot water as the control data, and at night Turkey to calculate the predicted mean in correspondence with heating capability to determine the heat correction coefficient α stored in the storage unit the required boiling time H of the heat pump from boiling before starting the remaining hot water state of the time slot As a result, even if the amount of hot water in the hot water storage tank is large, the temperature of water entering the heat pump body is high, and the heating capacity of the heat pump is reduced, it is stored at a specific time near the end of the night time zone. Boiling of the entire amount of hot water in the hot water tank can be completed with high accuracy, and the effect of preventing the occurrence of insufficient boiling can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a heat pump water heater showing Embodiment 1 of the present invention.
FIG. 2 is a flowchart of a boiling control operation showing the first embodiment of the present invention.
FIG. 3 is a flowchart of a boiling control operation showing the first embodiment of the present invention.
FIG. 4 is a diagram showing a relationship between a rising temperature of hot water (boiling set temperature−water temperature) and a heating capacity W in a heat pump water heater.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water heater main body, 2 Hot water storage tank, 3b Water temperature sensor, 5a Heating operation stop temperature sensor, 5b 1st remaining hot water amount sensor, 5c 2nd remaining hot water amount sensor, 6 Heat pump main body, 9 Control means, 10 Remote control, 18 Boiling Hot water temperature sensor.

Claims (2)

ヒートポンプの加熱能力に基づき、必要沸き上げ時間を算出し、夜間時間帯終了時間付近の特定時間に沸き上げを完了させるよう沸き上げの開始時間を制御する制御手段を備えたヒートポンプ給湯器において、前記制御手段は、その制御用データとして残湯量に対応して加熱補正係数αの値が予め記憶されている記憶部を有し、夜間時間帯の沸き上げ開始前の残湯状態から予測されるヒートポンプの平均加熱能力に対応して前記記憶部に記憶された加熱補正係数αを決定して前記必要沸き上げ時間を算出することを特徴とするヒートポンプ給湯器。Based on the heating capacity of the heat pump, must boiling calculates the time the heat pump water heater which includes a control means for controlling the start time of the boiling to complete the boiling to a specific time near the nighttime end time, the The control means has a storage unit in which the value of the heating correction coefficient α is stored in advance as the control data corresponding to the amount of remaining hot water, and is a heat pump that is predicted from the remaining hot water state before the start of boiling at night time the heat pump water heater average heating capacity to correspondingly determine the heat correction coefficient α stored in the storage unit of the features and Turkey to calculate the required water heating time. ヒートポンプの加熱能力に基づき、必要沸き上げ時間を算出し、夜間時間帯終了時間付近の特定時間に沸き上げを完了させるよう沸き上げの開始時間を制御する制御手段を備えたヒートポンプ給湯器において、前記制御手段は、その制御用データとして残湯量に対応して加熱補正係数αの値が予め記憶されている記憶部を有し、夜間時間帯の沸き上げ開始前の残湯状態と沸き上げ設定温度から予測されるヒートポンプの平均加熱能力に対応して前記記憶部に記憶された加熱補正係数αを決定して前記必要沸き上げ時間を算出することを特徴とするヒートポンプ給湯器。Based on the heating capacity of the heat pump, must boiling calculates the time the heat pump water heater which includes a control means for controlling the start time of the boiling to complete the boiling to a specific time near the nighttime end time, the The control means has a storage unit in which the value of the heating correction coefficient α is stored in advance as the control data corresponding to the amount of remaining hot water, and the remaining hot water state and the boiling preset temperature before the start of boiling in the night time zone the heat pump water heater characterized by a Turkey to calculate the required water heating time to determine the average heat capacity heating stored in the storage unit corresponding correction coefficient of the heat pump to be predicted α from.
JP2003142255A 2003-05-20 2003-05-20 Heat pump water heater Expired - Lifetime JP3966224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142255A JP3966224B2 (en) 2003-05-20 2003-05-20 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142255A JP3966224B2 (en) 2003-05-20 2003-05-20 Heat pump water heater

Publications (3)

Publication Number Publication Date
JP2004347171A JP2004347171A (en) 2004-12-09
JP2004347171A5 JP2004347171A5 (en) 2005-11-24
JP3966224B2 true JP3966224B2 (en) 2007-08-29

Family

ID=33530400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142255A Expired - Lifetime JP3966224B2 (en) 2003-05-20 2003-05-20 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3966224B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893005B2 (en) * 2006-02-07 2012-03-07 パナソニック株式会社 Hot water storage water heater
JP2007211996A (en) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd Hot water storage type water heater
JP4893006B2 (en) * 2006-02-07 2012-03-07 パナソニック株式会社 Hot water storage water heater
JP4893010B2 (en) * 2006-02-10 2012-03-07 パナソニック株式会社 Hot water storage water heater
JP5038729B2 (en) * 2007-01-17 2012-10-03 株式会社コロナ Heat pump water heater
JP5785902B2 (en) * 2012-05-11 2015-09-30 日立アプライアンス株式会社 Water heater

Also Published As

Publication number Publication date
JP2004347171A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP2010091181A (en) Storage water heater and heat pump water heater
JP2009047334A (en) Heat pump type water heater
JP2007327725A (en) Heat pump type water heater
JP4036258B2 (en) Water heater and its boiling-up control method
JP4089501B2 (en) Hot water storage water heater
JP4692180B2 (en) Heat pump water heater
JP3966224B2 (en) Heat pump water heater
JP5038729B2 (en) Heat pump water heater
JP5813980B2 (en) Heat pump bath water heater
JP5401946B2 (en) Hot water storage water heater
JP2007078200A (en) Heat pump water heater
JP4837453B2 (en) Hot water storage hot water supply system
JP3867547B2 (en) Heat pump water heater
JP3801026B2 (en) Heat pump water heater
JP2004150650A (en) Heat pump type hot water supply device
JP5032380B2 (en) Heat pump water heater
JP5887230B2 (en) Hot water storage water heater
JP6247133B2 (en) Heat pump water heater
JP5662235B2 (en) Hot water storage water heater
JP3841030B2 (en) Heat pump type water heater and its boiling control method
JP3840988B2 (en) Heat pump water heater
JP3982453B2 (en) Heat pump water heater
JP2009186070A (en) Storage type hot-water supply device
JP6434216B2 (en) Hot water storage water heater
JP3876738B2 (en) Heat pump type water heater and its boiling control method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R151 Written notification of patent or utility model registration

Ref document number: 3966224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term