JP3965588B2 - Inductive load controller - Google Patents

Inductive load controller Download PDF

Info

Publication number
JP3965588B2
JP3965588B2 JP2005249228A JP2005249228A JP3965588B2 JP 3965588 B2 JP3965588 B2 JP 3965588B2 JP 2005249228 A JP2005249228 A JP 2005249228A JP 2005249228 A JP2005249228 A JP 2005249228A JP 3965588 B2 JP3965588 B2 JP 3965588B2
Authority
JP
Japan
Prior art keywords
contact
field effect
effect transistor
power source
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005249228A
Other languages
Japanese (ja)
Other versions
JP2007068286A (en
Inventor
鄭其原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiwin Mikrosystem Corp
Original Assignee
Hiwin Mikrosystem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiwin Mikrosystem Corp filed Critical Hiwin Mikrosystem Corp
Priority to JP2005249228A priority Critical patent/JP3965588B2/en
Publication of JP2007068286A publication Critical patent/JP2007068286A/en
Application granted granted Critical
Publication of JP3965588B2 publication Critical patent/JP3965588B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Direct Current Motors (AREA)

Description

本発明は、誘導性ロード制御装置に係り、特に、一般の誘導性ロード(例えばモータや直流電動機など)に応用され、スイッチの作動による火花の影響を回避でき、且つリレースイッチの制御接点の寿命と信頼性とを向上できる誘導性ロード制御装置に関するものである。   The present invention relates to an inductive load control device, and in particular, is applied to a general inductive load (for example, a motor or a DC motor), can avoid the influence of a spark due to the operation of a switch, and the life of a control contact of a relay switch. The present invention relates to an inductive load control device that can improve reliability and reliability.

目下、一般の市販している誘導性ロード(例えばモータや直流電動機など)の制御システムは、図1に示すように(米国特許US6,487,062 B1号)、リレー11が磁気励起コイルに電源を供給するときに、リレースイッチ13の金属弾性片134は接点132から接点133に移動して、接点131と接点133とが導通状態になり、このとき、直流電源15の電力は陽極端から、リレー11の接点133と、金属弾性片134と、接点131とを経由して誘導性ロード10に電力を供給して、リレー12のリレースイッチ13aの接点131aと、金属弾性片134aと、接点132aとを経由して電界効果形トランジスタ14を介して直流電源15に回流し、このとき、電界効果形トランジスタ14のゲート端に導通電圧を提供することも必要であり、導通電圧によって誘導性ロード10を制御すると、正方向へ流動する回路が形成される。   At present, as shown in FIG. 1 (US Pat. No. 6,487,062 B1), a control system for a general commercially available inductive load (for example, a motor or a DC motor) supplies power to a magnetic excitation coil. When this occurs, the metal elastic piece 134 of the relay switch 13 moves from the contact 132 to the contact 133, and the contact 131 and the contact 133 become conductive. At this time, the power of the DC power supply 15 is supplied from the anode end to the relay 11. Power is supplied to the inductive load 10 via the contact 133, the metal elastic piece 134, and the contact 131, and the contact 131a of the relay switch 13a of the relay 12, the metal elastic piece 134a, and the contact 132a are connected. Via the field effect transistor 14 to the DC power supply 15, and at this time, it is also necessary to provide a conduction voltage to the gate terminal of the field effect transistor 14. , And the by controlling the inductive load 10 by conduction voltage, the circuit to flow in the forward direction is formed.

逆に、リレー12が磁気励起コイルに電源を供給するときに、リレースイッチ13aの金属弾性片134aは接点132aから接点133aに移動して、接点131aと接点133aとが導通状態になり、このとき、直流電源15の電力は、リレー12のリレースイッチ13aの接点133aと、金属弾性片134aと、接点131aとを経由して誘導性ロード10に電力を供給して、リレー11のリレースイッチ13の接点131と、金属弾性片134と、接点132とを経由して電界効果形トランジスタ14を介して直流電源15に回流し、このとき、電界効果形トランジスタ14のゲート端に導通電圧を提供することも必要であり、導通電圧によって誘導性ロード10を制御すると、逆方向へ流動する回路が形成される。
Conversely, when the relay 12 supplies power to the magnetic excitation coil, the metal elastic piece 134a of the relay switch 13a moves from the contact 132a to the contact 133a, and the contact 131a and the contact 133a become conductive. The power of the DC power supply 15 is supplied to the inductive load 10 via the contact 133a of the relay switch 13a of the relay 12, the metal elastic piece 134a, and the contact 131a, and the relay switch 13 of the relay 11 The current flows through the contact 131, the metal elastic piece 134, and the contact 132 to the DC power source 15 via the field effect transistor 14, and at this time, a conduction voltage is provided to the gate terminal of the field effect transistor 14. If the inductive load 10 is controlled by the conduction voltage, a circuit that flows in the opposite direction is formed.

しかしながら、これは次のような欠点があった。   However, this has the following drawbacks.

(1)従来の制御方法は、リレー11又はリレー12に予定の磁気励起電圧を提供した後、電界効果形トランジスタ14のゲート端に制御電圧が始めて提供できるようになり、そうすると、制御回路全体が複雑になり、生産コストが向上する。 (1) In the conventional control method, after a predetermined magnetic excitation voltage is provided to the relay 11 or the relay 12, a control voltage can be provided to the gate terminal of the field effect transistor 14 for the first time. Complexity increases production costs.

(2)電界効果形トランジスタ14のゲート端に制御電圧を形成することが必要であるが、この制御電圧は回路が異常原因に影響されて先に発生することがよくあり、リレー11又はリレー12の磁気励起電圧がその直後に発生される場合には、リレー11又はリレー12の接点133又は接点133aは誘導性ロード10を駆動することによる瞬間電流により損壊し易い。 (2) Although it is necessary to form a control voltage at the gate terminal of the field effect transistor 14, this control voltage is often generated first because the circuit is affected by the cause of the abnormality. If the magnetic excitation voltage is generated immediately after that, the contact 133 or the contact 133a of the relay 11 or the relay 12 is easily damaged by the instantaneous current generated by driving the inductive load 10.

(3)図1に示すように、使用者はリレー11とリレー12とが電界効果形トランジスタ14よりも先に動作する制御システムを別に増設することが必要であり、且つ電界効果形トランジスタ14の駆動は部品で時間を遅延することが必要であるが、その制御は難しい。 (3) As shown in FIG. 1, the user needs to add another control system in which the relay 11 and the relay 12 operate before the field effect transistor 14, and the field effect transistor 14 The drive needs to be delayed by parts, but it is difficult to control.

(4)リレー11とリレー12とは同時に動作する場合には、本来にロードに流入する電流がリレー11,12のリレースイッチ13,13aの接点に火花を発生し、これにより、接点が損壊し易い。 (4) When the relay 11 and the relay 12 operate at the same time, the current that originally flows into the load generates a spark at the contacts of the relay switches 13 and 13a of the relays 11 and 12, and this damages the contacts. easy.

本発明の主な目的は、制御がもっと簡単になり、製造コストが低減できる誘導性ロード制御装置を提供する。   The main object of the present invention is to provide an inductive load control device that is simpler to control and can reduce manufacturing costs.

本発明の次の目的は、オン・オフする際に火花の発生を回避でき、回路の信頼性が向上し、部品の使用寿命が向上する誘導性ロード制御装置を提供する。   Another object of the present invention is to provide an inductive load control device that can avoid the occurrence of sparks when turning on and off, improve circuit reliability, and improve the service life of components.

本発明の他の目的は、リレーの接点を有効に保護し、リレーの接点の使用寿命および信頼性が向上できる誘導性ロード制御装置を提供する。
Another object of the present invention is to provide an inductive load control device that can effectively protect relay contacts and improve the service life and reliability of the relay contacts.

上記目的を達成するためになされた本願の第1発明は、電源と、第一制御組と、第二制御組と、誘導性ロードとを含む誘導性ロード制御装置において、前記電源は、陽極端と陰極端とを有し、前記第一制御組は、前記電源と直列接続し、リレースイッチと、リレーと、一つの電界効果形トランジスタとから構成され、前記リレースイッチは一つの共通接点と片状バネとにより経常オフ接点と経常オン接点とを形成し、前記共通接点は電源と接続し、磁気制御片状バネが前記リレーに制御されて経常オフ接点または経常オン接点に定位され、且つ前記経常オン接点を電界効果形トランジスタのゲート端に接続し、前記経常オフ接点を電界効果形トランジスタのドレーン端に接続し、前記電界効果形トランジスタのソース端を電源と接続し、前記第二制御組は、前記電源と直列接続し、且つ第一制御組と並列接続にし、リレースイッチと、リレーと、一つの電界効果形トランジスタとから構成され、前記リレースイッチは一つの共通接点と片状バネとにより経常オフ接点と経常オン接点とを形成し、前記共通接点は電源と接続し、磁気制御片状バネが前記リレーに制御されて経常オフ接点または経常オン接点に定位され、且つ前記経常オン接点を電界効果形トランジスタのゲート端に接続し、前記経常オフ接点を電界効果形トランジスタのドレーン端に接続し、前記電界効果形トランジスタのソース端を電源と接続し、前記誘導性ロードは、第一制御組のリレースイッチの経常オフ接点と、第二制御組のリレースイッチの経常オフ接点とを接続することを特徴とする誘導性ロード制御装置であることを要旨としている。   In order to achieve the above object, a first invention of the present application is an inductive load control device including a power source, a first control group, a second control group, and an inductive load. The first control group is connected in series with the power source, and includes a relay switch, a relay, and one field effect transistor, and the relay switch has one common contact and one piece. A common spring is connected to a power source, a magnetically controlled strip spring is controlled by the relay and localized to a normal off contact or a normal on contact, and A current-on contact is connected to a gate end of a field-effect transistor, the current-off contact is connected to a drain end of the field-effect transistor, a source end of the field-effect transistor is connected to a power source, and The two control groups are connected in series with the power source and in parallel with the first control group, and are composed of a relay switch, a relay, and one field effect transistor, and the relay switch has one common contact and one piece. A common spring is connected to a power source, a magnetically controlled strip spring is controlled by the relay and localized to a normal off contact or a normal on contact, and An ordinary on contact is connected to a gate end of a field effect transistor, the ordinary off contact is connected to a drain end of the field effect transistor, a source end of the field effect transistor is connected to a power source, and the inductive load is An inductive load control device characterized by connecting a current-off contact of a relay switch of a first control group and a current-off contact of a relay switch of a second control group It is summarized in that it.

本願の第2発明では、前記第一制御組のリレースイッチは共通接点で電源の陽極端と接続し、前記電界効果形トランジスタはNタイプであり、且つNタイプ電界効果形トランジスタのソース端が電源の陰極端と接続し、前記第二制御組のリレースイッチは共通接点で電源の陽極端と接続し、前記電界効果形トランジスタはNタイプであり、且つNタイプ電界効果形トランジスタのソース端が電源の陰極端と接続することを特徴とする本願の第1発明に記載の誘導性ロード制御装置であることを要旨としている。   In the second invention of the present application, the relay switch of the first control group is connected to the anode end of the power source through a common contact, the field effect transistor is N type, and the source end of the N type field effect transistor is the power source. The relay switch of the second control group is connected to the anode end of the power source through a common contact, the field effect transistor is N type, and the source end of the N type field effect transistor is the power source The gist of the present invention is the inductive load control device according to the first aspect of the present invention, characterized in that the inductive load control device is connected to the cathode end of the present invention.

本願の第3発明では、前記第一制御組のリレースイッチは共通接点で電源の陰極端と接続し、前記電界効果形トランジスタはPタイプであり、且つPタイプ電界効果形トランジスタのソース端が電源の陽極端と接続し、前記第二制御組のリレースイッチは共通接点で電源の陰極端と接続し、前記電界効果形トランジスタはPタイプであり、且つPタイプ電界効果形トランジスタのソース端が電源の陽極端と接続することを特徴とする本願の第1発明に記載の誘導性ロード制御装置であることを要旨としている。   In the third invention of the present application, the relay switch of the first control group is connected to the cathode end of the power source through a common contact, the field effect transistor is P type, and the source end of the P type field effect transistor is the power source. The relay switch of the second control group is connected to the cathode end of the power source through a common contact, the field effect transistor is P type, and the source end of the P type field effect transistor is the power source The gist of the present invention is the inductive load control device according to the first invention of the present application, characterized in that it is connected to the anode end.

本願の第4発明では、前記誘導性ロードはモータであることを特徴とする請半眼の第1発明乃至第3発明の何れかに記載の誘導性ロード制御装置であることを要旨としている。   The gist of the fourth invention of the present application is the inductive load control device according to any one of the first to third inventions of the half-eye, wherein the inductive load is a motor.

本願の第5発明では、前記モータはリニアアクチュエータの機構制御装置に応用されることを特徴とする本願の第4発明に記載の誘導性ロード制御装置であることを要旨としている。
The fifth invention of the present application is summarized as the inductive load control device according to the fourth invention of the present application, wherein the motor is applied to a mechanism control device of a linear actuator.

本発明に係る誘導性ロード制御装置によれば、制御がもっと簡単になり、製造コストが低減でき、オン・オフする際に火花の発生を回避でき、回路の信頼性が向上し、部品の使用寿命が向上し、且つリレーの接点を有効に保護し、リレーの接点の使用寿命および信頼性が向上できる。
According to the inductive load control device according to the present invention, the control becomes simpler, the manufacturing cost can be reduced, the occurrence of sparks when turning on / off can be avoided, the reliability of the circuit is improved, and the use of parts The service life is improved, the relay contacts are effectively protected, and the service life and reliability of the relay contacts can be improved.

以下、添付図面を参照して本発明の好適な実施の形態を詳細に説明する。   Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

本発明に係る誘導性ロード制御装置の第一実施例は、Nタイプ電界効果形トランジスタを使用し、図2に示すように、その回路は、電源20と、抵抗21と、第一制御組30と、第二制御組40と、誘導性ロード50(図2参照)とを含む。   The first embodiment of the inductive load control device according to the present invention uses an N-type field effect transistor. As shown in FIG. 2, the circuit includes a power supply 20, a resistor 21, and a first control set 30. And a second control set 40 and an inductive load 50 (see FIG. 2).

前記電源20は、回路に組み付けられ、陽極端20aと陰極端20bとを有する。   The power source 20 is assembled in a circuit and has an anode end 20a and a cathode end 20b.

前記抵抗21は、電流を検出するためのものであり、電源20の陰極端20bと直列接続する。   The resistor 21 is for detecting current, and is connected in series with the cathode end 20 b of the power supply 20.

前記第一制御組30は、前記電源20の陽極端20aと抵抗21との間に直列接続され、リレースイッチ31と、リレー32と、一つの電界効果形トランジスタ33と、ダイオード34とから構成され、電界効果形トランジスタ33はNタイプであり、前記リレースイッチ31は一つの共通接点311と片状バネ35とにより経常オフ接点312と経常オン接点313とを形成し、前記共通接点311は電源20の陽極端20aと接続し、前記リレー32は、磁気制御片状バネ35を制御し、前記経常オン接点313を電界効果形トランジスタ33のゲート端33aに接続し、前記経常オフ接点312を電界効果形トランジスタ33のドレーン端33bに接続し、前記電界効果形トランジスタ33のソース端33cを抵抗21と接続し、リレースイッチ31の共通接点311と経常オフ接点312とにダイオード34の両端をそれぞれ接続することにより、完備な回路が形成される。   The first control set 30 is connected in series between the anode end 20a of the power source 20 and the resistor 21, and includes a relay switch 31, a relay 32, a single field effect transistor 33, and a diode 34. The field effect transistor 33 is an N type, and the relay switch 31 forms a current-off contact 312 and a current-on contact 313 by one common contact 311 and a piece spring 35, and the common contact 311 is a power source 20. The relay 32 controls the magnetic control strip spring 35, connects the current-on contact 313 to the gate end 33a of the field effect transistor 33, and connects the current-off contact 312 to the field effect transistor 312. Connected to the drain end 33b of the transistor 33, the source end 33c of the field effect transistor 33 is connected to the resistor 21, By connecting common contact 311 and current-off contacts 312 and across diode 34 a respective switch 31, equipped circuits are formed.

前記第二制御組40は、前記電源20の陽極端20aと抵抗21との間に直列接続され、且つ第一制御組30と並列接続にし、リレースイッチ41と、リレー42と、一つの電界効果形トランジスタ43と、一つのダイオード44とから構成され、電界効果形トランジスタ43はNタイプであり、前記リレースイッチ41は一つの共通接点411と片状バネ45とにより経常オフ接点412と経常オン接点413とを形成し、前記共通接点411は電源20の陽極端20aと接続し、前記リレー42は、磁気制御片状バネ45を制御し、前記経常オン接点413を電界効果形トランジスタ43のゲート端43aに接続し、前記経常オフ接点412を電界効果形トランジスタ43のドレーン端43bに接続し、前記電界効果形トランジスタ43のソース端43cをを抵抗21と接続し、リレースイッチ41の共通接点411と経常オフ接点412とにダイオード44の両端をそれぞれ接続することにより、完備な回路が形成される。   The second control set 40 is connected in series between the anode end 20a of the power source 20 and the resistor 21, and is connected in parallel with the first control set 30, and includes a relay switch 41, a relay 42, and one field effect. The field effect transistor 43 is an N type, and the relay switch 41 includes a common contact 411 and a piece-like spring 45, and a current-off contact 412 and a current-on contact. 413, the common contact 411 is connected to the anode end 20a of the power source 20, the relay 42 controls the magnetic control strip spring 45, and the current-on contact 413 is connected to the gate end of the field effect transistor 43. 43a, the current-off contact 412 is connected to the drain end 43b of the field effect transistor 43, and the field effect transistor 43 Connect the source terminal 43c and the resistor 21, by connecting the common contact 411 and current-off contacts 412 and both ends of the diode 44 each relay switch 41, equipped circuits are formed.

前記誘導性ロード50は、モータであり、その両端がリレースイッチ31の経常オフ接点312と、リレースイッチ41の経常オフ接点412とに接続し、且つ誘導性ロード50の両端がダイオード34とダイオード44とにそれぞれ接続する状態になる。   The inductive load 50 is a motor, and both ends thereof are connected to a current-off contact 312 of the relay switch 31 and a current-off contact 412 of the relay switch 41, and both ends of the inductive load 50 are a diode 34 and a diode 44. It will be in the state of connecting to each.

本発明に係る誘導性ロード制御装置の第二実施例は、Pタイプ電界効果形トランジスタを使用し、図3に示すように、その電源20と、抵抗21と、第一制御組30と、第二制御組40と、誘導性ロード50とのレーアウトは第一実施例と同様であり、電界効果形トランジスタ33,43はPタイプであり、だが、第一制御組30と第二制御組40とのレーアウトが第一実施例と逆であり、そうすると、第一実施例に対照すると、共通接点411,311が逆で抵抗21と接続し、電界効果形トランジスタ33,43のソース端33c,43cも逆で電源20の陽極端20aと接続する。   A second embodiment of the inductive load control device according to the present invention uses a P-type field effect transistor, and as shown in FIG. 3, its power source 20, resistor 21, first control set 30, The layout of the two control group 40 and the inductive load 50 is the same as that of the first embodiment, and the field effect transistors 33 and 43 are P type, but the first control group 30 and the second control group 40 Therefore, in contrast to the first embodiment, the common contacts 411 and 311 are connected to the resistor 21 in reverse, and the source ends 33c and 43c of the field effect transistors 33 and 43 are also connected. On the contrary, the power source 20 is connected to the anode end 20a.

本発明に係るNタイプ電界効果形トランジスタ33,43のゲート端33a,43aは、リレースイッチ31の経常オン接点313と、リレースイッチ41の経常オン接点413とにそれぞれ接続し、これにより、Nタイプ電界効果形トランジスタ33,43の起動信号を制御し、一方、本発明に係る第二実施例は、図3に示すように、Nタイプ電界効果形トランジスタの代りにPタイプ電界効果形トランジスタを採用し、且つ第一制御組30および第二制御組40を逆に設置し、これにより、Nタイプ電界効果形トランジスタのプラス電圧起動システムがPタイプ電界効果形トランジスタのマイナス電圧起動システムに転換された。   The gate terminals 33a and 43a of the N-type field effect transistors 33 and 43 according to the present invention are connected to the current-on contact 313 of the relay switch 31 and the current-on contact 413 of the relay switch 41, respectively. The start signal of the field effect transistors 33 and 43 is controlled, while the second embodiment according to the present invention adopts a P type field effect transistor instead of an N type field effect transistor, as shown in FIG. In addition, the first control group 30 and the second control group 40 are installed in reverse so that the positive voltage starting system of the N type field effect transistor is converted to the negative voltage starting system of the P type field effect transistor. .

まず、第一実施例について説明する。第二制御組40のリレー42のコイルが励起された後、リレースイッチ41の片状バネ45が移動され、すなわち、片状バネ45は経常オフ接点412から経常オン接点413に移動し、このとき、共通接点411と経常オン接点413とが導通状態になると共に、電源20はNタイプ電界効果形トランジスタ43のゲート端43aにプラス電圧を供給し、そうすると、Nタイプ電界効果形トランジスタ43のドレーン端43bとソース端43cとが導通状態になる。   First, the first embodiment will be described. After the coil of the relay 42 of the second control group 40 is excited, the piece spring 45 of the relay switch 41 is moved, that is, the piece spring 45 is moved from the current OFF contact 412 to the current ON contact 413. The common contact 411 and the normally-on contact 413 become conductive, and the power supply 20 supplies a positive voltage to the gate terminal 43a of the N-type field effect transistor 43, so that the drain terminal of the N-type field effect transistor 43 is supplied. 43b and the source end 43c become conductive.

このとき、電源20は陽極端20aから第一制御組30のリレースイッチ31の共通接点311へ流して、且つリレースイッチ31の片状バネ35が経常オフ接点312に位置されるので、電流が誘導性ロード50に流入して誘導性ロード50を駆動し、本実施例では、本発明の誘導性ロード50はモータであり、そして電流は、誘導性ロード50の他端から、第二制御組40のNタイプ電界効果形トランジスタ43のドレーン端43bを経由して、ソース端43cを経て電流を検出ための抵抗21に流入して、最後に電源20の陰極端20bに戻って電流回路を形成し、誘導性ロード50(モータ)が正方向の運転を開始する。   At this time, the power source 20 flows from the anode end 20a to the common contact 311 of the relay switch 31 of the first control group 30, and the half spring 35 of the relay switch 31 is positioned at the current-off contact 312. In this embodiment, the inductive load 50 is a motor, and the current is supplied from the other end of the inductive load 50 to the second control set 40. Through the drain end 43b of the N-type field effect transistor 43, the current flows through the source end 43c to the resistor 21 for detecting current, and finally returns to the cathode end 20b of the power source 20 to form a current circuit. The inductive load 50 (motor) starts operation in the positive direction.

本発明は電流回路を有効に構成するので、通過する電流が抵抗21で検出することができ、且つ抵抗21の両端から電圧値を読み出し、前記電圧値はロードを流通する電流量を監視することができ、且つ電流を制限し又は制御する目的を達成することもできる。   Since the present invention effectively configures the current circuit, the passing current can be detected by the resistor 21, and the voltage value is read from both ends of the resistor 21, and the voltage value monitors the amount of current flowing through the load. And the purpose of limiting or controlling the current can be achieved.

同様のように、本発明に係る第一実施例の第一制御組30のリレー32のコイルが励起された後、リレースイッチ31の片状バネ35が移動され、すなわち、片状バネ35は経常オフ接点312から経常オン接点313に移動し、このとき、共通接点311と経常オン接点313とが導通状態になると共に、電源20はNタイプ電界効果形トランジスタ33のゲート端33aにプラス電圧を供給し、そうすると、Nタイプ電界効果形トランジスタ33のドレーン端33bとソース端33cとが導通状態になる。   Similarly, after the coil of the relay 32 of the first control set 30 of the first embodiment according to the present invention is excited, the piece spring 35 of the relay switch 31 is moved, that is, the piece spring 35 is normal. The common contact 311 and the normal on contact 313 are brought into conduction, and the power source 20 supplies a positive voltage to the gate terminal 33a of the N-type field effect transistor 33. Then, the drain end 33b and the source end 33c of the N-type field effect transistor 33 become conductive.

このとき、電源20は陽極端20aから第二制御組40のリレースイッチ41の共通接点411へ流して、且つリレースイッチ41の片状バネ45が経常オフ接点412に位置されるので、電流が上記と逆の方向に誘導性ロード50に流入して誘導性ロード50を駆動し、そして電流は、誘導性ロード50の他端から、第一制御組30のNタイプ電界効果形トランジスタ33のドレーン端33bを経由して、ソース端33cを経て電流を検出ための抵抗21に流入して、最後に電源20の陰極端20bに戻って電流回路を形成し、誘導性ロード50(モータ)が逆方向の運転を開始する。   At this time, the power source 20 flows from the anode end 20a to the common contact 411 of the relay switch 41 of the second control group 40, and the half spring 45 of the relay switch 41 is positioned at the normal-off contact 412. Flows into the inductive load 50 in the opposite direction to drive the inductive load 50, and the current flows from the other end of the inductive load 50 to the drain end of the N-type field effect transistor 33 of the first control group 30. The current flows into the resistor 21 for detecting the current via the source end 33c via the source 33b, and finally returns to the cathode end 20b of the power source 20 to form a current circuit. The inductive load 50 (motor) is in the reverse direction. Start driving.

次に、第二実施例について説明する。第二制御組40のリレー42のコイルが励起された後、リレースイッチ41の片状バネ45が移動され、すなわち、片状バネ45は経常オフ接点412から経常オン接点413に移動し、このとき、共通接点411と経常オン接点413とが導通状態になると共に、電源20はPタイプ電界効果形トランジスタ43のゲート端43aにマイナス電圧を供給し、そうすると、Pタイプ電界効果形トランジスタ43のドレーン端43bとソース端43cとが導通状態になる。   Next, a second embodiment will be described. After the coil of the relay 42 of the second control group 40 is excited, the piece spring 45 of the relay switch 41 is moved, that is, the piece spring 45 is moved from the current OFF contact 412 to the current ON contact 413. The common contact 411 and the normally-on contact 413 become conductive, and the power supply 20 supplies a negative voltage to the gate terminal 43a of the P-type field effect transistor 43, so that the drain terminal of the P-type field effect transistor 43 43b and the source end 43c become conductive.

このとき、電源20は第二制御組40のPタイプ電界効果形トランジスタ43を通過して、誘導性ロード50に流入して誘導性ロード50を駆動し、誘導性ロード50を経由した電流は、第一制御組30のリレースイッチ31の経常オフ接点312と共通接点311とを経由して、電流を検出ための抵抗21に流入して、最後に電源20に戻って電流回路を形成し、誘導性ロード50が正方向の運転を開始する。   At this time, the power source 20 passes through the P-type field effect transistor 43 of the second control set 40 and flows into the inductive load 50 to drive the inductive load 50. The current passing through the inductive load 50 is The current flows into the resistance 21 for detecting the current via the current-off contact 312 and the common contact 311 of the relay switch 31 of the first control group 30, and finally returns to the power source 20 to form a current circuit, which leads to induction. The load 50 starts to operate in the positive direction.

同様のように、本発明に係る第一制御組30のリレー32のコイルが励起された後、リレースイッチ31の片状バネ35が移動され、すなわち、片状バネ35は経常オフ接点312から経常オン接点313に移動し、このとき、共通接点311と経常オン接点313とが導通状態になると共に、電源20はPタイプ電界効果形トランジスタ33のゲート端33aにマイナス電圧を供給し、そうすると、Pタイプ電界効果形トランジスタ33のドレーン端33bとソース端33cとが導通状態になる。   Similarly, after the coil of the relay 32 of the first control set 30 according to the present invention is energized, the piece spring 35 of the relay switch 31 is moved, that is, the piece spring 35 is recurrent from the ordinary off contact 312. At this time, the common contact 311 and the recurrent on contact 313 become conductive, and the power supply 20 supplies a negative voltage to the gate terminal 33a of the P-type field effect transistor 33. The drain end 33b and the source end 33c of the type field effect transistor 33 become conductive.

このとき、電源20の電流は、Nタイプ電界効果形トランジスタ33を経由した後、誘導性ロード50を逆方向に駆動して、誘導性ロード50を経由した電流は、第二制御組40の経常オフ接点412を経由して、片状バネ45によって共通接点411を経由して、電流を検出ための抵抗21に流入して、最後に電源20に戻って電流回路を形成し、誘導性ロード50が逆方向の運転を開始する。   At this time, the current of the power source 20 passes through the N-type field effect transistor 33 and then drives the inductive load 50 in the reverse direction. The current passing through the inductive load 50 is the current of the second control group 40. The current flows into the resistor 21 for detecting the current via the common contact 411 by the single spring 45 via the off contact 412, and finally returns to the power supply 20 to form a current circuit, thereby forming the inductive load 50. Starts driving in the opposite direction.

本発明の制御原理は、リレーと電界効果形トランジスタとの組合により、電界効果形トランジスタのオン・オフは火花の発生を回避でき、また、本発明の他組のリレーのリレースイッチは経常オフ形態であるので、火花による接点の損壊は回避できる。   The control principle of the present invention is that a combination of a relay and a field effect transistor allows the on / off of the field effect transistor to avoid the occurrence of a spark, and the relay switch of the other set of relays of the present invention has a normally off configuration. Therefore, damage to the contact due to sparks can be avoided.

そのうちの一組のリレースイッチが誘導性ロード50を駆動して運転させるときに、他組のリレースイッチが同時に動作すれば、二組の電界効果形トランジスタは同時に導通になり、このとき、誘導性ロードの前に充電された電流はこの二組の電界効果形トランジスタが導通された瞬間に放電し、実体の接点はないので、リレーの接点は保護され使用寿命が向上し、誤作動によるリレーの故障も防止できる。   When one set of relay switches drives and drives the inductive load 50, and the other set of relay switches operate simultaneously, the two sets of field effect transistors are turned on at the same time. The current charged before the load is discharged at the moment when the two field effect transistors are turned on, and there is no actual contact, so the relay contact is protected and the service life is improved. Failure can also be prevented.

本発明に係るダイオード34,44の両端がリレースイッチの共通接点と経常オフ接点とにそれぞれ接続するので、リレーのコイルへの電流供給が停止する時点では、誘導性ロード50内に貯蔵されたエネルギーは、ダイオード34,44を介して電源20へ流動して、各リレースイッチの共通接点に流入し、電流回路を形成し、貯蔵されたエネルギーを消耗し、このとき、リレースイッチの何れか一つの開放になる接点のエネルギーも即時にダイオード34,44によって消耗し、だから、リレースイッチの共通接点411,311には火花が発生しなく、接点を保護する目的が達成される(逆回転時の原理も同様)。   Since both ends of the diodes 34 and 44 according to the present invention are respectively connected to the common contact and the normally-off contact of the relay switch, when the current supply to the relay coil stops, the energy stored in the inductive load 50 is stored. Flows to the power source 20 through the diodes 34 and 44, flows into the common contact of each relay switch, forms a current circuit, and consumes the stored energy. At this time, any one of the relay switches The energy of the contact to be opened is also immediately consumed by the diodes 34 and 44, so that no spark is generated at the common contacts 411 and 311 of the relay switch, and the purpose of protecting the contact is achieved (the principle of reverse rotation) The same).

本発明は、第一制御組30と第二制御組40とによって電界効果形トランジスタ33,43を先に作動させ、使用者は、リレーを作動した後、遅延時間を待って電界効果形トランジスタを起動する必要がなく、制御はもっと簡単になり、製造コストが低減でき、一方、本発明は、二つの電界効果形トランジスタのゲート端と、二つのリレースイッチの経常オフ接点とを接続する方法により、二組のリレーが作動するときには、ロードで発生した電流が電界効果形トランジスタの内部に流動し、リレーの接点では火花が発生しなく、だから、接点の火花による損壊を防止でき、回路の信頼性と部品の使用寿命は向上する。
In the present invention, the field effect transistors 33 and 43 are first activated by the first control group 30 and the second control group 40, and the user activates the field effect transistors after waiting for a delay time after the relay is activated. There is no need to start up, control is simpler and manufacturing costs can be reduced, while the present invention is based on the method of connecting the gate ends of two field effect transistors and the normally-off contacts of two relay switches. When two sets of relays are activated, the current generated by the load flows inside the field-effect transistor, and no spark is generated at the contact of the relay. Therefore, damage due to the spark of the contact can be prevented, and the circuit reliability can be prevented. And service life of parts are improved.

従来の回路概略図である。It is the conventional circuit schematic. 本発明に係る第一実施例のシステム図である。1 is a system diagram of a first embodiment according to the present invention. 本発明に係る第二実施例のシステム図である。It is a system diagram of the second embodiment according to the present invention.

符号の説明Explanation of symbols

10 誘導性ロード
11,12 リレー
13,13a リレースイッチ
131,131a 共通接点
132,132a 経常オフ接点
133,133a 経常オン接点
134,134a 金属弾性片
14 電界効果形トランジスタ
15 直流電源 20a 陽極端
20b 陰極端 21 抵抗
30 第一制御組 31 リレースイッチ
311 共通接点 312 経常オフ接点
313 経常オン接点 32 リレー
33 電界効果形トランジスタ 33a ゲート端
33b ドレーン端 33c ソース端
34 ダイオード 35 片状バネ
40 第二制御組 41 リレースイッチ
411 共通接点 412 経常オフ接点
413 経常オン接点 42 リレー
43 電界効果形トランジスタ 43a ゲート端
43b ドレーン端 43c ソース端
44 ダイオード 45 片状バネ
50 誘導性ロード
DESCRIPTION OF SYMBOLS 10 Inductive load 11,12 Relay 13,13a Relay switch 131,131a Common contact 132,132a Current off contact 133,133a Current on contact 134,134a Metal elastic piece 14 Field effect transistor 15 DC power supply 20a Anode end 20b Cathode end 21 resistor 30 first control group 31 relay switch 311 common contact 312 current-off contact 313 current-on contact 32 relay 33 field effect transistor 33a gate end 33b drain end 33c source end 34 diode 35 piece spring 40 second control group 41 relay Switch 411 Common contact 412 Ordinary off contact 413 Ordinary on contact 42 Relay 43 Field effect transistor 43a Gate end 43b Drain end 43c Source end 44 Diode 45 Strip spring 50 Inductive load

Claims (5)

電源と、第一制御組と、第二制御組と、誘導性ロードとを含む誘導性ロード制御装置において、
前記電源は、陽極端と陰極端とを有し、
前記第一制御組は、前記電源と直列接続し、リレースイッチと、リレーと、一つの電界効果形トランジスタとから構成され、前記リレースイッチは一つの共通接点と片状バネとにより経常オフ接点と経常オン接点とを形成し、前記共通接点は電源と接続し、磁気制御片状バネが前記リレーに制御されて経常オフ接点または経常オン接点に定位され、且つ前記経常オン接点を電界効果形トランジスタのゲート端に接続し、前記経常オフ接点を電界効果形トランジスタのドレーン端に接続し、前記電界効果形トランジスタのソース端を電源と接続し、
前記第二制御組は、前記電源と直列接続し、且つ第一制御組と並列接続にし、リレースイッチと、リレーと、一つの電界効果形トランジスタとから構成され、前記リレースイッチは一つの共通接点と片状バネとにより経常オフ接点と経常オン接点とを形成し、前記共通接点は電源と接続し、磁気制御片状バネが前記リレーに制御されて経常オフ接点または経常オン接点に定位され、且つ前記経常オン接点を電界効果形トランジスタのゲート端に接続し、前記経常オフ接点を電界効果形トランジスタのドレーン端に接続し、前記電界効果形トランジスタのソース端を電源と接続し、
前記誘導性ロードは、第一制御組のリレースイッチの経常オフ接点と、第二制御組のリレースイッチの経常オフ接点とに接続することを特徴とする、
誘導性ロード制御装置。
In an inductive load control device including a power source, a first control group, a second control group, and an inductive load,
The power source has an anode end and a cathode end,
The first control group is connected in series with the power source, and includes a relay switch, a relay, and one field effect transistor, and the relay switch includes a common contact and a single spring and a current-off contact. An ordinary on-contact, the common contact is connected to a power source, a magnetically controlled leaf spring is controlled by the relay, and is localized to an ordinary-off contact or an ordinary-on contact, and the ordinary-on-contact is a field effect transistor The current-off contact is connected to the drain end of the field effect transistor, the source end of the field effect transistor is connected to the power source,
The second control group is connected in series with the power source and in parallel with the first control group, and includes a relay switch, a relay, and one field effect transistor, and the relay switch has one common contact. And a half-spring to form a current-off contact and a current-on contact, the common contact is connected to a power source, and the magnetic control piece-shaped spring is controlled by the relay and is localized to a current-off contact or a current-on contact, And the current-on contact is connected to the gate end of a field effect transistor, the current-off contact is connected to the drain end of the field effect transistor, and the source end of the field effect transistor is connected to a power source,
The inductive load is connected to a current-off contact of a relay switch of the first control set and a current-off contact of a relay switch of the second control set,
Inductive load control device.
前記第一制御組のリレースイッチは共通接点で電源の陽極端と接続し、前記電界効果形トランジスタはNタイプであり、且つNタイプ電界効果形トランジスタのソース端が電源の陰極端と接続し、
前記第二制御組のリレースイッチは共通接点で電源の陽極端と接続し、前記電界効果形トランジスタはNタイプであり、且つNタイプ電界効果形トランジスタのソース端が電源の陰極端と接続することを特徴とする、請求項1に記載の誘導性ロード制御装置。
The relay switch of the first control group is connected to the anode end of the power source at a common contact, the field effect transistor is N type, and the source end of the N type field effect transistor is connected to the cathode end of the power source,
The relay switch of the second control group is connected to the anode end of the power source through a common contact, the field effect transistor is N type, and the source end of the N type field effect transistor is connected to the cathode end of the power source. The inductive load control device according to claim 1.
前記第一制御組のリレースイッチは共通接点で電源の陰極端と接続し、前記電界効果形トランジスタはPタイプであり、且つPタイプ電界効果形トランジスタのソース端が電源の陽極端と接続し、
前記第二制御組のリレースイッチは共通接点で電源の陰極端と接続し、前記電界効果形トランジスタはPタイプであり、且つPタイプ電界効果形トランジスタのソース端が電源の陽極端と接続することを特徴とする、請求項1に記載の誘導性ロード制御装置。
The relay switch of the first control group is connected to the cathode end of the power source at a common contact, the field effect transistor is P type, and the source end of the P type field effect transistor is connected to the anode end of the power source,
The relay switch of the second control group is connected to the cathode end of the power source through a common contact, the field effect transistor is P type, and the source end of the P type field effect transistor is connected to the anode end of the power source. The inductive load control device according to claim 1.
前記誘導性ロードはモータであることを特徴とする、請求項1乃至3の何れかに記載の誘導性ロード制御装置。
The inductive load control device according to claim 1, wherein the inductive load is a motor.
前記モータはリニアアクチュエータの機構制御装置に応用されることを特徴とする、請求項4に記載の誘導性ロード制御装置。   The inductive load control device according to claim 4, wherein the motor is applied to a mechanism control device of a linear actuator.
JP2005249228A 2005-08-30 2005-08-30 Inductive load controller Expired - Fee Related JP3965588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249228A JP3965588B2 (en) 2005-08-30 2005-08-30 Inductive load controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249228A JP3965588B2 (en) 2005-08-30 2005-08-30 Inductive load controller

Publications (2)

Publication Number Publication Date
JP2007068286A JP2007068286A (en) 2007-03-15
JP3965588B2 true JP3965588B2 (en) 2007-08-29

Family

ID=37929830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249228A Expired - Fee Related JP3965588B2 (en) 2005-08-30 2005-08-30 Inductive load controller

Country Status (1)

Country Link
JP (1) JP3965588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108242794B (en) * 2018-03-08 2023-05-23 厦门芯阳科技股份有限公司 Relay contact protection circuit for controlling inductive load

Also Published As

Publication number Publication date
JP2007068286A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP5162335B2 (en) Relay control device
JP2010044521A (en) Inductive load drive circuit
KR101110102B1 (en) Glow plug drive device
JP5920193B2 (en) Relay drive circuit
JP2016143799A (en) Abnormality detection circuit
JP5413642B2 (en) Power supply control circuit
JP3965588B2 (en) Inductive load controller
EP2800121B1 (en) Heat generation inhibiting circuit for exciting coil in relay
JP7165044B2 (en) fuel injector drive
JP2009228709A (en) Solenoid valve drive control apparatus and method for driving solenoid valve
JP2007014165A (en) Reverse connection protection device for vehicle
JP2010251200A (en) Relay driving circuit
US7224134B2 (en) Device for controlling inductive load
JP2011130621A (en) Reverse flow preventing circuit for power supply circuit
JP4401084B2 (en) Actuator drive
JP2004294404A (en) Disconnection detecting circuit
JP3148252U (en) Latch solenoid valve with drive circuit
JP6555181B2 (en) Reverse connection protection circuit
JP5717171B2 (en) Control circuit, solenoid valve, valve selector and fluid transfer device
JP2014090660A (en) System and method for controlling electric motor
JP2004304314A (en) Inductive load controller
JPS63102134A (en) Heater
JP2006352964A (en) Relay device and method of preventing operation at reverse connection of its power source
CN117767227A (en) Relay driving circuit with reverse connection protection and control method thereof
WO2014077266A1 (en) Power supply control apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3965588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees