JP3965245B2 - Cleaning method of oxygen detection element - Google Patents

Cleaning method of oxygen detection element Download PDF

Info

Publication number
JP3965245B2
JP3965245B2 JP13539398A JP13539398A JP3965245B2 JP 3965245 B2 JP3965245 B2 JP 3965245B2 JP 13539398 A JP13539398 A JP 13539398A JP 13539398 A JP13539398 A JP 13539398A JP 3965245 B2 JP3965245 B2 JP 3965245B2
Authority
JP
Japan
Prior art keywords
cleaning
recess
solid electrolyte
detection element
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13539398A
Other languages
Japanese (ja)
Other versions
JPH11326264A (en
Inventor
征親 伊藤
昭夫 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP13539398A priority Critical patent/JP3965245B2/en
Publication of JPH11326264A publication Critical patent/JPH11326264A/en
Application granted granted Critical
Publication of JP3965245B2 publication Critical patent/JP3965245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸素センサに用いられる酸素検出素子の洗浄方法に関し、詳しくは、一端が閉塞された筒状の酸素検出素子の凹部を洗浄することができる酸素検出素子の洗浄方法に関する。
【0002】
【従来の技術】
従来より、自動車用の酸素センサとしては、例えば一端が閉塞した筒状の酸素検出素子が使用されている。この酸素検出素子は、ジルコニア等の酸素イオン伝導性の固体電解質体(セラミック体)6と、その固体電解質体の内側面及び外側面に形成された白金等の耐熱性を有する多孔質電極7,8とを備えている(図4参照)。
【0003】
この種の酸素センサにおいては、その外側面に形成された多孔質電極8に、検出対象のガスである例えば排ガスを接触させ、他方の内側面に形成された多孔質電極7に、大気等の基準ガスを接触させて、排ガスと基準ガスとの間の酸素分圧の差により、両多孔質電極7,8間に発生する起電力を検出して、排ガス中の酸素濃度を測定する。
【0004】
上述した多孔質電極7,8を固体電解質体6の表面に形成する方法としては、例えば固体電解質体6の表面をエッチング液を用いてエッチングにより粗化し、その後、エッチング液を水で洗浄して除去し、固体電解質体6の表面に白金及び還元剤を含む薄い溶液を接触させ、加熱によって反応させ、表面上に白金核を析出させた後に、(白金核を成長核として)無電解メッキを行なって多孔質電極7,8を形成する方法が知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した方法は必ずしも十分ではなく、一層の改善が求められていた。
つまり、前記の方法では、エッチング後に、固体電解質体6全体を水に漬けたり、固体電解質体6の外側から水を噴射して、固体電解質体6の表面からエッチング液を除去しているが、固体電解質体6は細い筒状であり、よってその軸方向に形成された凹部も細径であるので、凹部内の洗浄を十分に行なうことが困難であった。
【0006】
この凹部内の洗浄が十分でないと、凹部内にて多孔質電極8を形成する際に、白金の析出効率が悪くなって、白金核にムラが生じることがあった。そして、白金核の付着状態にムラがあると、後に無電解メッキによって形成される多孔質電極8の密着性が低下したり、多孔質電極8の緻密さに問題が生じ、結果として、酸素センサの測定精度が低下したり、その寿命が低下することがあった。
【0007】
本発明は、前記の問題点に鑑みてなされたものであり、酸素検出素子の洗浄を効率よく十分に行なうことができる酸素検出素子の洗浄方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記目標を達成するための請求項1の発明は、酸素センサに用いられる一端が閉塞された筒状の酸素検出素子の洗浄方法において、前記酸素検出素子の閉塞側を上にし、前記酸素検出素子の筒内を構成する内径が5mm以下である凹部を下にして、前記凹部に、洗浄ノズルを前記凹部の底から20mm以内の範囲まで挿入し、該洗浄ノズルから前記凹部の内側面に向けて洗浄液を吐出しつつ、当該洗浄ノズルを前記凹部の軸方向に揺動させて洗浄を行なうことを特徴とする酸素検出素子の洗浄方法を要旨とする。
【0009】
酸素検出素子の凹部の内径が大きな場合には、凹部に(例えば洗浄液として通常用いられる)水を流し込んだ場合でも、その排出が容易であるが、凹部の径が5mm以下になると、表面張力の影響が大きくなって、たとえ酸素検出素子を逆さまにしたとしても、水は流れ出してこない。
そのため、この様な細径の凹部に対して、本発明を適用することにより、洗浄ノズルを利用して凹部の内側面の洗浄を十分に行なうことができる。
また、本発明では、酸素検出素子を逆さまに配置して、洗浄ノズルを下方から上方に向けて洗浄するので、洗浄液及び洗浄液に伴う例えばエッチング液等の排出をスムーズに行なうことができる。
更に、本発明では、凹部の底から20mm以内の範囲にまで洗浄ノズルを挿入することにより、凹部の底だけでなく、側面も、十分に洗浄を行なうことができる。
つまり、凹部の底に近づけてから(又は近づけながら)、例えば洗浄ノズルの先端から洗浄液を吐出することにより、洗浄液は凹部の底から側面に沿って開口部に流れるので、内側面全体を効率よく且つ十分に洗浄することができる。しかも、洗浄し難い凹部の奥深くまで、十分に洗浄することができる。
その上、本発明では、洗浄ノズルを凹部の軸方向に揺動させるので、凹部の奥深くだけでなく、中央部分や開口部近傍も十分に洗浄することができる。
また、洗浄ノズルが凹部表面に接触した場合、揺動がなければ、その部分は洗浄し難いことがあるが、本発明の様に揺動を行なうと、洗浄ノズルの接触部分が、十分に洗浄液に晒されるため、確実に洗浄を行なうことができる。
尚、洗浄する際には、洗浄ノズルが凹部の内側面に接触しない方がよいが、接触した場合でも、洗浄効果に変化はない。特に、洗浄ノズルの材質として、セラミックに比較して十分柔らかい材料(例えば下記実施例の材料)を用いれば、凹部表面を損なうことはない。
つまり、本発明によれば、酸素検出素子の凹部に洗浄ノズルを挿入し、例えば洗浄ノズルの先端から凹部の内側面に向けて(水等の)洗浄液を吐出して、上述した方法により、洗浄するので、例えば前工程で付着した例えばエッチング液などを、効率よく且つ十分に除去して、凹部の内側面を好適に洗浄することができる。
【0010】
ここで、酸素検出素子とは、基体であるセラミック体の表面に電極等が形成されたものを示すだけではなく、本発明では、電極等の形成前の状態のものや、電極の形成途中のものなども含むこととする。つまり、本発明によれば、電極等の形成の有無にかかわらず、凹部内の洗浄を好適に行なうことができる。
【0011】
また、内側面とは、凹部の底や側面の表面を示すものである。
尚、前記酸素検出素子の基体であるセラミック体としては、酸素イオン伝導性を有するセラミック体が用いられるが、例えば特開昭54−4913号公報に記載のジルコニア固体電解質等、高温下における使用にも耐え得る材料を用いることができる。
【0012】
このジルコニア固体電解質を用いる場合のジルコニア固体電解質の製造方法は、例えば、ジルコニア(ZrO2)にイットリア(Y23)を所定量添加し、仮焼結を行った後、これを粉砕、プレスして所望の形状とし、焼成することにより作製することができる。
【0018】
請求項の発明では、洗浄ノズルから吐出する洗浄液の流量を、100〜400mL/minとする。尚、mLはミリリットル、Lはリットルである。
本発明は、洗浄液の流量を例示したものであり、100〜400mL/minの範囲であれば、効率よく且つ十分に洗浄を行なうことができる。尚、この範囲を下回ると十分な流量が確保できないので洗浄能力が低下する。また、この範囲を上回っても、それほど効果に差がなく、洗浄液を過度に使用することになるので、好ましくない。
【0022】
請求項の発明では、酸素検出素子の基体を構成するセラミック体の凹部に対してエッチングを行った後に、洗浄ノズルを用いた洗浄を行なう。
本発明は、洗浄すべき対象及び洗浄のタイミングを例示したものであり、本発明では、エッチングを行った後に上述した洗浄を行なうので、速やかに且つ十分にエッチング液を除去することができる。
【0023】
そのため、後にセラミック体の表面に白金核を析出させる際には、残留するエッチング液による影響がないので、セラミック体の表面に、ムラなく均一に白金核を付着させることができる。よって、その後、白金核を成長核として無電解メッキによって形成される導電膜の密着性及び緻密性に優れている。そのため、例えば激しい温度変化に晒されても、導電膜が剥離し難く、例えば酸素センサに適用する場合には、その測定精度や寿命の低下を防止できる。
【0024】
【発明の実施の形態】
以下、本発明の酸素検出素子の洗浄方法の例(実施例)について、図面に基づいて説明する。
(実施例)
a)まず、酸素検出素子が用いられる酸素センサの構造及び機能について、簡単に説明する。
【0025】
図1に示す様に、酸素センサ1は、自動車のエンジンの排ガス中の酸素濃度を検出するものであり、酸素検出素子2が、管状部材3及び充填剤4を介して、耐熱鋼製のハウジング5に固定されている。
前記酸素検出素子2は、一端が閉塞した筒状であり、図4にその先端側(閉塞側)を模式的に示す様に、ジルコニア等の酸素イオン伝導性の固体電解質からなる固体電解質体(セラミック体)6と、その固体電解質体の内側面及び外側面に形成された白金等の耐熱性を有する多孔質電極7,8とを備えている。
【0026】
この固体電解質体6の軸中心には、図3に示す様に、内径φ3.8mm、深さ45mmの凹部11が形成されており、固体電解質体6の基端側(図の下方)に設けられた開口部12にて開口している。
そして、前記酸素センサ1では、固体電解質体6の外側面に形成された多孔質電極(外側電極)8に、排ガスを接触させるとともに、凹部11の内側面に形成された多孔質電極(内側電極)7に、大気の基準ガスを接触させて、排ガスと基準ガスとの間の酸素分圧の差により、両多孔質電極7,8間に発生する起電力を検出して、排ガス中の酸素濃度を測定する。
【0027】
b)次に、酸素検出素子2の洗浄方法を、内側電極7の形成方法とともに、図2〜図4に基づいて説明する。
(工程1)
まず、図2に示す様に、固定基板16の固定孔17に、シリコンゴム製の固定具18を嵌め込む。つまり、固定具18の先端部18aを先にして、固定孔17の下方より嵌め込む。これにより、固定具18は、固定具18の上下両側の大径部分18b,18cにて固定基板16を挟んだ状態で固定される。
【0028】
次に、固定具18の先端部18aに対して、図の上方より固体電解質体6の基端側(開口部12側)を嵌め込む。
この固定具18の軸中心には、図3に示す様に、前記先端部18a等を貫く貫通孔21が形成されている。従って、先端部18aの貫通孔21内に固体電解質体6の基端側を圧入することにより、固体電解質体6を固定具18に取り付けることができる。尚、圧入の深さは、段差18dにより規定される。
【0029】
(工程2)
次に、固体電解質体6を固定基板16とともにひっくり返し、固体電解質体6の凹部11内に、エッチング液として、濃度5重量%のフッ酸(HF)を注入し、その状態で7分間保持して、凹部11の(内側電極7の形成部分に対応する)内側面をエッチングした。これにより、固体電解質体6の凹部11の内側面を粗化した。
【0030】
その後、フッ酸を凹部11内から負圧にて吸引して除去した。
(工程3)
次に、再度、固体電解質体6を固定基板16とともにひっくり返し、図3に示す状態とした。
【0031】
そして、固定基板16の下方に、水を供給する洗浄機26及び洗浄機26の上面から上方に伸びる(長さ85mmの)洗浄ノズル27を配置した。次に、洗浄機26及び洗浄ノズル27を上方に移動させ、洗浄ノズル27を、固定具18の貫通孔21を通して、固体電解質体6の凹部11内に挿入した。
【0032】
この洗浄ノズル27は、ポリテトラフルオロエチレン(PTFE)からなるテフロン(商標)製である。洗浄ノズル27は、内径約1.8mm×外径約2.0mmのパイプであり、洗浄ノズル27の先端には、上方に向かって開口する吐出口29(図4参照)が設けられている。尚、洗浄ノズル27は、セラミックに比べて十分に柔らかく、セラミック表面に接触しても、セラミック表面を損なうことはない。
【0033】
洗浄ノズル27は、その先端が、凹部11の底11aから20mm以内の例えば5mmとなる位置で停止され、しかも凹部11の内側面とは接触しない様に配置されている。
そして、この状態で、洗浄機26から水が供給され、洗浄ノズル27の先端の吐出口29からシャワーの様に水が噴射され、洗浄が行われる。また、この洗浄に伴って、洗浄ノズル27は、洗浄機26とともに上下に揺動して洗浄を行なう。
【0034】
この洗浄のために供給される水の流量は、例えば400mL/minであり、20sec間にわたり洗浄が行われる。
尚、この流量は、100〜400mL/min(好ましくは300mL/min以上)の範囲であればよく、洗浄時間は、10sec以上(好ましくは20sec以上)の範囲であればよい。また、洗浄ノズル27が上下動する際の吐出口29の上限位置は、凹部11の底11aに接触せず且つ底11aから20mm以下の範囲(好ましくは5mm以下)であればよい。
【0035】
そして、前記洗浄が終了すると、残液を凹部11内から負圧にて吸引して除去した。
(工程4)
次に、粗化した固体電解質体6の表面に、0.03規定度の塩酸(HCl)を加えた0.5重量%の塩化白金酸溶液(H2PtCl6;水溶液)を注入し、85℃に加熱して含浸させた。
【0036】
(工程5)
次に、塩化白金酸溶液を、固体電解質体6の表面から抽出して(負圧による吸引)除去した。これにより、塩化白金酸溶液が抽出されるが、塩化白金酸溶液は、固体電解質体6の表面を覆う様に、非常に薄い膜となって付着した状態となる。
【0037】
(工程6)
次に、塩化白金酸溶液が薄く付着した固体電解質体6の表面に、還元剤(ヒドラジン(N24)を含む還元剤溶液)を接触させて、70℃に加熱して、その表面上に白金核(Pt核)を析出させた。
【0038】
(工程7)
次に、白金核が析出した固体電解質体6の凹部11に、アンミン白金化合物とヒドラジンとを含む無電解メッキ液を注入して、85℃に加熱し、その状態で180分間保持して無電解メッキを行った。
【0039】
それにより、白金核を成長核として、固体電解質体6の内側表面に、層状の白金からなる内側電極7を形成した。
その後、凹部11内から、無電解メッキ液を吸引して除去した。更に、前記工程3及び工程4と同様にして、洗浄及び乾燥を行った。
【0040】
また、ほぼ同様な手順で、外側電極8を形成し、その後、固体電解質体6を600〜1000℃で熱処理して、固体電解質体6の内外両側に多孔質電極7,8を備えた酸素検出素子2を完成した。
この様に、本実施例では、上述した方法により酸素検出素子2の凹部11の洗浄を行なうので、下記▲1▼〜▲8▼の効果を奏する。
【0041】
▲1▼本実施例では、洗浄ノズル27を、固体電解質体6の凹部11に挿入し、その先端の吐出口29から、水を凹部11の内側面に噴射して洗浄を行なうので、効率よく且つ十分に洗浄を行なうことができる。
▲2▼特に、固体電解質体6の凹部11の内径は5mm以下と細く、従来では十分に凹部11内を洗浄できなかったが、この様な細径の凹部11の洗浄に本実施例の洗浄方法を適用すると、十分な洗浄を行なうことができる。
【0042】
▲3▼また、凹部11の底11aから20mm以内の範囲にまで洗浄ノズル27を挿入しているので、凹部11の底11aだけでなく、内側面全体を効率よく且つ十分に洗浄できる。
▲4▼更に、洗浄液の流量を、100〜400mL/minの範囲としているので、効率よく且つ十分に洗浄を行なうことができ、洗浄液の無駄がない。
【0043】
▲5▼また、洗浄ノズル27を、凹部11の軸方向に揺動させるので、凹部11の奥深くだけでなく、中央部分や開口部12近傍も十分に洗浄することができる。
▲6▼更に、固体電解質体6を逆さまにして、洗浄ノズル27を下方から上方に向けて洗浄するので、水やエッチング液等の排出をスムーズに行なうことができる。
【0044】
▲7▼その上、エッチングを行った後に上述した洗浄を行なうので、速やかに且つ十分にエッチング液を除去することができる。
そのため、後に固体電解質体6の表面に白金核を析出させる際には、固体電解質体6の表面に、ムラなく均一に白金核を付着させることができる。よって、その後、白金核を成長核として無電解メッキによって形成される内側電極7の密着性及び緻密性に優れている。そのため、例えば激しい温度変化に晒されても、内側電極7が剥離し難く、酸素センサ1においては、その測定精度や寿命の低下を防止できる。
(実験例)
次に、本発明の効果(対比効果)を確認するために行った実験例について説明する。
【0045】
この実験では、下記の方法により洗浄能力の対比を行った。
前記実施例と同様な固体電解質体を用意し、この固体電解質体の凹部に、20%−H2SOを注入した後に、負圧を利用して抽出し、その後、洗浄能力の実験を行った。
【0046】
具体的には、本発明の範囲の方法として、上述した洗浄ノズルを用いた洗浄を行った。その際に、下記表1及び図5に示す様に、洗浄ノズルの先端の位置(針位置)を変更した。尚、針位置条件1〜4が揺動有りの場合の例であり、針位置条件5,6が揺動なしの場合の例である。
【0047】
【表1】

Figure 0003965245
【0048】
そして、前記各針位置条件1〜6にて、洗浄ノズルによるシャワー洗浄を行った。その場合の流量としては、360〜400mL/minとし、シャワーを行なう時間は、下記表2に示す様に、5sec又は20secとした。
前記洗浄後に、固体電解質体の凹部の内側表面におけるpHを、pH試験紙を用いて測定した。この測定は、図5に示す様に、凹部の先端とネジ部の2箇所にて行った。尚、この洗浄の実験は、各試料毎に5回づつ実施し、各実験におけるpHを測定して、その平均値を算出した。その結果(pHは平均値)を、同じく下記表2に記す。
【0049】
【表2】
Figure 0003965245
【0050】
また、比較例として、従来の方法、即ち前記洗浄ノズルを用いずに、固体電解質体の凹部の外側より、開口部に向けて純水を注入し、排出する作業を繰り返した。その結果は、凹部内は、全体としてpH2以下であった。
前記表2から明かな様に、本発明の範囲の試料No.1〜10では、洗浄後のpHの値は、3.4〜7の範囲であり、従来の方法と比べて中性に近く、洗浄能力に優れている。
【0051】
特に、揺動を行ったものは、そうでないものに比べ、より中性に近く、一層洗浄能力に優れている。
尚、本発明は前記実施例になんら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
【0052】
(1)例えば前記実施例では、主に、エッチング液を除去するための洗浄方法について述べたが、他の工程における洗浄に本発明を適用してよいことはもちろんである。
(2)また内側電極を形成する方法としては、前記実施例の方法に限らず、例えば下記の▲1▼,▲2▼の方法等を採用できる。
【0053】
▲1▼固体電解質体の表面に、直接に無電解メッキを行ない、無電解メッキ液中から固体電解質体の表面上に、白金を析出させて内側電極を形成する方法。尚、この場合は、エッチングを行わないので、無電解メッキ液の除去に本発明を適用できる。
【0054】
▲2▼固体電解質体の表面をエッチングにより粗化し、その後、固体電解質体の表面に白金及び還元剤を含む薄い溶液を接触させ、加熱によって反応させ、表面上に白金核を析出させた後に、(白金核を成長核として)無電解メッキを行なって内側電極を形成する方法。
【0055】
(3)尚、前記実施例では、表面に電極を備えた固体電解質体を酸素検出素子として表現したが、既述した様に、固体電解質体単体、及び固体電解質体の表面に電極を形成途中のものも酸素検出素子として表現してもよい。
【0056】
【発明の効果】
以上詳述した様に、本発明によれば、酸素検出素子の凹部に洗浄ノズルを挿入し、例えば洗浄ノズルの先端から凹部の内側面に向けて洗浄液を吐出して洗浄するので、例えば前工程で付着した例えばエッチング液などを、効率よく且つ十分に除去して、凹部の内側面を好適に洗浄することができる。
【0057】
また、例えばエッチング液を十分に除去することができるので、その後セラミック体の表面に、ムラなく均一に白金核を付着させることができる。よって、後に白金核を成長核として無電解メッキによって形成される導電膜の密着性及び緻密性に優れている。そのため、例えば激しい温度変化に晒されても、導電膜が剥離し難く、例えば酸素センサに適用する場合には、その測定精度や寿命の低下を防止できる。
【図面の簡単な説明】
【図1】 酸素センサの一部を破断して示す説明図である。
【図2】 洗浄の際の酸素検出素子の取付方法を示す説明図である。
【図3】 酸素検出素子の洗浄方法を示す説明図である。
【図4】 酸素検出素子の先端部分を拡大して示す説明図である。
【図5】 実験方法を示す説明図である。
【符号の説明】
1…酸素センサ
2…酸素検出素子
6…固体電解体
7…内側電極(多孔質電極)
8…外側電極(多孔質電極)
11…凹部
12…開口部
18…固定具
26…洗浄機
27…洗浄ノズル
29…吐出口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cleaning an oxygen detection element used in an oxygen sensor, and more particularly, to a method for cleaning an oxygen detection element capable of cleaning a concave portion of a cylindrical oxygen detection element closed at one end.
[0002]
[Prior art]
Conventionally, as an oxygen sensor for automobiles, for example, a cylindrical oxygen detecting element with one end closed is used. The oxygen detection element includes an oxygen ion conductive solid electrolyte body (ceramic body) 6 such as zirconia, and a porous electrode 7 having heat resistance such as platinum formed on the inner and outer surfaces of the solid electrolyte body, 8 (see FIG. 4).
[0003]
In this type of oxygen sensor, the porous electrode 8 formed on the outer surface thereof is brought into contact with, for example, exhaust gas that is a gas to be detected, and the porous electrode 7 formed on the other inner surface is contacted with air or the like. The reference gas is brought into contact, the electromotive force generated between the porous electrodes 7 and 8 is detected from the difference in oxygen partial pressure between the exhaust gas and the reference gas, and the oxygen concentration in the exhaust gas is measured.
[0004]
As a method of forming the porous electrodes 7 and 8 on the surface of the solid electrolyte body 6 described above, for example, the surface of the solid electrolyte body 6 is roughened by etching using an etching solution, and then the etching solution is washed with water. After removing and bringing a thin solution containing platinum and a reducing agent into contact with the surface of the solid electrolyte body 6 and reacting by heating to deposit platinum nuclei on the surface, electroless plating (using platinum nuclei as growth nuclei) is performed. A method of forming porous electrodes 7 and 8 in a similar manner is known.
[0005]
[Problems to be solved by the invention]
However, the above-described method is not always sufficient, and further improvement has been demanded.
That is, in the above method, after etching, the entire solid electrolyte body 6 is immersed in water, or water is sprayed from the outside of the solid electrolyte body 6 to remove the etching solution from the surface of the solid electrolyte body 6. Since the solid electrolyte body 6 has a thin cylindrical shape, and the concave portion formed in the axial direction has a small diameter, it is difficult to sufficiently clean the concave portion.
[0006]
If the inside of the concave portion is not sufficiently cleaned, when the porous electrode 8 is formed in the concave portion, the platinum deposition efficiency is deteriorated, and the platinum nucleus may be uneven. If the adhesion state of the platinum nuclei is uneven, the adhesion of the porous electrode 8 to be formed later by electroless plating is lowered, or a problem occurs in the density of the porous electrode 8, resulting in an oxygen sensor. In some cases, the measurement accuracy of the sensor deteriorates or the service life thereof decreases.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for cleaning an oxygen detection element that can efficiently and sufficiently clean the oxygen detection element.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention for achieving the above-described object, in the cleaning method for a cylindrical oxygen detecting element having one end closed, which is used for an oxygen sensor, the oxygen detecting element faces up, and the oxygen detecting element is turned up. With the concave portion having an inner diameter of 5 mm or less constituting the inside of the cylinder facing downward , a cleaning nozzle is inserted into the concave portion to a range within 20 mm from the bottom of the concave portion, and from the cleaning nozzle toward the inner surface of the concave portion The gist of the cleaning method of the oxygen detecting element is that the cleaning nozzle is swung in the axial direction of the recess while discharging the cleaning liquid.
[0009]
When the inner diameter of the concave portion of the oxygen detecting element is large, even when water is poured into the concave portion (usually used as a cleaning liquid, for example), it is easy to discharge, but when the concave portion has a diameter of 5 mm or less, the surface tension Even if the influence is increased and the oxygen sensing element is turned upside down, the water does not flow out.
Therefore, by applying the present invention to such a small-diameter recess, the inner surface of the recess can be sufficiently cleaned using the cleaning nozzle.
Further, in the present invention, the oxygen detection element is arranged upside down and the cleaning nozzle is cleaned from the bottom to the top, so that the cleaning liquid and, for example, the etching liquid accompanying the cleaning liquid can be discharged smoothly.
Furthermore , in the present invention, not only the bottom of the recess but also the side surface can be sufficiently cleaned by inserting the cleaning nozzle into a range within 20 mm from the bottom of the recess.
That is, the cleaning liquid flows from the bottom of the recess to the opening along the side surface by, for example, discharging the cleaning liquid from the tip of the cleaning nozzle after approaching (or approaching) the bottom of the recess. And it can be washed sufficiently. In addition, it is possible to sufficiently clean the depths of the recesses that are difficult to clean.
Moreover , in the present invention, since the cleaning nozzle is swung in the axial direction of the recess, not only the depth of the recess but also the central portion and the vicinity of the opening can be sufficiently cleaned.
Further, when the cleaning nozzle comes into contact with the surface of the concave portion, it may be difficult to clean the portion if it does not swing, but if the swinging is performed as in the present invention, the contact portion of the cleaning nozzle is sufficiently cleaned. Therefore, it is possible to perform cleaning reliably.
In cleaning, it is preferable that the cleaning nozzle does not come into contact with the inner surface of the recess, but even if it comes in contact, the cleaning effect does not change. In particular, if a material that is sufficiently softer than ceramic (for example, a material of the following example) is used as the material of the cleaning nozzle, the surface of the recess is not damaged.
That is, according to the present invention, the cleaning nozzle is inserted into the recess of the oxygen detection element, and the cleaning liquid (such as water) is discharged from the front end of the cleaning nozzle toward the inner surface of the recess, for example. Therefore, for example, the etching solution or the like attached in the previous step can be efficiently and sufficiently removed, and the inner surface of the recess can be suitably cleaned.
[0010]
Here, the oxygen detection element not only indicates that an electrode or the like is formed on the surface of the ceramic body that is the substrate, but in the present invention, the oxygen detection element is in a state before the electrode is formed, Include things. That is, according to the present invention, it is possible to suitably clean the recesses regardless of whether or not electrodes are formed.
[0011]
The inner side surface indicates the bottom of the recess or the surface of the side surface.
As the ceramic body that is the base of the oxygen detection element, a ceramic body having oxygen ion conductivity is used. For example, a zirconia solid electrolyte described in JP-A No. 54-4913 can be used at high temperatures. Can be used.
[0012]
A method for producing a zirconia solid electrolyte when using this zirconia solid electrolyte is, for example, adding a predetermined amount of yttria (Y 2 O 3 ) to zirconia (ZrO 2 ), pre-sintering, pulverizing, pressing Then, it can be made into a desired shape and fired.
[0018]
In the invention of claim 2 , the flow rate of the cleaning liquid discharged from the cleaning nozzle is set to 100 to 400 mL / min. In addition, mL is milliliter and L is liter.
The present invention exemplifies the flow rate of the cleaning liquid, and cleaning can be performed efficiently and sufficiently in the range of 100 to 400 mL / min. In addition, if it is less than this range, a sufficient flow rate cannot be secured, so that the cleaning ability is lowered. Moreover, even if it exceeds this range, there is not much difference in the effect, and the cleaning liquid is excessively used, which is not preferable.
[0022]
According to the third aspect of the present invention, the etching using the cleaning nozzle is performed after etching the concave portion of the ceramic body constituting the base of the oxygen detecting element.
The present invention exemplifies the object to be cleaned and the timing of cleaning. In the present invention, since the above-described cleaning is performed after etching, the etching solution can be quickly and sufficiently removed.
[0023]
Therefore, when the platinum nuclei are subsequently deposited on the surface of the ceramic body, there is no influence of the remaining etching solution, so that the platinum nuclei can be uniformly and uniformly attached to the surface of the ceramic body. Therefore, after that, the adhesion and the denseness of the conductive film formed by electroless plating using the platinum nucleus as the growth nucleus are excellent. Therefore, for example, even when exposed to a drastic temperature change, the conductive film is difficult to peel off, and for example, when applied to an oxygen sensor, it is possible to prevent a decrease in measurement accuracy and lifetime.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example (Example) of a method for cleaning an oxygen detection element of the present invention will be described with reference to the drawings.
(Example)
a) First, the structure and function of an oxygen sensor using an oxygen detection element will be briefly described.
[0025]
As shown in FIG. 1, an oxygen sensor 1 detects oxygen concentration in exhaust gas from an automobile engine, and an oxygen detection element 2 is provided with a heat-resistant steel housing through a tubular member 3 and a filler 4. 5 is fixed.
The oxygen detection element 2 has a cylindrical shape whose one end is closed, and a solid electrolyte body made of an oxygen ion conductive solid electrolyte such as zirconia (as shown schematically in FIG. (Ceramic body) 6 and porous electrodes 7 and 8 having heat resistance such as platinum formed on the inner and outer surfaces of the solid electrolyte body.
[0026]
As shown in FIG. 3, a recess 11 having an inner diameter of 3.8 mm and a depth of 45 mm is formed at the axial center of the solid electrolyte body 6, and is provided on the base end side (downward in the figure) of the solid electrolyte body 6. The opening 12 is opened.
In the oxygen sensor 1, exhaust gas is brought into contact with the porous electrode (outer electrode) 8 formed on the outer surface of the solid electrolyte body 6 and the porous electrode (inner electrode) formed on the inner surface of the recess 11. ) 7 is brought into contact with the atmospheric reference gas, and the electromotive force generated between the porous electrodes 7 and 8 is detected by the difference in oxygen partial pressure between the exhaust gas and the reference gas. Measure the concentration.
[0027]
b) Next, a method for cleaning the oxygen detecting element 2 will be described based on FIGS. 2 to 4 together with a method for forming the inner electrode 7.
(Process 1)
First, as shown in FIG. 2, a silicone rubber fixture 18 is fitted into the fixing hole 17 of the fixing substrate 16. That is, the fixing tool 18 is fitted from below the fixing hole 17 with the tip end portion 18 a first. Thereby, the fixing tool 18 is fixed in a state where the fixing substrate 16 is sandwiched between the large-diameter portions 18b and 18c on both upper and lower sides of the fixing tool 18.
[0028]
Next, the base end side (opening 12 side) of the solid electrolyte body 6 is fitted into the distal end portion 18a of the fixture 18 from above in the figure.
As shown in FIG. 3, a through hole 21 is formed at the center of the fixing tool 18 so as to penetrate the tip end portion 18 a and the like. Therefore, the solid electrolyte body 6 can be attached to the fixture 18 by press-fitting the proximal end side of the solid electrolyte body 6 into the through hole 21 of the distal end portion 18a. The depth of press-fitting is defined by the step 18d.
[0029]
(Process 2)
Next, the solid electrolyte body 6 is turned over together with the fixed substrate 16, and 5 wt% hydrofluoric acid (HF) is injected as an etching solution into the recess 11 of the solid electrolyte body 6, and is kept in that state for 7 minutes. Then, the inner surface (corresponding to the portion where the inner electrode 7 is formed) of the recess 11 was etched. Thereby, the inner surface of the recess 11 of the solid electrolyte body 6 was roughened.
[0030]
Thereafter, hydrofluoric acid was removed from the recess 11 by suction under a negative pressure.
(Process 3)
Next, the solid electrolyte body 6 was turned over again together with the fixed substrate 16 to obtain the state shown in FIG.
[0031]
A cleaning device 26 for supplying water and a cleaning nozzle 27 (85 mm in length) extending upward from the upper surface of the cleaning device 26 are disposed below the fixed substrate 16. Next, the cleaning machine 26 and the cleaning nozzle 27 were moved upward, and the cleaning nozzle 27 was inserted into the recess 11 of the solid electrolyte body 6 through the through hole 21 of the fixture 18.
[0032]
The cleaning nozzle 27 is made of Teflon (trademark) made of polytetrafluoroethylene (PTFE). The cleaning nozzle 27 is a pipe having an inner diameter of about 1.8 mm and an outer diameter of about 2.0 mm, and a discharge port 29 (see FIG. 4) that opens upward is provided at the tip of the cleaning nozzle 27. The cleaning nozzle 27 is sufficiently softer than ceramic, and even if it contacts the ceramic surface, the ceramic surface is not damaged.
[0033]
The cleaning nozzle 27 is disposed so that the tip thereof is stopped at a position where it is, for example, 5 mm within 20 mm from the bottom 11 a of the recess 11, and is not in contact with the inner surface of the recess 11.
In this state, water is supplied from the cleaning machine 26, and water is sprayed from the discharge port 29 at the tip of the cleaning nozzle 27 like a shower to perform cleaning. Further, along with this cleaning, the cleaning nozzle 27 swings up and down together with the cleaning machine 26 to perform cleaning.
[0034]
The flow rate of water supplied for this cleaning is, for example, 400 mL / min, and cleaning is performed for 20 seconds.
The flow rate may be in the range of 100 to 400 mL / min (preferably 300 mL / min or more), and the cleaning time may be in the range of 10 sec or more (preferably 20 sec or more). Further, the upper limit position of the discharge port 29 when the cleaning nozzle 27 moves up and down may be in the range of 20 mm or less (preferably 5 mm or less) from the bottom 11 a without contacting the bottom 11 a of the recess 11.
[0035]
And when the said washing | cleaning was complete | finished, the residual liquid was attracted | sucked and removed from the inside of the recessed part 11 with the negative pressure.
(Process 4)
Next, a 0.5 wt% chloroplatinic acid solution (H 2 PtCl 6 ; aqueous solution) added with 0.03 normality hydrochloric acid (HCl) is injected onto the surface of the roughened solid electrolyte body 6. It was impregnated by heating to ° C.
[0036]
(Process 5)
Next, the chloroplatinic acid solution was extracted from the surface of the solid electrolyte body 6 (suction by negative pressure) and removed. As a result, the chloroplatinic acid solution is extracted, but the chloroplatinic acid solution is attached as a very thin film so as to cover the surface of the solid electrolyte body 6.
[0037]
(Process 6)
Next, the surface of the solid electrolyte body 6 chloroplatinic acid solution was thinly adhered, by contacting a reducing agent (hydrazine (reducing agent solution containing N 2 H 4)), and heated to 70 ° C., its surface Platinum nuclei (Pt nuclei) were precipitated.
[0038]
(Process 7)
Next, an electroless plating solution containing an ammine platinum compound and hydrazine is injected into the concave portion 11 of the solid electrolyte body 6 on which platinum nuclei are deposited, heated to 85 ° C., and held in that state for 180 minutes for electroless. Plating was performed.
[0039]
Thereby, the inner electrode 7 made of layered platinum was formed on the inner surface of the solid electrolyte body 6 using the platinum nucleus as a growth nucleus.
Thereafter, the electroless plating solution was removed by suction from the recess 11. Further, washing and drying were performed in the same manner as in Step 3 and Step 4.
[0040]
In addition, the outer electrode 8 is formed in substantially the same procedure, and then the solid electrolyte body 6 is heat-treated at 600 to 1000 ° C. to detect oxygen with porous electrodes 7 and 8 on both the inner and outer sides of the solid electrolyte body 6. Element 2 was completed.
As described above, in this embodiment, since the concave portion 11 of the oxygen detecting element 2 is cleaned by the method described above, the following effects (1) to (8) are obtained.
[0041]
(1) In this embodiment, the cleaning nozzle 27 is inserted into the concave portion 11 of the solid electrolyte body 6, and water is sprayed from the discharge port 29 at the tip thereof onto the inner surface of the concave portion 11, so that the cleaning is performed efficiently. In addition, sufficient cleaning can be performed.
(2) In particular, the inner diameter of the recess 11 of the solid electrolyte body 6 is as thin as 5 mm or less, and the inside of the recess 11 could not be cleaned sufficiently in the prior art. When the method is applied, sufficient cleaning can be performed.
[0042]
(3) Since the cleaning nozzle 27 is inserted within a range of 20 mm from the bottom 11a of the recess 11, not only the bottom 11a of the recess 11 but also the entire inner surface can be cleaned efficiently and sufficiently.
(4) Further, since the flow rate of the cleaning liquid is in the range of 100 to 400 mL / min, cleaning can be performed efficiently and sufficiently, and the cleaning liquid is not wasted.
[0043]
{Circle around (5)} Since the cleaning nozzle 27 is swung in the axial direction of the recess 11, not only the depth of the recess 11 but also the central portion and the vicinity of the opening 12 can be sufficiently cleaned.
(6) Further, since the solid electrolyte body 6 is turned upside down and the cleaning nozzle 27 is cleaned from below to above, water, etching solution, etc. can be discharged smoothly.
[0044]
(7) In addition, since the above-described cleaning is performed after etching, the etching solution can be removed quickly and sufficiently.
Therefore, when depositing platinum nuclei on the surface of the solid electrolyte body 6 later, the platinum nuclei can be uniformly attached to the surface of the solid electrolyte body 6 without unevenness. Therefore, after that, the inner electrode 7 formed by electroless plating using the platinum nucleus as a growth nucleus is excellent in adhesion and denseness. Therefore, for example, the inner electrode 7 is hardly peeled even when exposed to a violent temperature change, and in the oxygen sensor 1, it is possible to prevent a decrease in measurement accuracy and lifetime.
(Experimental example)
Next, an experimental example performed to confirm the effect (contrast effect) of the present invention will be described.
[0045]
In this experiment, the cleaning ability was compared by the following method.
A solid electrolyte body similar to that of the above-described example was prepared, 20% -H 2 SO was injected into the concave portion of the solid electrolyte body, and then extracted using negative pressure. Thereafter, the cleaning ability was tested. .
[0046]
Specifically, as a method within the scope of the present invention, cleaning using the above-described cleaning nozzle was performed. At that time, as shown in the following Table 1 and FIG. 5, the position (needle position) of the tip of the cleaning nozzle was changed. It should be noted that the needle position conditions 1 to 4 are examples when there is a swing, and the needle position conditions 5 and 6 are examples when there is no swing.
[0047]
[Table 1]
Figure 0003965245
[0048]
And the shower washing | cleaning by the washing nozzle was performed on each said needle position conditions 1-6. In this case, the flow rate was 360 to 400 mL / min, and the showering time was 5 sec or 20 sec as shown in Table 2 below.
After the washing, the pH on the inner surface of the concave portion of the solid electrolyte body was measured using a pH test paper. As shown in FIG. 5, this measurement was performed at two locations, that is, the tip of the recess and the screw portion. This washing experiment was carried out five times for each sample, the pH in each experiment was measured, and the average value was calculated. The results (pH is an average value) are also shown in Table 2 below.
[0049]
[Table 2]
Figure 0003965245
[0050]
As a comparative example, the conventional method, that is, the operation of injecting and discharging pure water from the outside of the concave portion of the solid electrolyte body toward the opening without using the cleaning nozzle was repeated. As a result, the inside of the recess was pH 2 or less as a whole.
As apparent from Table 2, the sample Nos. 1 to 10 in the range of the present invention have a pH value after washing in the range of 3.4 to 7, which is close to neutrality compared to the conventional method. Excellent cleaning ability.
[0051]
In particular, those that have been swung are more neutral than those that are not, and are more excellent in cleaning ability.
In addition, this invention is not limited to the said Example at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from the summary of this invention.
[0052]
(1) For example, in the above-described embodiment, the cleaning method for removing the etching solution has been mainly described. However, it is needless to say that the present invention may be applied to cleaning in other steps.
(2) The method of forming the inner electrode is not limited to the method of the above embodiment, and for example, the following methods (1) and (2) can be adopted.
[0053]
(1) A method of forming an inner electrode by performing electroless plating directly on the surface of a solid electrolyte body and depositing platinum from the electroless plating solution on the surface of the solid electrolyte body. In this case, since the etching is not performed, the present invention can be applied to the removal of the electroless plating solution.
[0054]
(2) After the surface of the solid electrolyte body is roughened by etching, and then a thin solution containing platinum and a reducing agent is brought into contact with the surface of the solid electrolyte body and reacted by heating to deposit platinum nuclei on the surface, A method of forming an inner electrode by performing electroless plating (using a platinum nucleus as a growth nucleus).
[0055]
(3) In the above-described embodiment, the solid electrolyte body provided with the electrode on the surface is expressed as an oxygen detection element. However, as described above, the solid electrolyte body alone and the electrode on the surface of the solid electrolyte body are being formed. May also be expressed as an oxygen sensing element.
[0056]
【The invention's effect】
As described above in detail, according to the present invention, the cleaning nozzle is inserted into the recess of the oxygen detection element, and the cleaning liquid is discharged from the front end of the cleaning nozzle toward the inner surface of the recess, for example. For example, the etching solution or the like attached in step 1 can be efficiently and sufficiently removed, and the inner surface of the recess can be suitably cleaned.
[0057]
Further, for example, since the etching solution can be sufficiently removed, platinum nuclei can be adhered uniformly and uniformly to the surface of the ceramic body thereafter. Therefore, the adhesiveness and the denseness of the conductive film formed later by electroless plating using platinum nuclei as growth nuclei are excellent. Therefore, for example, even when exposed to a drastic temperature change, the conductive film is difficult to peel off, and for example, when applied to an oxygen sensor, it is possible to prevent a decrease in measurement accuracy and lifetime.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a part of an oxygen sensor in a broken state.
FIG. 2 is an explanatory diagram showing a method for attaching an oxygen detection element during cleaning.
FIG. 3 is an explanatory view showing a method for cleaning an oxygen detecting element.
FIG. 4 is an explanatory view showing an enlarged tip portion of an oxygen detection element.
FIG. 5 is an explanatory diagram showing an experimental method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Oxygen sensor 2 ... Oxygen detection element 6 ... Solid electrolyte 7 ... Inner electrode (porous electrode)
8 ... Outer electrode (porous electrode)
DESCRIPTION OF SYMBOLS 11 ... Recess 12 ... Opening 18 ... Fixing tool 26 ... Cleaning machine 27 ... Cleaning nozzle 29 ... Discharge port

Claims (3)

酸素センサに用いられる一端が閉塞された筒状の酸素検出素子の洗浄方法において、
前記酸素検出素子の閉塞側を上にし、前記酸素検出素子の筒内を構成する内径が5mm以下である凹部の開口部を下にして、
前記凹部に、洗浄ノズルを前記凹部の底から20mm以内の範囲まで挿入し、該洗浄ノズルから前記凹部の内側面に向けて洗浄液を吐出しつつ、当該洗浄ノズルを前記凹部の軸方向に揺動させて洗浄を行なうことを特徴とする酸素検出素子の洗浄方法。
In the method for cleaning a cylindrical oxygen detection element, one end of which is used for an oxygen sensor,
With the closed side of the oxygen detection element facing up, the opening of the recess having an inner diameter of 5 mm or less constituting the inside of the cylinder of the oxygen detection element facing down,
A cleaning nozzle is inserted into the recess to a range within 20 mm from the bottom of the recess, and the cleaning nozzle is swung in the axial direction of the recess while discharging the cleaning liquid from the cleaning nozzle toward the inner surface of the recess. And cleaning the oxygen detecting element.
前記洗浄ノズルから吐出する洗浄液の流量を、100〜400mL/minとすることを特徴とする請求項1に記載の酸素検出素子の洗浄方法 The method for cleaning an oxygen detection element according to claim 1, wherein the flow rate of the cleaning liquid discharged from the cleaning nozzle is set to 100 to 400 mL / min . 前記酸素検出素子の基体を構成するセラミック体の凹部に対してエッチングを行った後に、前記洗浄ノズルを用いた洗浄を行なうことを特徴とする請求項1又は2に記載の酸素検出素子の洗浄方法。The method for cleaning an oxygen detection element according to claim 1 or 2 , wherein the cleaning using the cleaning nozzle is performed after etching the concave portion of the ceramic body constituting the base of the oxygen detection element. .
JP13539398A 1998-03-11 1998-05-18 Cleaning method of oxygen detection element Expired - Fee Related JP3965245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13539398A JP3965245B2 (en) 1998-03-11 1998-05-18 Cleaning method of oxygen detection element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-60016 1998-03-11
JP6001698 1998-03-11
JP13539398A JP3965245B2 (en) 1998-03-11 1998-05-18 Cleaning method of oxygen detection element

Publications (2)

Publication Number Publication Date
JPH11326264A JPH11326264A (en) 1999-11-26
JP3965245B2 true JP3965245B2 (en) 2007-08-29

Family

ID=26401088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13539398A Expired - Fee Related JP3965245B2 (en) 1998-03-11 1998-05-18 Cleaning method of oxygen detection element

Country Status (1)

Country Link
JP (1) JP3965245B2 (en)

Also Published As

Publication number Publication date
JPH11326264A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
US20050123680A1 (en) Micro reference electrode of implantable continous biosensor using iridium oxide, manufacturing method thereof, and implantable continuous biosensor
JP2005503536A5 (en)
WO2001088518A2 (en) Microelectrogravimetric method for plating a biosensor
TW200901937A (en) System and methods of chemistry patterning for a multiple well biosensor
JP3965245B2 (en) Cleaning method of oxygen detection element
US6096372A (en) Method for manufacturing O2 sensor with solid electrolyte member using conductive paste element
Salvo et al. Fabrication and functionalization of PCB gold electrodes suitable for DNA-based electrochemical sensing
CN113884554A (en) Method for preparing size-controllable nano needle type electrode
TW202210826A (en) Electrochemical sensor
JP3670846B2 (en) Method for forming conductive film of ceramic body
JP4423359B2 (en) Plating method
KR20190073084A (en) Needle array for blood glucose sensor utilizing nanostructre and painless blood glucose sensor and, manufacturing method thereof
JP4045679B2 (en) Blood collection analyzer
Zhang et al. Fabrication of iridium oxide neural electrodes at the wafer level
JP2001281198A (en) Apparatus and method for measuring liquid sample
KR100966620B1 (en) Non-enzymatic biosensor and method for manufacturing the biosensor
JPH06222033A (en) Method and apparatus for detecting corrosion of embedded reinforcing rod
JP3594726B2 (en) Method for forming porous film on ceramic body
JP2007248123A (en) Gas sensor element and manufacturing method of gas sensor
JP7127339B2 (en) ELECTROCHEMICAL SENSOR ELECTRODE CHIP AND MANUFACTURING METHOD THEREOF
JP3577816B2 (en) Method for manufacturing oxygen sensor element
CN116746918A (en) Minimally invasive electrochemical blood glucose sensor and preparation method thereof
JP3424399B2 (en) Urine component concentration measurement device
CN114137051B (en) Heterojunction nano-channel for dopamine specificity detection and preparation method thereof
JP2005146399A (en) Plating device, and method of inspecting contact state in contact point

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees