JP3964435B2 - Grid patch antenna - Google Patents

Grid patch antenna Download PDF

Info

Publication number
JP3964435B2
JP3964435B2 JP2005121850A JP2005121850A JP3964435B2 JP 3964435 B2 JP3964435 B2 JP 3964435B2 JP 2005121850 A JP2005121850 A JP 2005121850A JP 2005121850 A JP2005121850 A JP 2005121850A JP 3964435 B2 JP3964435 B2 JP 3964435B2
Authority
JP
Japan
Prior art keywords
short
conductor
parallel
patch
thin wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005121850A
Other languages
Japanese (ja)
Other versions
JP2006303846A (en
Inventor
保 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2005121850A priority Critical patent/JP3964435B2/en
Publication of JP2006303846A publication Critical patent/JP2006303846A/en
Application granted granted Critical
Publication of JP3964435B2 publication Critical patent/JP3964435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Description

本発明は、建物或いは車両の窓に設けられても、外部視界の透視ができるだけ遮られないようにするマイクロ波帯のマイクロストリップアンテナの技術分野に属する。   The present invention belongs to the technical field of a microstrip antenna in a microwave band, which is provided on a window of a building or a vehicle so that the perspective of the external field of view is not blocked as much as possible.

建物や車両の窓に設けられるアンテナであるから、できるだけ視界を遮らないような構成のアンテナが求められる。
そのため電極を設けるための誘電体基板としては、ガラスのような透明誘電体を用い(例えば、特許文献1)、また、電極として透明導電膜を用いたものもあり(例えば、特許文献2)、透明電極ではない例としては細線状導体を網目が形成されるように交差させて配置したものがある(例えば、特許文献3)。
Since the antenna is provided in a window of a building or vehicle, an antenna having a configuration that does not block the field of view as much as possible is required.
Therefore, as a dielectric substrate for providing an electrode, a transparent dielectric material such as glass is used (for example, Patent Document 1), and a transparent conductive film is used as an electrode (for example, Patent Document 2). As an example that is not a transparent electrode, there is one in which fine wire conductors are arranged so as to cross so as to form a mesh (for example, Patent Document 3).

図9は、透明誘電体基板の一方の面(図では裏面側)に多数の非透明な細線状の導体を四角い網目ができるように交差させて配置したものを地板9とし、他方の面(図では表面側)に同様の網目状の細線状導体を設けてこれをパッチ10とした従来のグリッドパッチアンテナの斜視図である。   FIG. 9 shows a base plate 9 in which a large number of non-transparent thin wire conductors are arranged so as to form a square mesh on one side (the back side in the figure) of a transparent dielectric substrate, and the other side ( FIG. 2 is a perspective view of a conventional grid patch antenna in which a similar mesh-like thin wire conductor is provided on the front surface side in FIG.

図10は、図9のアンテナの指向性計算結果をグラフ化した指向性図である。
特開2001−189616号公報([0007]、図1) 特開2003−17931号公報([0010]、図1) 特表2002−511691号公報([0025]、図6、[0033]、図7)
FIG. 10 is a directivity diagram in which the directivity calculation result of the antenna of FIG. 9 is graphed.
JP 2001-189616 A ([0007], FIG. 1) Japanese Patent Laying-Open No. 2003-17931 ([0010], FIG. 1) Japanese translation of PCT publication No. 2002-511691 ([0025], FIG. 6, [0033], FIG. 7)

上記従来技術において、透明導電膜は、面抵抗値が高くマイクロ波帯ではアンテナとしての効率が悪いという問題があり、また、細線状導体を網目のように交差させて地板やパッチを形成した場合には、建物や車両の窓に設けるには視界が遮られる程度がやはり目障りになるという問題がある。   In the above prior art, the transparent conductive film has a problem that the surface resistance value is high and the efficiency as an antenna is low in the microwave band, and when a ground plane or patch is formed by crossing thin wire conductors like a mesh However, there is a problem that the degree to which the field of view is blocked is obstructive when it is provided in a window of a building or a vehicle.

そこで、本発明の課題は、透明導電膜を用いず細線状導体の配置を網目状にしない工夫により、従来のグリッドパッチアンテナの性能に劣らないグリッドパッチアンテナを提供することである。   Therefore, an object of the present invention is to provide a grid patch antenna that does not deteriorate the performance of a conventional grid patch antenna by using a device that does not use a transparent conductive film and does not have a mesh arrangement of thin wire conductors.

上記課題を解決するために、本発明のグリッドパッチアンテナは以下の各構成を有する。
本発明の第1の構成は、透明誘電体基板の一方の面に、細線状導体が複数本平行に並んで配列され、それらの各両端それぞれが、前記平行方向と交差する方向で設けられた細線状短絡導体で短絡接続されて地板が形成され、前記誘電体基板の他方の面に、細線状導体が複数本前記平行方向と同じく並んで配列されそれらの各両端それぞれが前記交差方向で設けられた細線状短絡導体で短絡接続されてパッチが形成され、地板側にもパッチの前記短絡導体に対応する範囲に平行細線状導体を短絡する短絡導体を有し、前記パッチ上に給電点を有しその給電点を通り前記交差方向でパッチの複数平行細線状導体間を接続する細線状導体と、該細線状導体と対向する地板上の部分に該部分の複数平行細線状導体間を接続する細線状導体を有することを特徴とするグリッドパッチアンテナである。
In order to solve the above problems, the grid patch antenna of the present invention has the following configurations.
In the first configuration of the present invention, a plurality of fine wire conductors are arranged in parallel on one surface of a transparent dielectric substrate, and both ends thereof are provided in a direction intersecting the parallel direction. A ground plane is formed by short-circuiting with a thin wire-like short conductor, and a plurality of fine wire conductors are arranged side by side in the same direction as the parallel direction on the other surface of the dielectric substrate. A patch is formed by short-circuiting with the fine wire-like short-circuited conductor, and the ground plane side also has a short-circuit conductor that short-circuits the parallel fine-wire conductor in a range corresponding to the short-circuit conductor of the patch, and a feeding point is provided on the patch A thin wire conductor connecting the plurality of parallel thin wire conductors of the patch in the intersecting direction through the feeding point, and a portion on the ground plate facing the thin wire conductor between the plurality of parallel thin wire conductors of the portion. Have thin wire conductors A grid patch antenna according to claim.

本発明の第2の構成は、透明誘電体基板の一方の面に、細線状導体が複数本平行に並んで配列され、それらの各両端それぞれが、前記平行方向と交差する方向で設けられた細線状短絡導体で短絡接続されて地板が形成され、前記誘電体基板の他方の面に、細線状導体が複数本前記平行方向と同じく並んで配列されそれらの各両端それぞれが前記交差方向で設けられた細線状短絡導体で短絡接続されてパッチが形成され、地板側にもパッチの前記短絡導体に対応する範囲に平行細線状導体を短絡する短絡導体を有し、地板の交差方向細線状短絡導体のいずれか一方の途中位置に給電点を有し、該給電点と、パッチの、給電点側交差方向細線状短絡導体とが、地板の平行方向細線状導体と平行な前記誘電体基板の他方の面上のマイクロストリップ線路で接続されていることを特徴とするグリッドパッチアンテナである。   In the second configuration of the present invention, a plurality of fine wire conductors are arranged in parallel on one surface of the transparent dielectric substrate, and both ends thereof are provided in a direction intersecting the parallel direction. A ground plane is formed by being short-circuited by a thin wire-like short conductor, and a plurality of fine wire conductors are arranged side by side in the same direction as the parallel direction on the other surface of the dielectric substrate, and both ends thereof are provided in the intersecting direction. A patch is formed by short-circuiting with the fine wire-like short-circuited conductor, and the ground plane side also has a short-circuit conductor that short-circuits the parallel thin-wire conductor in a range corresponding to the short-circuit conductor of the patch, The dielectric substrate has a feeding point in the middle of any one of the conductors, and the feeding point and the feeding point side cross direction fine wire short-circuit conductor of the patch are parallel to the parallel thin wire conductor of the ground plane. Microstrip on the other side That are connected by road is grid patch antenna according to claim.

本発明の第3の構成は、透明誘電体基板の一方の面に、細線状導体が複数本平行に並んで配列されて地板が形成され、前記誘電体基板の他方の面に、細線状導体が複数本前記平行方向に並んで配列されそれらの一方側の各端それぞれが前記平行方向と交差する方向で設けられた細線状短絡導体で短絡接続されてパッチが形成され、地板の前記細線状短絡導体側端部のうちパッチの短絡接続範囲に対応する範囲を短絡する細線状導体を有し、該短絡細線状導体上に給電点を有し、該給電点とパッチの交差方向細線状短絡導体とが、地板の平行方向細線状導体と平行な前記誘電体基板の他方の面上のマイクロストリップ線路で接続されていることを特徴とするグリッドパッチアンテナである。   According to a third configuration of the present invention, a ground plate is formed by arranging a plurality of thin wire conductors arranged in parallel on one surface of a transparent dielectric substrate, and the thin wire conductor is formed on the other surface of the dielectric substrate. Are arranged side by side in the parallel direction, and one end of each of them is short-circuited by a thin wire-like short-circuit conductor provided in a direction crossing the parallel direction to form a patch, and the thin wire-like shape of the ground plane It has a thin wire conductor that short-circuits the range corresponding to the short-circuit connection range of the patch in the short-circuit conductor side end portion, and has a feeding point on the short-circuited thin wire conductor, The grid patch antenna is characterized in that the conductor is connected by a microstrip line on the other surface of the dielectric substrate parallel to the parallel thin wire conductor of the ground plane.

本発明は、平面上に、複数の線状導体が網目を形成するように交差して配列されている場合、交差しているうちの1つの方向が励振電界の方位となるように励振すると、その方向の導体は励振周波数で共振しているので、強い電流が流れる。一方、交差している線状導体に流れる電流は小さいが、これは、交差偏波を発生させ、不要なものである。しかしながら、励振方向と平行している隣の線状導体に励振電流を供給するために必要最小限の励振方向と交差する線状導体が少なくとも一本は必要である。そこで、この励振方向と交差する線状導体からの放射が打ち消し合うように給電点を通るY方向軸に関して対称になるように配置している。
以上の構成とすることで、所望の放射に必要な励振電界方向の線状導体を確保しつつ、不要な放射に寄与する交差方向の線状導体を極力排除することが可能となり、アンテナとしての指向特性は、ある場合に較べて、実用上殆ど劣らないということである。
In the present invention, when a plurality of linear conductors are arranged on a plane so as to form a mesh, when excited so that one of the intersecting directions becomes the direction of the excitation electric field, Since the conductor in that direction resonates at the excitation frequency, a strong current flows. On the other hand, the current flowing through the intersecting linear conductors is small, but this generates a cross polarization and is unnecessary. However, at least one linear conductor that intersects the minimum necessary excitation direction is necessary to supply an excitation current to an adjacent linear conductor that is parallel to the excitation direction. Therefore, the arrangement is made so as to be symmetric with respect to the Y-direction axis passing through the feeding point so that the radiation from the linear conductor intersecting with the excitation direction cancels each other.
With the above configuration, it becomes possible to eliminate the linear conductors in the crossing direction that contribute to unnecessary radiation as much as possible while securing the linear conductors in the direction of the excitation electric field necessary for the desired radiation. The directivity is practically inferior to some cases.

本発明は、この特性に基づいて、地板もパッチも基本的には励振電界の方向に平行に複数の細線状導体を配列したものである。
このことは両端部を除いて、交差方向の細線状導体は存在しないということになり、従来のような網目が形成される交差配列の場合に較べて、視界を遮る目障りの程度は非常に小さくなるという効果が得られる。
In the present invention, on the basis of this characteristic, both the ground plane and the patch are basically a plurality of fine wire conductors arranged in parallel to the direction of the excitation electric field.
This means that there are no thin wire conductors in the cross direction except at both ends, and the degree of obstruction that obstructs the field of view is very small as compared to the conventional cross arrangement in which a mesh is formed. The effect of becoming is obtained.

第1の構成においては、パッチの中央位置から導体の平行方向で概ね6分の1の位置が50Ωに整合する位置であるので、給電点はこの位置に設けるのが最良である。   In the first configuration, the position of approximately one-sixth in the parallel direction of the conductor from the central position of the patch is a position that matches 50Ω, and therefore it is best to provide the feeding point at this position.

第2の構成においては、パッチ端部のインピーダンスが高いので50Ωに整合させるために、給電用マイクロストリップ線の途中に4分の1波長変成器を設けるのが最良である。   In the second configuration, since the impedance at the patch end is high, it is best to provide a quarter-wave transformer in the middle of the feeding microstrip line to match 50Ω.

以下、本発明の実施例を図面を参照して説明する。
図1は、本発明中第1の構成の実施例の斜視図である。透明誘電体基板1の下面側に、等間隔で横方向(これをY方向とする)に平行に並んだ細線状導体と、その両端部に、各細線状導体の端部同士を短絡接続するように交差方向(縦方向、これをX方向とする)の細線状導体とからなる地板3が形成されている。
透明誘電体基板1の上面には、縦横の寸法が地板3よりは小さいパッチ2が形成されている。パッチ2も、横方向の細線状導体が等間隔で複数平行に配置され、その両側端はそれぞれの端部を短絡する交差方向(X方向)の細線状導体で短絡接続されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view of an embodiment of the first configuration in the present invention. The thin wire conductors arranged in parallel in the horizontal direction (this is the Y direction) at equal intervals on the lower surface side of the transparent dielectric substrate 1, and the ends of each thin wire conductor are short-circuited to both ends thereof. In this way, the ground plane 3 is formed which is composed of a thin wire conductor in the intersecting direction (vertical direction, which is the X direction).
On the upper surface of the transparent dielectric substrate 1, a patch 2 having vertical and horizontal dimensions smaller than that of the ground plane 3 is formed. The patch 2 also includes a plurality of horizontal thin wire conductors arranged in parallel at equal intervals, and both side ends thereof are short-circuited by thin wire conductors in an intersecting direction (X direction) that short-circuit each end.

そして、このパッチの短絡接続導体に対応する地板上にも部分的な交差方向の接続導体が設けられている。給電点4は、パッチ2の中央の位置からパッチの横方向長さの概ね6分の1の位置に設けられている。図では、横方向の7本の細線状導体の真中の導体に給電されるようになっている。
そして、この給電点4を通り交差方向(X方向)に、7本の横方向導体間を接続する細線状導体が設けられており、透明誘電体基板1を挟んで地板3側にも7本の横方向導体間を接続する細線状導体が設けられている。
And the connection conductor of the partial crossing direction is provided also on the ground plane corresponding to the short circuit connection conductor of this patch. The feeding point 4 is provided at a position approximately one-sixth of the lateral length of the patch from the center position of the patch 2. In the figure, power is supplied to the middle conductor of the seven thin wire conductors in the horizontal direction.
Then, thin wire conductors that connect the seven lateral conductors are provided in the crossing direction (X direction) through the feeding point 4, and seven conductors on the ground plate 3 side with the transparent dielectric substrate 1 interposed therebetween. A thin line-shaped conductor for connecting the horizontal conductors is provided.

図2は、図1のアンテナの計算による指向性図である。
従来の細線状導体を網目状に配置したアンテナ(図9)の指向性図(図10)に較べて遜色のない特性を示しており、背面方向(180度方向)のレベルはむしろ小さくなっているぐらいである。
FIG. 2 is a directivity diagram by calculation of the antenna of FIG.
Compared with the directivity diagram (FIG. 10) of the antenna (FIG. 9) in which the conventional thin wire conductors are arranged in a mesh shape, the level in the back direction (180 degree direction) is rather small. It is about.

図3は、本発明中第2の構成の実施例の斜視図である。
図1の構成と異なる点は、まず給電点の位置が異なる点である。図1ではパッチ2内に設けられていたが図3では地板6の左側のX方向の短絡導体上の中央位置にあり、図示されていない給電線(例えば同軸ケーブル)の外部導体側は地板6のX方向導体に接続され、中心導体側は透明誘電体基板1に設けられた孔を通ってパッチ面側に現れ、その位置からY方向に走るマイクロストリップ線路と50Ωに整合させるための4分の1波長変成器を経てパッチ5の左側X方向導体に接続されている。
FIG. 3 is a perspective view of an embodiment of the second configuration in the present invention.
The difference from the configuration of FIG. 1 is that the position of the feeding point is different. In FIG. 1, it is provided in the patch 2, but in FIG. 3, it is located at the center position on the short-circuit conductor in the X direction on the left side of the ground plane 6, and the external conductor side of the feeder line (for example, coaxial cable) not shown is the ground plane 6. The center conductor side passes through the hole provided in the transparent dielectric substrate 1 and appears on the patch surface side, and the microstrip line running in the Y direction from that position is matched with 50Ω. Are connected to the left X-direction conductor of the patch 5 through a one-wavelength transformer.

図4は、図3のアンテナの計算による指向性図である。
パッチ5への給電用のマイクロストリップ線路および4分の1波長変成器からの放射により、E面主偏波指向性が背面側での落ち込みが小さくなって非対称になっているが、概ね図10の指向特性に近い指向特性を示している。
FIG. 4 is a directivity diagram by calculation of the antenna of FIG.
Due to the radiation from the microstrip line for feeding power to the patch 5 and the quarter-wave transformer, the E-plane main polarization directivity becomes asymmetrical with less drop on the back side. The directivity characteristics close to the directivity characteristics are shown.

図5は、本発明中第3の構成の実施例の斜視図である。
図3の構成と異なる点は、まず地板8が図3の地板6と異なることである。地板8では右側のX方向導体が設けられておらず、左側においても、全平行導体に渡って設けられているのではなく、パッチ12のX方向幅に対応する範囲にしか設けられておらず、更に、パッチ12の左右両端のX方向に対応するX方向導体も設けられていない。
また、パッチ12も右側のX方向短絡導体を有していない。パッチ12への給電の仕方は図3の構成と同様である。
FIG. 5 is a perspective view of an embodiment of the third configuration in the present invention.
The difference from the configuration of FIG. 3 is that the ground plane 8 is different from the ground plane 6 of FIG. The base plate 8 is not provided with the right X-direction conductor, and is not provided over all the parallel conductors on the left side, but only in a range corresponding to the X-direction width of the patch 12. Furthermore, X-direction conductors corresponding to the X-directions at the left and right ends of the patch 12 are not provided.
Also, the patch 12 does not have a right X-direction short-circuit conductor. The method of supplying power to the patch 12 is the same as the configuration of FIG.

図6は、図5のアンテナの計算による指向性図である。
図4におけると同様に、E面主偏波指向性において、背面側での落ち込みが図10の場合よりも小さくなっているが、前面側においては図10の場合とあまり変わらない。
以上のように、本発明のグリッドパッチアンテナは、地板およびパッチともに、細線状導体を多数平行に配置しその左右各端側で交差方向(X方向)の短絡接続導体を設けたり、設けなかったり、或いは一部範囲に設けるという構成で、従来の図9のように網目状の構成ではないが、このような構成は、反射損失特性および透過損失特性においても、以下に説明する通り、網目構造のものに劣るものではない。
FIG. 6 is a directivity diagram by calculation of the antenna of FIG.
As in FIG. 4, in the E-plane main polarization directivity, the dip on the back side is smaller than that in FIG. 10, but on the front side is not much different from that in FIG. 10.
As described above, in the grid patch antenna of the present invention, both the ground plane and the patch are arranged with a large number of thin wire conductors in parallel, and the short-circuit connection conductors in the cross direction (X direction) are provided or not provided on the left and right ends thereof. Alternatively, it is provided in a part of the range, and is not a mesh-like configuration as in the conventional FIG. 9, but such a configuration also has a mesh structure as described below in the reflection loss characteristic and the transmission loss characteristic. Is not inferior to

図7は、細線状導体を多数縦横に交差させて網目を形成するように配置された場合の、入射電波に対する反射損失特性および透過損失特性を示す図である。
(a)は、網目配置構成を示す図であり、(b)は(a)の構成が無限に続く平面に電波(2.45GHz)が入射した場合に反射する割合と、透過しない割合を損失として計算し結果をグラフにしたものである。
計算は(a)の細線状導体の線幅と、メッシュ間隔の関係を光の透過率が95%で一定に維持されるようにしつつ、メッシュ間隔を広げて行くという条件のもとで行われ各メッシュ間隔に対する反射損失と透過損失を算出した。
(b)はメッシュ間隔を横軸にして両損失をグラフ化したものである。
FIG. 7 is a diagram showing reflection loss characteristics and transmission loss characteristics with respect to incident radio waves in the case where a large number of thin line conductors are vertically and horizontally crossed to form a mesh.
(A) is a diagram showing a mesh arrangement configuration, (b) is a loss of the ratio of reflection and non-transmission when radio waves (2.45 GHz) are incident on a plane where the configuration of (a) continues indefinitely And the result is graphed.
The calculation is performed under the condition of increasing the mesh interval while maintaining the relationship between the line width of the fine wire conductor and the mesh interval in (a) so that the light transmittance is kept constant at 95%. The reflection loss and transmission loss for each mesh interval were calculated.
(B) is a graph of both losses with the mesh interval as the horizontal axis.

アンテナとしては、入射電波に対して反射量が少なく、透過する量が少ない(換言すれば透過損失が大きい)方がよいことになる。これは入射電波ができるだけ多く受信機へ入力されるものがよいということである。
これを図7の(b)に即して言えば、反射損失は小さく(下方)、透過損失は大きい(上方)程よいということである。
As an antenna, it is preferable that the amount of reflection with respect to incident radio waves is small and the amount of transmission is small (in other words, the transmission loss is large). This means that as much incident radio waves as possible should be input to the receiver.
Speaking this in line with FIG. 7B, the smaller the reflection loss (lower) and the larger the transmission loss (upward), the better.

メッシュ間隔が1mmでは、反射損失は−15.6dB、透過損失は−0.11dBであるが、メッシュ間隔が広くなるにつれて反射損失は大きくなって(上昇して)行き、透過損失は小さくなって(下降して)行き、メッシュ間隔は10mmでは反射損失は−10dB、透過損失は−0.51dBとなっている。   When the mesh interval is 1 mm, the reflection loss is −15.6 dB and the transmission loss is −0.11 dB. However, as the mesh interval increases, the reflection loss increases (increases) and the transmission loss decreases. When the mesh interval is 10 mm, the reflection loss is -10 dB and the transmission loss is -0.51 dB.

他方、図8は、細線状導体が平行に無限に配置された場合の、入射電波に対する反射損失特性と透過損失特性を示す図である。
(a)は細線状導体の平行配置を示す図であり、(b)は(a)に示す配置が無限に続く平面に電波が入射した場合を図7の場合と同様に算出してグラフ化したものである。即ち、線幅と間隔の関係は光の透過率が95%一定を維持するようにして線幅を変えて行き、設定周波数は2.45GHzである。
On the other hand, FIG. 8 is a diagram showing the reflection loss characteristic and the transmission loss characteristic with respect to the incident radio wave when the thin wire conductors are arranged infinitely in parallel.
(A) is a figure which shows the parallel arrangement | positioning of a thin wire | line conductor, (b) is the same as the case of FIG. 7, and calculates the case where a radio wave injects into the plane where the arrangement shown in (a) continues infinitely. It is a thing. That is, the relationship between the line width and the interval is such that the line width is changed so that the light transmittance is kept constant at 95%, and the set frequency is 2.45 GHz.

図8の(b)を見ると、間隔1mmでは、反射損失は−16.4dB、透過損失は−0.1dBであり、図7の(b)と較べると反射損失は小さく、透過損失は大きくなっており、より好ましい数値となっている。
更に、間隔が10mmの場合について見れば、網目配列の図7の(b)では、前述のように、反射損失は−10dB、透過損失は−0.51dBであるのに対して、平行配列の図8の(b)では間隔1mmの場合と変わらず、反射損失は−16.4dB、透過損失は−0.1dBであるから平行配列の方が遥かに好ましいということになる。図7の(b)と図8の(b)を見較べて見れば、図7の(b)の方はメッシュ間隔が10mmまでの場合しか示されていないが、10mmを越える範囲においても、図8の平行配列の方が図7の網目(交差)配列の場合よりもアンテナとしては好ましいものであることが明らかである。
As shown in FIG. 8B, when the interval is 1 mm, the reflection loss is −16.4 dB and the transmission loss is −0.1 dB. Compared with FIG. 7B, the reflection loss is small and the transmission loss is large. It is a more preferable numerical value.
Further, in the case where the interval is 10 mm, in FIG. 7B of the mesh arrangement, the reflection loss is −10 dB and the transmission loss is −0.51 dB as described above, whereas the parallel arrangement is In FIG. 8B, the parallel loss is much more preferable because the reflection loss is -16.4 dB and the transmission loss is -0.1 dB, as in the case of the interval of 1 mm. 7 (b) and FIG. 8 (b) are compared, FIG. 7 (b) shows only the case where the mesh interval is up to 10 mm, but even in the range exceeding 10 mm, It is apparent that the parallel arrangement in FIG. 8 is more preferable as an antenna than the mesh (intersection) arrangement in FIG.

以上のように、本発明のアンテナは従来の網目配列形のアンテナと殆ど同等の指向特性を維持しつつ、また入射損失特性および透過損失特性においては優った特性を得つつ、交差方向の導体を用いない構成としたので、建物や車両の窓に配置した場合に、従来の網目型のものよりも目障りにならないという利点がある。   As described above, the antenna of the present invention maintains the directivity characteristics almost the same as those of the conventional mesh array antenna, and obtains excellent characteristics in the incident loss characteristics and the transmission loss characteristics, while maintaining the cross direction conductors. Since it is configured not to be used, there is an advantage that when it is arranged in a window of a building or a vehicle, it is less obstructive than a conventional mesh type.

本発明の第1の構成の実施例の斜視図である。It is a perspective view of the Example of the 1st structure of this invention. 図1のアンテナの、計算による指向性図である。It is a directivity figure by calculation of the antenna of FIG. 本発明の第2の構成の実施例の斜視図である。It is a perspective view of the Example of the 2nd structure of this invention. 図3のアンテナの、計算による指向性図である。FIG. 4 is a calculated directivity diagram of the antenna of FIG. 3. 本発明の第3の構成の実施例の斜視図である。It is a perspective view of the Example of the 3rd structure of this invention. 図5のアンテナの、計算による指向性図である。FIG. 6 is a calculated directivity diagram of the antenna of FIG. 5. 細線状導体を多数縦横に交差させて網目を無限に形成するように配置された場合の、入射電波に対する反射損失特性と透過損失特性を示す図である。It is a figure which shows the reflection loss characteristic and transmission loss characteristic with respect to an incident electromagnetic wave at the time of arrange | positioning so that many fine wire conductors may cross | intersect a length and breadth and it may form a mesh | network infinitely. 細線状導体が平行に無限に配置された場合の、入射電波に対する反射損失特性と透過損失特性を示す図である。It is a figure which shows the reflection loss characteristic and transmission loss characteristic with respect to an incident radio wave when a thin wire | line conductor is arrange | positioned infinitely in parallel. 透明誘電体基板の一方の面に、多数の非透明な細線状導体を四角い網目ができるように交差させて配置したものを地板とし、他方の面に同様の網目状の細線状導体を設けてこれをパッチとした従来のグリッドパッチアンテナの斜視図である。A ground plate is formed by crossing a large number of non-transparent thin wire conductors so that a square mesh can be formed on one surface of a transparent dielectric substrate, and a similar mesh-like thin wire conductor is provided on the other surface. It is a perspective view of the conventional grid patch antenna which used this as a patch. 図9のアンテナの指向性計算結果をグラフ化した指向性図である。FIG. 10 is a directivity diagram in which the antenna directivity calculation result of FIG. 9 is graphed.

符号の説明Explanation of symbols

1 透明誘電体基板
2 パッチ
3 地板
4 給電点
5 パッチ
6 地板
7 給電点
8 地板
9 地板
10 パッチ
11 マイクロストリップ線路
12 パッチ
DESCRIPTION OF SYMBOLS 1 Transparent dielectric substrate 2 Patch 3 Ground plane 4 Feeding point 5 Patch 6 Ground plane 7 Feeding point 8 Ground plane 9 Ground plane 10 Patch 11 Microstrip line 12 Patch

Claims (3)

透明誘電体基板の一方の面に、細線状導体が複数本平行に並んで配列され、それらの各両端それぞれが、前記平行方向と交差する方向で設けられた細線状短絡導体で短絡接続されて地板が形成され、前記誘電体基板の他方の面に、細線状導体が複数本前記平行方向と同じく並んで配列されそれらの各両端それぞれが前記交差方向で設けられた細線状短絡導体で短絡接続されてパッチが形成され、地板側にもパッチの前記短絡導体に対応する範囲に平行細線状導体を短絡する短絡導体を有し、前記パッチ上に給電点を有しその給電点を通り前記交差方向でパッチの複数平行細線状導体間を接続する細線状導体と、該細線状導体と対向する地板上の部分に該部分の複数平行細線状導体間を接続する細線状導体を有することを特徴とするグリッドパッチアンテナ。   A plurality of fine wire conductors are arranged in parallel on one surface of the transparent dielectric substrate, and both ends of each are short-circuited by thin wire short-circuit conductors provided in a direction crossing the parallel direction. A ground plane is formed, and on the other surface of the dielectric substrate, a plurality of fine wire conductors are arranged side by side in the same direction as the parallel direction, and both ends thereof are short-circuited by thin wire short conductors provided in the intersecting direction. A patch is formed, the ground plane side also has a short-circuit conductor that short-circuits a parallel thin wire conductor in a range corresponding to the short-circuit conductor of the patch, has a feeding point on the patch, passes through the feeding point, and crosses A thin wire conductor that connects between a plurality of parallel thin wire conductors of the patch in a direction, and a thin wire conductor that connects between the plurality of parallel thin wire conductors of the portion on a portion of the ground plate facing the thin wire conductor. Grid pad Chiantena. 透明誘電体基板の一方の面に、細線状導体が複数本平行に並んで配列され、それらの各両端それぞれが、前記平行方向と交差する方向で設けられた細線状短絡導体で短絡接続されて地板が形成され、前記誘電体基板の他方の面に、細線状導体が複数本前記平行方向と同じく並んで配列されそれらの各両端それぞれが前記交差方向で設けられた細線状短絡導体で短絡接続されてパッチが形成され、地板側にもパッチの前記短絡導体に対応する範囲に平行細線状導体を短絡する短絡導体を有し、地板の交差方向細線状短絡導体のいずれか一方の途中位置に給電点を有し、該給電点と、パッチの、給電点側交差方向細線状短絡導体とが、地板の平行方向細線状導体と平行な前記誘電体基板の他方の面上のマイクロストリップ線路で接続されていることを特徴とするグリッドパッチアンテナ。   A plurality of fine wire conductors are arranged in parallel on one surface of the transparent dielectric substrate, and both ends of each are short-circuited by thin wire short-circuit conductors provided in a direction crossing the parallel direction. A ground plane is formed, and on the other surface of the dielectric substrate, a plurality of fine wire conductors are arranged side by side in the same direction as the parallel direction, and both ends thereof are short-circuited by thin wire short conductors provided in the intersecting direction. A patch is formed, and the ground plane side also has a short-circuit conductor that short-circuits the parallel thin wire conductor in a range corresponding to the short-circuit conductor of the patch, A microstrip line on the other surface of the dielectric substrate that has a feeding point and the feeding point side crossing direction fine wire short-circuit conductor of the patch is parallel to the parallel thin wire conductor of the ground plane Connected Grid patch antenna according to claim. 透明誘電体基板の一方の面に、細線状導体が複数本平行に並んで配列されて地板が形成され、前記誘電体基板の他方の面に、細線状導体が複数本前記平行方向に並んで配列されそれらの一方側の各端それぞれが前記平行方向と交差する方向で設けられた細線状短絡導体で短絡接続されてパッチが形成され、地板の前記細線状短絡導体側端部のうちパッチの短絡接続範囲に対応する範囲を短絡する細線状導体を有し、該短絡細線状導体上に給電点を有し、該給電点とパッチの交差方向細線状短絡導体とが、地板の平行方向細線状導体と平行な前記誘電体基板の他方の面上のマイクロストリップ線路で接続されていることを特徴とするグリッドパッチアンテナ。



















A ground plane is formed by arranging a plurality of fine wire conductors arranged in parallel on one surface of the transparent dielectric substrate, and a plurality of fine wire conductors arranged in the parallel direction on the other surface of the dielectric substrate. A patch is formed by short-circuiting each of one end of each of them arranged with a thin wire-like short-circuit conductor provided in a direction crossing the parallel direction, and the patch of the fine-wire short-circuit conductor side end portion of the ground plane is formed. A thin wire conductor that short-circuits a range corresponding to the short-circuit connection range, a feeding point on the short-circuited thin wire conductor, and the feeding point and the cross-direction thin wire-like shorting conductor of the patch A grid patch antenna, which is connected by a microstrip line on the other surface of the dielectric substrate parallel to the conductor.



















JP2005121850A 2005-04-20 2005-04-20 Grid patch antenna Active JP3964435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121850A JP3964435B2 (en) 2005-04-20 2005-04-20 Grid patch antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121850A JP3964435B2 (en) 2005-04-20 2005-04-20 Grid patch antenna

Publications (2)

Publication Number Publication Date
JP2006303846A JP2006303846A (en) 2006-11-02
JP3964435B2 true JP3964435B2 (en) 2007-08-22

Family

ID=37471617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121850A Active JP3964435B2 (en) 2005-04-20 2005-04-20 Grid patch antenna

Country Status (1)

Country Link
JP (1) JP3964435B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2223379B1 (en) * 2007-12-06 2017-10-18 Telefonaktiebolaget LM Ericsson (publ) Display arrangement
US8144018B1 (en) * 2008-03-06 2012-03-27 Sensormatic Electronics, LLC Combination electronic article surveillance/radio frequency identification antenna and method
FR2955430A1 (en) 2010-01-21 2011-07-22 Bouygues Telecom Sa OPTICALLY TRANSPARENT PRINTED ANTENNA WITH A MESH MASS PLAN
US8665161B2 (en) * 2011-05-11 2014-03-04 Harris Corporation Electronic device including a patch antenna and visual display layer and related methods
US8872711B2 (en) * 2011-05-11 2014-10-28 Harris Corporation Electronic device including a patch antenna and photovoltaic layer and related methods
JP6948607B2 (en) * 2016-03-25 2021-10-13 大日本印刷株式会社 antenna
JP6768212B2 (en) * 2016-03-25 2020-10-14 大日本印刷株式会社 antenna
JP6869649B2 (en) * 2016-06-13 2021-05-12 ラピスセミコンダクタ株式会社 Manufacturing methods for semiconductor devices, communication systems and semiconductor devices.
US11101555B2 (en) 2018-02-23 2021-08-24 Nihon Dengyo Kosaku Co., Ltd. Structure, antenna structure, radio wave shielding structure, and touch panel including mesh-like transparent conductor
EP3584884A1 (en) * 2018-06-19 2019-12-25 Nokia Solutions and Networks Oy Antenna
WO2020071316A1 (en) * 2018-10-03 2020-04-09 Agc株式会社 Planar antenna and window glass
WO2020095786A1 (en) * 2018-11-06 2020-05-14 Agc株式会社 Substrate
JP2020120262A (en) 2019-01-23 2020-08-06 ソニーセミコンダクタソリューションズ株式会社 Antenna and millimeter wave sensor
CN115552726A (en) * 2020-05-13 2022-12-30 富士胶片株式会社 Antenna with a shield
WO2023209833A1 (en) * 2022-04-27 2023-11-02 三菱電機株式会社 Antenna device

Also Published As

Publication number Publication date
JP2006303846A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP3964435B2 (en) Grid patch antenna
CN207265223U (en) Antenna, antenna module, four-terminal port antennae component and multi-port antenna component
CN102349192B (en) Resonator antenna
US10665954B2 (en) Leaky-wave antenna
KR100755632B1 (en) Multi-band u-slot antenna
WO2021042862A1 (en) Antenna, antenna array, and communication device
US11264730B2 (en) Quad-port radiating element
JP5060588B2 (en) Polarization diversity antenna
CN102800954B (en) Antenna unit, antenna module and multi-antenna module
US10270180B2 (en) Antenna apparatus
CN209045768U (en) A kind of electricity tune antenna for base station
JP2008283381A (en) Antenna device
JP2009200776A (en) Polarization diversity antenna
US11791559B1 (en) Broadband solar cell antenna
KR20120053884A (en) Patch array antenna for radar detector
CN107534221B (en) Leaky-wave antenna
CN111262005A (en) Dual-polarized broadband magnetoelectric dipole antenna unit suitable for 5G base station and antenna array
US9537203B2 (en) Antenna device
CN110783698B (en) Dual-frequency radiation unit and base station antenna
JP2004146978A (en) Unbalanced antenna
CN111009725B (en) Leaky-wave antenna
CN101310413A (en) Flat antenna system with a direct waveguide access
US11404786B2 (en) Planar complementary antenna and related antenna array
JP2013197987A (en) Antenna device
CN105633562B (en) Dual band antenna

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070523

R150 Certificate of patent or registration of utility model

Ref document number: 3964435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6