JP3963903B2 - Method for measuring erosion rate of formation - Google Patents

Method for measuring erosion rate of formation Download PDF

Info

Publication number
JP3963903B2
JP3963903B2 JP2004087710A JP2004087710A JP3963903B2 JP 3963903 B2 JP3963903 B2 JP 3963903B2 JP 2004087710 A JP2004087710 A JP 2004087710A JP 2004087710 A JP2004087710 A JP 2004087710A JP 3963903 B2 JP3963903 B2 JP 3963903B2
Authority
JP
Japan
Prior art keywords
formation
cosmic
exposure time
relationship
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004087710A
Other languages
Japanese (ja)
Other versions
JP2005274334A (en
Inventor
保典 馬原
Original Assignee
馬原 みどり
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 馬原 みどり filed Critical 馬原 みどり
Priority to JP2004087710A priority Critical patent/JP3963903B2/en
Publication of JP2005274334A publication Critical patent/JP2005274334A/en
Application granted granted Critical
Publication of JP3963903B2 publication Critical patent/JP3963903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、宇宙線照射により生成される複数の長半減期核種の濃度を測定することによる地層の浸食速度測定方法に関する。   The present invention relates to a method for measuring an erosion rate of a formation by measuring concentrations of a plurality of long half-life nuclides generated by cosmic ray irradiation.

地表面から鉛直方向に宇宙線照射により生成される、14C、10Be、26Al等の複数の長半減期核種の濃度を測定し、地表面から任意の深度で、主に宇宙線の核破砕機構による核種生成が始まってからの時間を推定することによって、地層の風化浸食速度(erosion rate)あるいは隆起速度(uplift rate)を推定することが行われている。 Measure the concentration of multiple long-lived nuclides such as 14 C, 10 Be, and 26 Al generated by cosmic ray irradiation in the vertical direction from the ground surface. Estimating weathering erosion rate or uplift rate of formation is estimated by estimating the time from the start of nuclide generation by the crushing mechanism.

この測定原理を以下に説明する。
図1に示すように、宇宙線が地表面に降り注ぐと、鉱物、特に風化に対して高い抵抗性を持つ石英に含まれる元素であるO、Siと宇宙線の間で核反応が発生する。この核反応には、核破砕(Cosmic-ray Spallation)、ミューオン キャプチャー(Muon capture)、ファースト ミューオン インデュースト リアクション(Fast muon induced reactions)があり、これらの核反応によって、図2に示すように、14C、10Be、26Alが生成される。
This measurement principle will be described below.
As shown in FIG. 1, when cosmic rays fall on the ground surface, a nuclear reaction occurs between O, Si, which are elements contained in minerals, particularly quartz having high resistance to weathering, and cosmic rays. These nuclear reactions include nuclear disruption (Cosmic-ray Spallation), muon capture (Muon capture), and fast muon induced reactions. As shown in FIG. 14 C, 10 Be, 26 Al are produced.

宇宙線の曝露時間の増加に伴って、核反応によって生成される核種の量は増加し、14Cでは4万年程度、26Alでは500万年程度、10Beでは1000万年程度経過すると、一定の放射能に達する。図3は、曝露時間と生成される放射性核種量との関係を示しており、この関係に基づいて地表面付近(10m.w.e以浅)の任意の深度における曝露時間の長さを推定することができる。
宇宙線強度が時間的に変化しないと仮定すると、一定の宇宙線強度下で任意深度にある鉱物(ここでは石英)中で、宇宙線曝露時間の長さと、14C、26Al、10Beの生成される放射能濃度Cは、それぞれの飽和放射能濃度(無限時間曝露されたときに持つ放射能濃度)Csで規格化して表すと、それぞれの半減期の長さの違いによって、この図に示す曲線上に沿って生成され、最終的には飽和放射能濃度に等しくなる。(C/Cs=1)。半減期の違いによってC/Cs=1に達するまでに要する時間に違いが生じ、この差を利用して曝露時間を推定する。
As the exposure time of cosmic rays increases, the amount of nuclides produced by the nuclear reaction increases, and after about 40,000 years for 14 C, about 5 million years for 26 Al, and about 10 million years for 10 Be, It reaches a certain level of radioactivity. FIG. 3 shows the relationship between the exposure time and the amount of radionuclide produced. Based on this relationship, the length of the exposure time at an arbitrary depth near the ground surface (below 10 m.w.e) is estimated. be able to.
Assuming that the cosmic ray intensity does not change with time, the length of cosmic ray exposure time in minerals (here, quartz) at an arbitrary depth under a constant cosmic ray intensity, and 14 C, 26 Al, 10 Be The generated radioactivity concentration C is normalized by each saturated radioactivity concentration (radioactivity concentration when exposed to infinite time) Cs, and this figure shows that due to the difference in the length of each half-life. It is generated along the curve shown and will eventually be equal to the saturated radioactivity concentration. (C / Cs = 1). The difference in half-life causes a difference in the time required to reach C / Cs = 1, and this difference is used to estimate the exposure time.

宇宙線の核反応のうちで地表面から10m.w.e(岩石層では3〜4mに相当)の深度までは、どの核種の生成においても、核破砕(Cosmic-ray Spallation)が卓越している。この様子を図4から図6に示す。   Cosmic-ray Spallation is prominent in the generation of any nuclide up to 10m.w.e (corresponding to 3-4m in the rock formation) from the ground surface among nuclear reactions of cosmic rays. Yes. This state is shown in FIGS.

図4は、石英(SiO2)中で宇宙線被曝によって1年間に生成される14C原子数と深度の関係を示し、宇宙線被曝によって核種が生成される機構は核破砕、ストップ・ミューオン、ファースト・ミューオンの順で支配的である。
図5は、石英(SiO2)中で宇宙線被曝によって1年間に生成される26Al原子数と深度の関係を示し、宇宙線被曝によって核種が生成される機構は核破砕、ストップ・ミューオン、ファースト・ミューオンの順で支配的である。
図6は、石英(SiO2)中で宇宙線被曝によって1年間に生成される10Be原子数と深度の関係を示し、宇宙線被曝によって核種が生成される機構は核破砕、ストップ・ミューオン、ファースト・ミューオンの順で支配的である。
Figure 4 shows the relationship between the number of 14 C atoms produced in quartz (SiO 2 ) by cosmic ray exposure and the depth in one year, and the mechanism by which nuclides are produced by cosmic ray exposure is nuclear fragmentation, stop muon, It is dominant in the order of the first muon.
Figure 5 shows the relationship between the number of 26 Al atoms generated by cosmic ray exposure in quartz (SiO 2 ) and the depth in one year, and the mechanism by which nuclides are generated by cosmic ray exposure is nuclear fragmentation, stop muon, It is dominant in the order of the first muon.
Fig. 6 shows the relationship between the number of 10 Be atoms generated by cosmic ray exposure in quartz (SiO 2 ) and depth for one year, and the mechanism by which nuclides are generated by cosmic ray exposure is nuclear fragmentation, stop muon, It is dominant in the order of the first muon.

特に1m.w.e深度(地表付近では、1m程度)までは、上述のストップ・ミューオン、ファースト・ミューオンの機構に比べて、核破砕が圧倒的に大きく、かつ、地表付近と生成量に大きな差がないため、深度依存がなく、ほぼ一定と仮定できる。そこで、宇宙線による曝露時間が、生成される核種の半減期に比べて十分に長ければ、風化浸食速度が核種の半減期に比べて遅く、放射平衡に達しているはずである。逆に、宇宙線による曝露時間が、生成される核種の半減期に比べて短ければ、風化浸食速度が核種の半減期に比べて速く、放射平衡に達していない。   Especially up to 1m.w.e depth (around 1m near the surface), the nuclear fragmentation is overwhelmingly large compared to the above-mentioned stop muon and first muon mechanisms, and the generation near the surface is large. Since there is no difference, it can be assumed that there is no depth dependence and is almost constant. Therefore, if the exposure time with cosmic rays is sufficiently long compared to the half-life of the produced nuclide, the weathering erosion rate should be slow compared to the half-life of the nuclide and reach radiation equilibrium. Conversely, if the exposure time by cosmic rays is shorter than the half-life of the produced nuclide, the weathering erosion rate is faster than the half-life of the nuclide and the radiation equilibrium is not reached.

これらのことを踏まえて、現状においては、風化浸食や隆起がなければ、宇宙線による曝露時間とこれらの核種の濃度(生成速度)から、石英の元素構成に基づいて地層内の核種濃度を理論的に推定することができる。例えば、石英を対象に10Beと26Al の比と10Be原子数を2次元的にプロットし、風化浸食速度(erosion rate)(10-6cm/y以下)を推定し、推定した理論曲線にフィールド・データをフィティングして求める手法が提案されており、この内容が非特許文献1に記載されている。その一例を図7、図8に示す。
この方法では、風化浸食速度を適当な大きさに仮定し、10Beと26Al の比と10Be原子数を解析し、2次元的に理論曲線を数本引いておきこれらの曲線に実測データをプロットして、最も近い曲線から風化浸食速度を推定している。
Based on these facts, in the present situation, if there is no weathering erosion or uplift, the nuclide concentration in the formation is theoretically calculated based on the elemental composition of quartz from the exposure time by cosmic rays and the concentration (generation rate) of these nuclides. Can be estimated. For example, quartz 10 Be and 26 Al targeting ratio and the number of 10 Be atoms 2 dimensionally plotted to estimate the weathering rate of erosion (erosion rate) (10 -6 cm / y or less), the estimated theoretical curve A technique for obtaining field data by fitting is proposed, and the contents thereof are described in Non-Patent Document 1. An example is shown in FIGS.
In this method, assuming a weathering erosion rates to a suitable size, 10 Be and 26 analyzes the ratio and the number of 10 Be atoms Al, 2-dimensionally measured data for these curves keep pulling several theoretical curve And weathering erosion rate is estimated from the nearest curve.

図7(a)は、 石英(SiO2)中で宇宙線被曝によって1年間に生成される10Be原子数と26Al/10Be比の関係を示しており、上側の値は、ゼロ浸食の場合の曝露時間であり、下側の値は定常浸食速度(10-1〜10-6cm/y)を持つ状態での曝露時間と浸食速度の関係を示す。右側にいくほど浸食速度が小さくなり、曝露時間も増加している。図7(b)は、 石英(SiO2)中で宇宙線被曝によって1年間に生成される26Al原子数と26Al/10Be比の関係を示す。ここでも、右側にいくほど浸食速度が小さくなり、曝露時間も増加している。 7 (a) is silica (SiO 2) in shows the relationship of cosmic rays number 10 Be atoms generated per year by exposure and 26 Al / 10 Be ratio, the upper value is zero erosion The lower value shows the relationship between the exposure time and the erosion rate in a state having a steady erosion rate (10 −1 to 10 −6 cm / y). The further to the right, the lower the erosion rate and the longer the exposure time. FIG. 7 (b) shows the relationship between the number of 26 Al atoms generated in one year by cosmic ray exposure in quartz (SiO 2 ) and the 26 Al / 10 Be ratio. Again, the erosion rate decreases and exposure time increases toward the right.

図8は、石英(SiO2)中で宇宙線被曝によって生成される10Be原子数と26Al/10Be比の理論曲線と実測値との比較を示したものであり、上側の値は、ゼロ浸食の場合の曝露時間であり、下側の値は定常浸食速度(10-1〜10-6cm/y)を持つ状態での曝露時間と浸食速度の関係を示す。実測値は理論値から外れている部分もありこの関係から浸食速度を評価するのは難しいことがわかる。 FIG. 8 shows a comparison between the theoretical curve of 10 Be atoms generated by cosmic ray exposure in quartz (SiO 2 ) and the 26 Al / 10 Be ratio and the measured values. It is the exposure time in the case of zero erosion, and the lower value shows the relationship between the exposure time and the erosion rate in a state having a steady erosion rate (10 −1 to 10 −6 cm / y). The actual measurement value is partly out of the theoretical value, and this relationship shows that it is difficult to evaluate the erosion rate.

このように、フィールド・データをプロットするとデータのばらつきが理論値を超えている場合も多く判断が難しく、精度がよくない。この原因は、10Beと26Alの半減期の長さに起因している。その半減期が、10Beで160万年、26Alで71.6万年と比較的長く、せいぜい2倍程度の違いしかない。そのために数百万年の時間ではその差が際立ってこない。これにより、理論曲線が重なってしまうという欠点がある。 In this way, when field data is plotted, it is often difficult to judge even when the variation of the data exceeds the theoretical value, and the accuracy is not good. This is due to the long half-life of 10 Be and 26 Al. Its half-life is relatively long, 1.6 million years at 10 Be and 716,000 years at 26 Al, and there is only a difference of about twice. For that reason, the difference does not stand out in millions of years. This has the disadvantage that the theoretical curves overlap.

この方法に替わって、フィリップス(Phillip)等は36Clを用いた手法を提案しているが、測定対象が石英ではない別の鉱物であるドロマイト(Dolomite)を用いている点で、同じ地点での宇宙線の影響等を考えた時、その幾何効率などで別途検討しなければならない要素を含むため、評価が複雑となる欠点を持っている。また、ドロマイト(Dolomite)は石英に比べて風化に弱いという欠点がある。 Instead of this method, Phillip et al. Have proposed a method using 36 Cl, but at the same point, Dolomite, another mineral that is not quartz, is used for measurement. When considering the effects of cosmic rays, it includes the elements that must be considered separately in terms of its geometric efficiency, etc., and thus has a drawback that the evaluation becomes complicated. In addition, Dolomite has a drawback that it is weaker to weathering than quartz.

ケイ、ニシズミ など(K.Nishiizumi et.al)、アース アンド プラネタリ サイエンス レターズ(Earth and Planetary Science Letters),104(1991)440-454K. Nishiizumi et.al, Earth and Planetary Science Letters, 104 (1991) 440-454

本発明は、このような事情を考慮してなされたもので、宇宙線曝露によって生成される核種の半減期の違いに着目して、精度よく曝露時間を測定することが可能な地層の浸食速度測定方法を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and focusing on the difference in the half-life of nuclides produced by cosmic ray exposure, the erosion rate of the formation that can accurately measure the exposure time An object is to provide a measurement method.

以上の課題を解決するために、本発明は、宇宙線の曝露によって地層に含まれる鉱物中で生成される放射性核種の濃度を測定し、その濃度から地層の任意の位置での宇宙線曝露時間と前記放射性核種の成長過程の関係を推定して地層の宇宙線による曝露時間を測定する方法であって、前記放射性核種のうち、14C、10Be、26Alの濃度を測定し、14Cと26Alとの比、及び14Cと10Beとの比に基づいて宇宙線曝露時間と14C、26Al、10Beの成長過程の関係を推定して地層の浸食速度を測定することを特徴とする年代測定方法である。
14Cは10Be及び26Alとは半減期が大きく異なるため、宇宙線曝露期間の測定範囲が数千年の範囲から数百万年の範囲へと広がることから、地層の表面が形成されてからの経過時間測定の精度が向上する。
In order to solve the above problems, the present invention measures the concentration of radionuclides produced in minerals contained in the formation by exposure to cosmic rays, and the exposure time of cosmic rays at any position in the formation from the concentration. wherein estimating the relationship between the growth process of the radionuclide to a method of measuring the exposure time by cosmic rays of the formation of the radionuclide, to determine the concentration of 14 C, 10 be, 26 Al , 14 C To estimate the relationship between the cosmic ray exposure time and the growth process of 14 C, 26 Al, 10 Be based on the ratio of C and 26 Al, and the ratio of 14 C and 10 Be. It is a characteristic dating method.
Since 14 C has a significantly different half-life from 10 Be and 26 Al, the measurement range of the cosmic ray exposure period extends from a range of thousands of years to a range of millions of years. The accuracy of the elapsed time measurement from is improved.

本発明によると、14C、10Be、26Alの濃度を測定し、14Cと26Alとの比、及び14Cと10Beとの比に基づいて宇宙線曝露時間と14C、26Al、10Beの成長過程の関係を推定して地層の浸食速度を測定することにより、地層の表面が形成されてからの経過時間測定の精度を向上させることができる。 According to the present invention, the concentration of 14 C, 10 Be, 26 Al is measured, and based on the ratio of 14 C to 26 Al and the ratio of 14 C to 10 Be, the cosmic ray exposure time and 14 C, 26 Al The accuracy of measurement of the elapsed time after the formation of the surface of the formation can be improved by estimating the relationship of the growth process of 10 Be and measuring the erosion rate of the formation.

以下に、本発明をその実施形態に基づいて説明する。
図9に、石英(SiO2)中で宇宙線被曝によって生成される10Be、26Al、14C原子数の飽和濃度と曝露時間の理論曲線を示す。石英の中では、図2に示したように、宇宙線曝露によって10Be、26Al以外に14Cが、石英に含まれる酸素の核破砕によって生成されるが、14Cは10Beや26Alに比べて著しく半減期が短く、5730年である。宇宙線の強度に変化がなく、地層が同じ環境条件の下で宇宙線曝露され続けたとすると、同一条件下では40000年程度で放射平衡に達する。
Below, this invention is demonstrated based on the embodiment.
FIG. 9 shows a theoretical curve of the saturation concentration of 10 Be, 26 Al, and 14 C atoms generated by cosmic ray exposure in quartz (SiO 2 ) and the exposure time. In quartz, as shown in FIG. 2, but 14 C in addition to 10 Be, 26 Al by cosmic rays exposure, are produced by the spallation of oxygen contained in the quartz, 14 C is 10 Be and 26 Al The half-life is significantly shorter than that of 5730 years. If there is no change in the intensity of cosmic rays and the formation continues to be exposed to cosmic rays under the same environmental conditions, radiation equilibrium will be reached in about 40000 years under the same conditions.

一方、10Beと26Alについては、放射平衡に達するまでに要する時間は、26Alで500万年、10Beで1000万年程度となる。そこで、本発明においては、従来において10Beと26Alの比を取っていたことに替えて、14C-26Al、14C-10Beの比を測定し、曝露時間に対して3次元プロットを描くことにより、半減期の差が際立たせて、地層の浸食速度測定の分解能を改善したものである。
図10に、曝露時間と10Be/14C比,26Al/14C比との関係を示す。曝露時間が102〜107年の間で、10Be/14C比は0.4〜100、26Al/14C比は2.5〜300程度まで変化し、従来の26Al/10Be比だけでは、2.88〜6.0の範囲でしか変化しなかったのに対して、その変動範囲が最大で50倍程度大きくなり、分解能も向上する。
On the other hand, for 10 Be and 26 Al, the time required to reach radiation equilibrium is about 5 million years at 26 Al and about 10 million years at 10 Be. Therefore, in the present invention, the ratio of 14 C- 26 Al and 14 C- 10 Be is measured instead of the conventional ratio of 10 Be and 26 Al, and the three-dimensional plot is plotted against the exposure time. By drawing, the resolution of the erosion rate measurement of the formation is improved by making the difference in half life stand out.
FIG. 10 shows the relationship between the exposure time and the 10 Be / 14 C ratio and 26 Al / 14 C ratio. With an exposure time of 10 2 to 10 7 years, the 10 Be / 14 C ratio changed from 0.4 to 100, and the 26 Al / 14 C ratio changed from about 2.5 to 300, and the conventional 26 Al / 10 Be was changed. While the ratio only changed in the range of 2.88 to 6.0, the fluctuation range is increased by about 50 times and the resolution is improved.

14Cを対象とすることによって、核破砕を主体とする宇宙線曝露期間の測定範囲が、数千年の範囲から数百万年の期間へと広がることから、地層の表面が形成されてからの経過時間測定の精度が向上する。 By targeting 14 C, the measurement range of the cosmic ray exposure period, which mainly consists of nuclear spallation, extends from a range of thousands of years to a period of millions of years. The accuracy of the elapsed time measurement is improved.

本発明は、地層の形成年代と地層の浸食に伴う変化速度を推定する方法として利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used as a method for estimating the formation age of a formation and the rate of change associated with formation erosion.

宇宙線の曝露により地層中の石英が原子核反応を起こす様子を示す図である。It is a figure which shows a mode that the quartz in the formation raise | generates a nuclear reaction by exposure of a cosmic ray. 石英を構成する酸素と珪素が原子核反応を起こして放射性核種を生成する様子を示す図である。It is a figure which shows a mode that oxygen and silicon which comprise quartz generate | occur | produce a nuclear reaction, and produce | generate a radionuclide. 宇宙線の曝露時間と生成される放射性核種量との理論曲線を示す図である。It is a figure which shows the theoretical curve of the exposure time of a cosmic ray, and the amount of radionuclides produced | generated. 石英(SiO2)中で宇宙線被曝によって1年間に生成される14C原子数と深度の関係を示す図である。By exposure to cosmic rays in quartz (SiO 2) is a diagram showing the relationship between 14 C atoms and depth generated per year. 石英(SiO2)中で宇宙線被曝によって1年間に生成される26Al原子数と深度の関係を示す図である。By exposure to cosmic rays in quartz (SiO 2) is a diagram showing a relationship 26 Al atoms and depth generated per year. 石英(SiO2)中で宇宙線被曝によって1年間に生成される10Be原子数と深度の関係を示す図である。Quartz is a diagram showing a (SiO 2) 10 Be atoms generated per year by exposure to cosmic rays and depth relationship in. (a)は、 石英(SiO2)中で宇宙線被曝によって1年間に生成される10Be原子数と26Al /10Be比の関係を示す図であり、 (b)は、 石英(SiO2)中で宇宙線被曝によって1年間に生成される26Al原子数と26Al /10Be比の関係を示す図である。(a) is a diagram showing the relationship between quartz (SiO 2) number 10 Be atoms generated per year by cosmic ray exposure in a 26 Al / 10 Be ratio, (b) are quartz (SiO 2 ) is a diagram showing the relationship between 26 Al atoms generated per year by exposure to cosmic rays and 26 Al / 10 be ratio in. 石英(SiO2)中で宇宙線被曝によって生成される10Be原子数と26Al /10Be比の理論曲線と実測値との比較を示す図である。Quartz is a diagram showing a comparison of the (SiO 2) actual measurement value and the theoretical curve of the number of 10 Be atoms produced by cosmic ray exposure and 26 Al / 10 Be ratio in. 石英(SiO2)中で宇宙線被曝によって生成される10Be、26Al 、14C原子数の飽和濃度と曝露時間の理論曲線を示す図である。Quartz is a diagram showing a theoretical curve of (SiO 2) 10 Be, 26 Al, 14 C atoms, saturated concentration exposure time generated by cosmic ray exposure in. 曝露時間と10Be/ 14C比,26Al/ 14C比との関係を示す図である。Exposure time 10 Be / 14 C ratio, which is a diagram showing the relationship between the 26 Al / 14 C ratios.

Claims (1)

宇宙線の曝露によって地層に含まれる鉱物中で生成される放射性核種の濃度を測定し、その濃度から地層の任意の位置での宇宙線曝露時間と前記放射性核種の成長過程の関係を推定して地層の浸食速度を測定する方法であって、前記放射性核種のうち、14C、10Be、26Alの濃度を測定し、14Cと26Alとの比、及び14Cと10Beとの比に基づいて宇宙線曝露時間と14C、26Al、10Beの成長過程の関係を推定して地層の宇宙線暴露時間を測定することを特徴とする地層の浸食速度測定方法。 Measure the concentration of radionuclides produced in minerals contained in the stratum by exposure to cosmic rays, and estimate the relationship between the cosmic ray exposure time at any position in the strata and the growth process of the radionuclides from the concentration A method for measuring the erosion rate of a formation, wherein the concentration of 14 C, 10 Be, 26 Al among the radionuclides is measured, the ratio between 14 C and 26 Al, and the ratio between 14 C and 10 Be. A method for measuring the erosion rate of a formation, characterized in that the cosmic ray exposure time is estimated by estimating the relationship between the cosmic ray exposure time and the growth process of 14 C, 26 Al, 10 Be based on the above.
JP2004087710A 2004-03-24 2004-03-24 Method for measuring erosion rate of formation Expired - Fee Related JP3963903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004087710A JP3963903B2 (en) 2004-03-24 2004-03-24 Method for measuring erosion rate of formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004087710A JP3963903B2 (en) 2004-03-24 2004-03-24 Method for measuring erosion rate of formation

Publications (2)

Publication Number Publication Date
JP2005274334A JP2005274334A (en) 2005-10-06
JP3963903B2 true JP3963903B2 (en) 2007-08-22

Family

ID=35174168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004087710A Expired - Fee Related JP3963903B2 (en) 2004-03-24 2004-03-24 Method for measuring erosion rate of formation

Country Status (1)

Country Link
JP (1) JP3963903B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161215B (en) * 2019-06-06 2020-07-24 中国科学院地球环境研究所 Method for determining age of loess sediments by using atmospheric cause 10Be and 26Al binuclear element combined ratio method
CN110967392B (en) * 2019-11-14 2020-12-11 河海大学 Beryllium-10 isotope-based data-free watershed soil erosion degree evaluation method
CN111596353B (en) * 2020-05-07 2022-06-03 中国石油天然气股份有限公司 Method and device for calculating denudation rate of deposit basin material source region

Also Published As

Publication number Publication date
JP2005274334A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
Duller Luminescence Dating: guidelines on using luminescence dating in archaeology
Bernet A field-based estimate of the zircon fission-track closure temperature
Kristiansson et al. Evidence for nondiffusive transport of 86 Rn in the ground and a new physical model for the transport
Cartwright et al. Constraining groundwater recharge and the rate of geochemical processes using tritium and major ion geochemistry: Ovens catchment, southeast Australia
Joel et al. Investigation of natural environmental radioactivity concentration in soil of coastaline area of Ado-Odo/Ota Nigeria and its radiological implications
De Meijer Heavy minerals: fromEdelstein'to Einstein
Blair et al. Radiolytic hydrogen and microbial respiration in subsurface sediments
Yabusaki et al. Building conceptual models of field‐scale uranium reactive transport in a dynamic vadose zone‐aquifer‐river system
Clark et al. Timing and nature of fluid flow and alteration during Mesoproterozoic shear zone formation, Olary Domain, South Australia
Argento et al. Physics-based modeling of cosmogenic nuclides part II–Key aspects of in-situ cosmogenic nuclide production
Chatterjee et al. Geochemical and isotope hydrological characterisation of geothermal resources at Godavari valley, India
Smedley et al. Luminescence dating in fluvial settings: Overcoming the challenge of partial bleaching
Makhubela et al. Effects of long soil surface residence times on apparent cosmogenic nuclide denudation rates and burial ages in the Cradle of Humankind, South Africa
JP3963903B2 (en) Method for measuring erosion rate of formation
Mair et al. Fast long-term denudation rate of steep alpine headwalls inferred from cosmogenic 36Cl depth profiles
Gueli et al. Effects of moisture on historical buildings TL ages
Le Roux et al. The influence of different types of granite on indoor radon concentrations of dwellings in the South African West Coast Peninsula
AU2015202367B2 (en) Method and system for evaluation of gamma-gamma well logging data in mineral exploration
Walker et al. U‐series disequilibria in Guatemalan lavas, crustal contamination, and implications for magma genesis along the Central American subduction zone
Liritzis OPTICALLY STIMULATED LUMINESCENCE DATING USING QUARTZ: REMARKS AND A PLEA FOR FAIRNESS.
Siegesmund et al. Is there any health danger by radioactivity on the use of dimensional stones?
Stals et al. The use of portable equipment for the activity concentration index determination of building materials: method validation and survey of building materials on the Belgian market
Lal et al. Records of cosmogenic radionuclides 10Be, 26Al and 36Cl in corals: First studies on coral erosion rates and potential of dating very old corals
Kadko Rapid oxygen utilization in the ocean twilight zone assessed with the cosmogenic isotope 7Be
Bubu et al. Radiogenic heat production due to natural radionuclides in the sediments of Bonny River, Nigeria

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070522

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100601

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110601

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

LAPS Cancellation because of no payment of annual fees