JP3962780B2 - Apparatus for measuring spinnability of liquid and method for measuring spinnability - Google Patents

Apparatus for measuring spinnability of liquid and method for measuring spinnability Download PDF

Info

Publication number
JP3962780B2
JP3962780B2 JP2004507799A JP2004507799A JP3962780B2 JP 3962780 B2 JP3962780 B2 JP 3962780B2 JP 2004507799 A JP2004507799 A JP 2004507799A JP 2004507799 A JP2004507799 A JP 2004507799A JP 3962780 B2 JP3962780 B2 JP 3962780B2
Authority
JP
Japan
Prior art keywords
sample
liquid
upper contact
contact
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004507799A
Other languages
Japanese (ja)
Other versions
JPWO2003100388A1 (en
Inventor
達次 西原
保明 柿木
吉次 亀井
清光 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Publication of JPWO2003100388A1 publication Critical patent/JPWO2003100388A1/en
Application granted granted Critical
Publication of JP3962780B2 publication Critical patent/JP3962780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/205Metals in liquid state, e.g. molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/12Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring rising or falling speed of the body; by measuring penetration of wedged gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • G01N2013/0225Investigating surface tension of liquids of liquid metals or solder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

技術分野
本発明は、液状物又は粘稠性を有する流動状物(以下、液状物と称する。)の曳糸性をパラメータとする液状物の物性を測定するための装置及びそれを用いる曳糸性測定方法に関する。
背景技術
たとえば医療の分野において、人の唾液に粘性と精神的・肉体的疲労度が相関関係にあり、疲労度が増すにつれて唾液の粘性が高くなることが知られている処から、唾液の粘性を検査することの必要性が認識されてきている。また、臨床的に口腔乾燥症や唾液分泌低下症においては、唾液の粘性が亢進しているにも拘らず、客観的に評価するシステムが確立されていないために、安静時の唾液の物性が変化していても正常範囲と判断される例症が多かった。口腔乾燥感を訴える患者に対して、刺激時唾液を中心とした検査が採用されている場合が多く、安静時の唾液と刺激時の唾液の差についての評価が少なかったことが、口腔乾燥症や唾液分泌低下症の診断上の問題点でもあった。また、口腔乾燥を来している患者からの多量の唾液採取は困難であった。
唾液等の粘性測定手段として、たとえばコーンプレート式回転粘度計によって、25℃の唾液を試料として、一定時間後のずり応力値(粘度:mPa・s単位)を測定する方法がある。しかしながら、温度管理や測定機器の価格の問題で、一般には普及していない。一方、傾斜板を用いる粘性計測方法もある。この方法は、一定量の唾液を斜面板の上に垂らし、斜面板の角度を徐々に大きくして唾液が流れ始めるときの角度を測定するか或は、斜面板の角度を一定に保って唾液を斜面板の上に垂らしてその流動長さを測定するものであるが、斜面板の性状や角度の評価さらには唾液量の問題があり、一般化されていない。唾液の物性測定に限らず油その他粘性を有する液状物の粘性を簡便かつ正確に測定する手段が強く望まれていた。
液状物の粘性を測定する手段として、液状物の曳糸性を利用し糸引きの長さを測定してこの測定値を粘性のパラメータとして用いる方法がある。この方法は、目視で液状物に棒の先端を接触させ、この棒を上方向に引き上げてそのときの液状物の糸引き長さを測定するものである。しかし、被検体である液状物に棒が接触したか否かは、人間の目視による判断に頼っていた。また、液状物の糸引きが切れた瞬間の判定も人間に頼っていたため、測定値にかなりの個人差および誤差を生じる問題があった。
本発明は、▲1▼可及的に少ない量の試料で液状物の曳糸性を測定することができる。▲2▼ディジタルな計測ができる。▲3▼自動計測ができ、測定結果の個人差を排除できる。 曳糸性の測定手段を提供することを目的とする。また、本発明の他の目的は、唾液、血液といった体液やインク、塗料、オイル、グリース等また食品分野における醤油、ソース、マヨネーズ、乳製品、スープ等種種のゲル、コロイド、スラリーを含む液状物の曳糸性をパラメータとして、被検液状物の化学的組成、pHといった化学的条件や温度といった物理的条件を規定した試験条件下での液状物の物性を測定するための装置及びそれを用いる方法を提供することである。
発明の開示
上記課題を解決するための請求項1に記載の発明は、被検液状物を収容する、導電性材料からなる試料受皿と、該試料受皿内の被検液状物にその下端部が接触しその上昇によって被検液状物の曳糸長さを検出すべく機能する、その内周面が電気絶縁材料で形成されている挿通孔を有するとともに導電性材料からなる保持具の前記挿通孔に上下摺動自在に遊嵌される、導電性材料からなりその自重または弾機的圧下力によって前記保持具の導電性部分と線接触又は多点接触して電気的に結合されるとともに、試料受皿内の被検液状物に接触する下端部がフラット状、凸球面状、凸円錐状、凸角錐状、球面先端部を有する凸角錐状、凹球面状、凹円錐状、凹角錐状、直径方向に一文字状に延在する凸条又は凹溝、直径方向に十文字状に延在する凸条又は凹溝の何れかの形状をもつ上部接触子と、上記保持具を把持して昇降せしめる上部接触子昇降手段と、上部接触子昇降用モータと、モータの回転速度をデジタルに検出する回転速度検出手段と、該回転速度検出手段による回転速度検出結果と回転速度目標値との偏差に基づいて偏差を消去する操作量を出力するフィードバック制御系が組み込まれた操作回路と、該操作回路からの出力信号ならびに上記試料受皿と上部接触子が被検液状物を介して電気的に結合したことを検出しその結果を出力する試料・上部接触子接触判定回路からの出力信号に基づいてモータを駆動するモータ駆動回路とを有する液状物の曳糸性測定装置である。
請求項2に記載の発明は、試料受皿が、試料収納量の異なる試料受皿を表裏に形成し、反転切換え使用可能に構成したものである請求項1に記載の液状物の曳糸性測定装置である。
請求項3に記載の発明は、被検液状物を収容する、導電性材料からなる試料受皿と、該試料受皿内の被検液状物にその下端部が接触しその上昇によって被検液状物の曳糸長さを検出すべく機能する、その内周面が電気絶縁材料で形成されている挿通孔を有するとともに導電性材料からなる保持具の前記挿通孔に上下摺動自在に遊嵌される、導電性材料からなりその自重または弾機的圧下力によって前記保持具の導電性部分と線接触又は多点接触して電気的に結合されるとともに、試料受皿内の被検液状物に接触する下端部に試料受皿内の被検液状物を掬い取り上昇すべく機能する掬い取りフック部をその下端部に付設した上部接触子と、上記保持具を把持して昇降せしめる上部接触子昇降手段と、上部接触子昇降用モータと、モータの回転速度をデジタルに検出する回転速度検出手段と、該回転速度検出手段による回転速度検出結果と回転速度目標値との偏差に基づいて偏差を消去する操作量を出力するフィードバック制御系が組み込まれた操作回路と、該操作回路からの出力信号ならびに上記試料受皿と上部接触子が被検液状物を介して電気的に結合したことを検出しその結果を出力する試料・上部接触子接触判定回路からの出力信号に基づいてモータを駆動するモータ駆動回路とを有する液状物の曳糸性測定装置である。
請求項4に記載の発明は、試料受皿が、収納している試料の全体が持ち上がらないように機能する試料押さえ具を付設したものである請求項1乃至請求項3何れかに記載の液状物の曳糸性測定装置である。
請求項5に記載の発明は、被検液状物を収容する、導電性材料からなる試料受皿と、その下端部にチューブ、スリット、およびオリフィスの何れかが形成され前記受皿からの上昇によって前記チューブ、スリット、およびオリフィスの何れかから被検液状物を流下せしめる試料壺を有し被検液状物の曳糸長さを検出すべく機能する、その内周面が電気絶縁材料で形成されている挿通孔を有するとともに導電性材料からなる保持具の前記挿通孔に上下摺動自在に遊嵌される、導電性材料からなりその自重または弾機的圧下力によって前記保持具の導電性部分と線接触又は多点接触して電気的に結合する上部接触子と、上記保持具を把持して昇降せしめる上部接触子昇降手段と、上部接触子昇降用モータと、モータの回転速度をデジタルに検出する回転速度検出手段と、該回転速度検出手段による回転速度検出結果と回転速度目標値との偏差に基づいて偏差を消去する操作量を出力するフィードバック制御系が組み込まれた操作回路と、該操作回路からの出力信号ならびに上記試料受皿と上部接触子が被検液状物を介して電気的に結合したことを検出しその結果を出力する試料・上部接触子接触判定回路からの出力信号に基づいてモータを駆動するモータ駆動回路とを有する液状物の曳糸性測定装置である。
請求項6に記載の発明は、被検液状物を収容する、導電性材料からなる試料受皿と、該試料受皿からの上昇によって被検液状物をその下端部から流下せしめる流出孔を有し被検液状物の曳糸長さを検出すべく機能する、その内周面が電気絶縁材料で形成されている挿通孔を有するとともに導電性材料からなる保持具の前記挿通孔に上下摺動自在に遊嵌される、導電性材料からなりその自重または弾機的圧下力によって前記保持具の導電性部分と線接触又は多点接触して電気的に結合する上部接触子と、上記保持具を把持して昇降せしめる上部接触子昇降手段と、上部接触子昇降用モータと、モータの回転速度をデジタルに検出する回転速度検出手段と、該回転速度検出手段による回転速度検出結果と回転速度目標値との偏差に基づいて偏差を消去する操作量を出力するフィードバック制御系が組み込まれた操作回路と、該操作回路からの出力信号ならびに上記試料受皿と上部接触子が被検液状物を介して電気的に結合したことを検出しその結果を出力する試料・上部接触子接触判定回路からの出力信号に基づいてモータを駆動するモータ駆動回路とを有する液状物の曳糸性測定装置である。
請求項7に記載の発明は、試料受皿内の被検液状物に指向して所与の速度で、モータの回転駆動によって上部接触子昇降手段、保持具を介して、保持具における挿通孔に上下摺動自在に遊嵌されその自重または弾機的圧下力によって前記保持具の導電性部分と線接触又は多点接触して電気的に結合状態となっている上部接触子を降下せしめ、上部接触子下端部が被検液状物に接し、該被検液状物を介して前記試料受皿と上部接触子が電気的導通状態となった瞬間に操作回路によって上部接触子を搭載している保持具の降下を停止せしめ、次いで、上部接触子を搭載している保持具をモータの回転駆動によって上昇せしめ、被検液状物の延伸によって上部接触子と試料受皿間の電気的導通状態が遮断されるまでの上部接触子の上昇変位量によって被検液状物の曳糸長さを検出し、液状物の粘性を測定するようにした液状物の曳糸性測定方法である。
請求項8に記載の発明は、被検液状物の曳糸性測定に先立ち、上部接触子を搭載している保持具を一定の距離降下せしめ、次いで、一定の距離上昇せしめてその間に、所与の下降、上昇速度となるようフィードバック制御を行うようにした請求項7に記載の液状物の曳糸性測定方法である。
請求項9に記載の発明は、上部接触子下端部が試料受皿内の被検液状物に接触した後、上部接触子を搭載している保持具をモータの回転駆動によって上昇せしめ、被検液状物を介しての電気的導通状態が遮断された後に、未だ被検液状物が糸引き状態にある場合に、次の上部接触子降下までに遅延時間を介挿せしめるかまたは上部接触子を搭載している保持具をモータの回転駆動によってさらに上昇せしめて被検液状物を完全に切断するようにした請求項7又は請求項9に記載の液状物の曳糸性測定方法である。
請求項10に記載の発明は、被検液状物の曳糸性測定に先立ち、上部接触子を搭載している保持具を降下せしめて上部接触子下端部を被検液状物に接触させて湿潤状態としておく、請求項7乃至請求項9何れかに記載の液状物の曳糸性測定方法である。
請求項11に記載の発明は、試料受皿に、試料壺下端部のチューブ、スリット、およびオリフィスの何れかを接触させた状態で一定量の被検液状物を試料壺内に貯留し、次いで、試料壺が付設されている上部接触子を上昇せしめて試料壺下端部のチューブ、スリット、およびオリフィスの何れかから被検液状物を流下させ、流下する被検液状物の先端が途切れ液滴状態となるまでの糸引き長さを測定するようにした液状物の曳糸性測定方法である。
請求項12に記載の発明は、試料受皿に、試料壺下端部のチューブ、スリット、およびオリフィスの何れかを接触させた状態で一定量の被検液状物を試料壺内に貯留し、次いで、試料壺が付設されている上部接触子を上昇せしめて試料壺下端部のチューブ、スリット、およびオリフィスの何れかから被検液状物を流下させ、試料壺内の被検液状物が流出し終わるまでの時間を測定するようにした液状物の曳糸性の測定方法である。
請求項13に記載の発明は、1回目の測定における被検液状物の糸引き長さを基準値とし、該基準値のある割合となるまでの時間又は測定回数を計測するようにした液状物の曳糸性測定方法である。
請求項14に記載の発明は、上部接触子の上昇距離を被検液状物が切断しない際限内の一定値とし、試料受皿における被検液状物への上部接触子下端部の接触・上部接触子の上昇を繰り返し、前記一定上昇距離内において被検液状物が切断するまでの時間または測定回数を計測するようにした液状物の曳糸性測定方法である。
請求項15に記載の発明は、上部接触子を一定距離上昇させてその状態で保持し、被検液状物の電気伝導度の経時変化を検出するようにした液状物の曳糸性測定方法である。
発明を実施するための最良の形態
以下、本発明をその好ましい実施形態に則して説明する。
本発明は、被検液状物の化学的組成、pHといった化学的条件や温度といった物理的条件を規定した上で、被検液状物の曳糸性を、曳糸長さ、荷重、測定値の経時変化における時間又は測定回数、電気伝導度といった測定パラメータを以って計測するものである。また、たとえば唾液がねばねばするというような患者から感覚的に表現されるときの唾液といった被検液状物や、血液といった凝固性を有する被検液状物の物性をそれに適した曳糸性測定手段で測定し、被検液状物(試料)間の相対比較を行うことによって、たとえば人の健康状態の診断や産業分野、食品分野等における品質管理、新製品の開発のためのデータとすることができる。さらに、被検液状物の粘性、弾性、粘弾性の発現としての曳糸性を測定する。
実施例1
図1に、本発明の一実施例に係る液状物の曳糸性測定装置を示す。
図1において、1は操作回路であって、上部接触子8を上下動自在に搭載している保持具7の昇降駆動用スイッチが設けられている。また、操作回路1には、図2に示すように、モーター3の回転速度をディジタルに検出するための、外周面に周方向に所定間隔で黒白のコントラストが形成された反射盤にこの実施例においては、赤外線回帰反射式のフォトインタラプター(エンコーダ)から赤外線を投射し白色部分からの反射回帰赤外線をパルス信号として捉えこのパルス幅と数を入力され、モーター3の回転速度が所与の昇降速度を保持具7に与える目標値と合致する時間当りパルスとなるようパルス幅を操作する帰還(フィードバック)制御系が組み込まれている。
2はモーター駆動回路であり、操作回路1からの出力を入力されてモーター3に、上部接触子8を上下動自在に搭載している保持具7を上昇方向或は下降方向へ駆動すべく電力を投入する。モーター駆動回路2はまた、被検液状物(試料)・上部接触子接触判定回路11からの信号によって作動し、モーター3への電力を遮断する。さらに、モーター駆動回路2は、上限リミッタ13および加減リミッタ14からの信号によって作動し、モーター3への電力を遮断する。
4は駆動ベルトであって、モーター3の出力軸に設けられているプーリと昇降用ねじ軸5の一端に設けられているプーリとに巻回され、モーター3の回転を昇降用ねじ軸5に伝達すべく機能する。モーター3の回転を昇降用ねじ軸5に伝達する手段は、歯車列であってもよい。昇降用ねじ軸5は、昇降テーブル6における雌ねじと螺合し、その正逆方向の回転によって昇降テーブル6を昇降させる。この実施例においては、昇降テーブル6の昇降速度を5mm/s〜20mm/sの範囲内で可変とした。昇降テーブル6の一端には保持具7が固定されておりさらに、保持具7には、上部接触子8が上下動自在に遊嵌されている。而して、昇降用ねじ軸5、昇降テーブル6および保持具7によって、上部接触子8の昇降手段が構成される。
上部接触子8は、導電性材料たとえばステンレス鋼によって形成される。この実施例においては、直径:1mm〜10mmの断面円形のものとした。しかし、断面は円形に限ることなく、三角形以上の多角形としてもよい。上部接触子8の下端部形状は、この実施例においては、図3に示すように、凸球面状或は凹球面状としたけれども、凸円錐状、凸角錐状、球面状先端部を有する凸角錐、凹円錐状、凹角錐状、および図11に示すような、直径方向に一文字状に延在する凸条或は凹溝または直径方向に十文字に延在する凸条或は凹溝であってもよい。
上部接触子8を上下動自在に遊嵌・搭載している保持具7は、上部接触子8の頂部には平坦部が形成され、ディジタルダイヤルゲージ12のスピンドルの下端部が接している。ディジタルダイヤルゲージ12は上部接触子8の上下変位量を高精度に検出し、その結果をディジタルに表示する。この実施例においては、20μmの精度で上部接触子8の上下変位量を検出した。
10は試料受皿であって、浅い円筒状或は逆円錐状に形成され、被検液状物(試料)9を収容する。試料受皿10は導電性材料たとえばステンレス鋼製であり、着脱自在である。試料受皿10の一端は、試料・上部接触子接触判定回路11に電気的に接続されている。この実施例においては、図4に示すように、直径の異なる浅い円筒状凹部を表裏両面に形成し、被検液状物(試料)9収容量の異なる曳糸性測定を、試料受皿10を反転使用することで可能とした。また、浅い円筒状凹部とすることで、試料位置の試料受皿10平面上における偏りを防止し得て被検液状物(試料)9の表面張力による盛り上がりの頂点が試料受皿10平面中心に位置し、高精度の測定を可能にするとともに、被検液状物(試料)9収容量の目視判断を容易にした。
被検液状物(試料)9の物性によっては、試料受皿10に代えて、図12に示すような、上部に平面を有する円柱状の試料受皿20とすることもできる。
試料・上部接触子接触判定回路11は、保持具7を介して上部接触子8と試料受皿10間に電圧を印加しており、両者間の電圧が降下したときが、被検液状物(試料)9を介して上部接触子8と試料受皿10が電気的に結合したとき即ち上部接触子8が被検液状物(試料)9に接触したときである。
13は上限リミッタであり、上部接触子8の上昇限界を定めるべく機能する。即ち、昇降用ねじ軸5の回転によって昇降テーブル6および保持具7を介して上部接触子8が上昇していき、昇降テーブル6が上限リミッタ13を作動させると、その信号がモーター駆動回路2に入力され、その結果、モーター駆動回路2がモーター3への電力を遮断してモーター3を停止させ、上部接触子8の上昇を止める。14は下限リミッタであって、保持具7の下降限界を定めるべく機能する。前記とは逆の動作によって昇降テーブル6が下限リミッタ14を作動させると、その信号がモーター駆動回路2に入力され、その結果、モーター駆動回路2がモーター3への電力を遮断してモーター3を停止させ、保持具7の下降を止める。
保持具7による上部接触子8の搭載・保持の模様を図5および図6に示す。図5に示すように、保持具7における上部接触子8挿通用孔の内周面は電気絶縁用カラー71で形成されている。保持具7のその余の部分は導電性材料たとえばステンレス鋼で形成されている。この挿通用孔に上部接触子8が上下動自在に遊嵌されており、上部接触子8の上部段付き径大部の外周面が保持具7の導電性材料の部分に環状に線接触する如くナイフエッジ部81となっている。環状に線接触するナイフエッジ部81に代えて、周方向に等間隔に3点以上で点接触する如く構成してもよい。この構成によって、保持具7に上部接触子8が搭載されているときに、上部接触子8の自重または圧縮コイルばねといった弾機的圧下手段によって上部接触子8・保持具7間の電気的結合が形成される。
而して、図6に示すように、上部接触子8の下端部が試料受皿10の底面に達してなお保持具7が下降すると、上部接触子8が保持具7から浮き上がる状態となり、上部接触子8による測定機器の損傷を回避する。そして、昇降テーブル6が下限リミッタ14を作動させると、モーター3を停止させ、保持具7の下降を止める。
通常、保持具7の上限、下限における停止は上限リミッタ13および下限リミッタ14によってなされるが、上部接触子8が保持具7に固定されていると、きわめて精確に下限リミッタ14の位置を設定しないと、保持具7の下降量が過大になったときには機器の破壊につながり、一方、試料受皿10における被検液状物(試料)9の量が少ない場合には、下限リミッタ14が作動してもなお上部接触子8の下端部が被検液状物(試料)9に接触しないという状態を生ぜしめる。
そこで本発明においては、下限リミッタ14の設定位置を十分に低くしておき、試料受皿10における被検液状物(試料)9の量が少ない場合にも必ず上部接触子8が被検液状物(試料)9に接触するようにしている。若し、被検液状物(試料)9が非導電性であった場合であっても、図6に示すように、上部接触子8の下端部が試料受皿10の底面に達してなお保持具7が下降しても、上部接触子8が保持具7から浮き上がる状態となり、上部接触子8による測定機器の損傷を回避する。上部接触子8の保持具7からの浮き上がりにより、上部接触子8のナイフエッジ部81と保持具7が脱離して電気的結合が切断されるが、上部接触子8が保持具7に正しい状態にセットされていないときも両者の電気的導通状態は得られない。従って、試料受皿10に被検液状物(試料)9が収容され、上部接触子8を降下せしめてその下端部が被検液状物(試料)9に接触しても、上部接触子8が保持具7に正しい状態にセットされていないときは測定(上部接触子8の上昇)に入れず、上部接触子8が保持具7から浮き上がる。而して、被検液状物(試料)9が導電性であって適正量であるときに、上部接触子8を降下せしめてその下端部が被検液状物(試料)9に接触しても電気的導通がなく測定に入れないときは、上部接触子8と保持具7のセッティングの不具合を示していることになる。
次に、実施例1に示す本発明の液状物の曳糸性測定装置を用いての曳糸性測定方法を説明する。先ず、上部接触子8を上下動自在に遊嵌・搭載している保持具7を上昇させるには、操作回路1における上昇スイッチを投入する。そうするとモーター駆動回路2が作動し、昇降テーブル6を上昇させる方向への回転を昇降用ねじ軸5に付与すべく電力を投入しモーター3を回転駆動する。モーター3の回転は駆動ベルト或は歯車列を介して昇降用ねじ軸5に伝達され、昇降用ねじ軸5と昇降テーブル6における雌ねじの螺合によって昇降テーブル6を上昇させる。これによって、上部接触子8を上下動自在に遊嵌・搭載している保持具7が上昇せしめられる。
上部接触子8を上下動自在に遊嵌・搭載している保持具7を下降させるには、操作回路1における下降スイッチを投入すると、モーター駆動回路2が作動し、昇降テーブル6を下降させる方向への回転を昇降用ねじ軸5に付与すべく電力を投入しモーター3を回転駆動する。モーター3の回転は駆動ベルト或は歯車列を介して昇降用ねじ軸5に伝達され、昇降用ねじ軸5と昇降テーブル6における雌ねじの螺合によって昇降テーブル6を下降させる。これによって、上部接触子8を上下動自在に遊嵌・搭載している保持具7が下降せしめられる。
次に、被検液状物(試料)9の曳糸性測定のための動作について説明する。上部接触子8を上下動自在に遊嵌・搭載している保持具7を上昇させた状態で、着脱自在な試料受皿10に、被検液状物(試料)9を装入する。次いで、操作回路1における下降スイッチを投入する。これによってモーター駆動回路2が作動して、モーター3を昇降テーブル6を下降させる回転方向となるように昇降用ねじ軸5を回転させるべく回転駆動する。モーター3の回転は駆動ベルト或は歯車列を介して昇降用ねじ軸5に伝達され、昇降用ねじ軸5と昇降テーブル6における雌ねじの螺合によって昇降テーブル6を下降させる。これによって、上部接触子8を上下動自在に遊嵌・搭載している保持具7が下降せしめられる。
導電性材料製の上部接触子8を上下動自在に遊嵌・搭載している保持具7と試料受皿10は試料・上部接触子接触判定回路11に電気的に接続されており、そして試料・上部接触子接触判定回路11は、上部接触子8を上下動自在に遊嵌・搭載している保持具7と試料受皿10間に電圧を印加している。而して、上部接触子8を上下動自在に遊嵌・搭載している保持具7が下降して上部接触子8の下端部が被検液状物(試料)9に接触した瞬間に上部接触子8を上下動自在に遊嵌・搭載している保持具7と試料受皿10間の電位差が降下し、この信号を試料・上部接触子接触判定回路11が出力する。
試料・上部接触子接触判定回路11の出力信号に基づいてモーター駆動回路2が作動して、モーター3への電力を遮断する。これによって、上部接触子8は、その下端部が被検液状物(試料)9に接触した状態で停止する。この時点で、ディジタルダイヤルゲージ12のゼロ・クリアボタンを押して、表示をゼロにする。
次いで、操作回路1におけるスイッチを投入する。これによってモーター駆動回路2が作動して、モーター3を昇降テーブル6を上昇させる回転方向となるように昇降用ねじ軸5を回転させるべく回転駆動する。モーター3の回転は駆動ベルト或は歯車列を介して昇降用ねじ軸5に伝達され、昇降用ねじ軸5と昇降テーブル6における雌ねじの螺合によって昇降テーブル6を上昇させる。これによって、上部接触子8を上下動自在に遊嵌・搭載している保持具7が上昇せしめられる。
上部接触子8の上昇に伴い、被検液状物(試料)9の曳糸性によって被検液状物(試料)9の細長い糸引き状態で上部接触子8を搭載している保持具7と試料受皿10間の電気的結合が持続するが、限界点に達すると糸引き状態の被検液状物(試料)9が破断し、この瞬間に上部接触子8を搭載している保持具7と試料受皿10間の電気的結合が切断される。この電気的結合が切断された瞬間を、上部接触子8を搭載している保持具7と試料受皿10それぞれにの電気的に接続されている試料・上部接触子接触判定回路11が検出し、その信号をモーター駆動回路2に出力する。モーター駆動回路2は、試料・上部接触子接触判定回路11からの信号に基づいてモーター3への電力を遮断する。これにより上部接触子8を搭載している保持具7の上昇が停止せしめられる。上部接触子8の上昇開始時点の位置から被検液状物(試料)9の破断による停止位置までの変位量をディジタルダイヤルゲージ12が検出しその結果をディジタル表示する。この上部接触子8の変位量が被検液状物(試料)9の曳糸長さとなる。
上に述べたように、下限リミッタ14を十分に低い位置に設定しておき、試料受皿10内の被検液状物(試料)9が少量の場合にも確実に上部接触子8の下端部が被検液状物(試料)9に接するようにしておく。一方、試料受皿10内の被検液状物(試料)9が万一非導電性であった場合に、試料受皿10底面に上部接触子8の下端部が接してなお保持具7が降下するときは、保持具7における上部接触子8の挿通用孔は遊嵌状態であるから相対的に上部接触子8が保持具7から浮き上がり、上部接触子8の降下による測定機器の損傷を回避する。なお、保持具7における上部接触子8の挿通用孔の内周面は電気絶縁体カラー71で形成されているから、上部接触子8と保持具7のセッティングが適正でないと電気的導通状態が得られず測定動作(上部接触子8の上昇)実行できない状態となり、測定条件の不具合を容易に判定できる。こうして、機器の損傷が確実に防止されるとともに下限リミッタ14の位置調整・設定が容易となる。また、上部接触子8が保持具7から簡単に取り外せるので、その洗浄も容易に行える。
発明者らの知見によれば、モーター3の回転速度即ち、上部接触子8を搭載している保持具7の上昇速度の変動は、被検液状物(試料)9の曳糸性測定の精度に影響する。而して、電圧の変動、モーターの個体差、回転部分の摺動抵抗等に起因してモーター3の回転速度が一定にならない場合がある。そこでこの実施形態におては、モーター3の回転速度をディジタルに検出すべく、モーター回転軸の一端に黒白のコントラストを施した反射盤を設けこれに回帰反射式のフォトインタラプタを用いて赤外線を投射し、白いコントラスト部分からの反射回帰赤外線を受信して時間当りのパルス数を検出するようにしている。而して、DCモーター3の回転速度が所与のものとなるように、帰還(フィードバック)制御を行う。この帰還制御系における操作量は、操作回路1からモーター駆動回路2を経てモーター3に入力されるパルスにおけるON−OFFの幅比率である。即ち、パルス幅変調方式の速度制御である。
本発明においては、実際の被検液状物(試料)9の曳糸性測定を行うに先立って、個々の曳糸性測定装置について前記帰還制御系によるモーター3の回転速度制御を行って、上部接触子8を搭載している保持具7を所与の昇降速度で変位させるようにキャリブレーションしている。即ち、図7に示すように、予め試料受皿10内に被検液状物(試料)9を挿入しておき、上部接触子8の下端部が被検液状物(試料)9に接するまで一定量上部接触子8を搭載している保持具7を降下させ、次いで一定量上昇させる。この過程で上記帰還制御を実施して、図8に示すように、上部接触子8を搭載している保持具7の昇降速度を所与の目標値に収斂させるようにしている。個々の曳糸性測定装置について、このキャリブレーションを行った後に被検液状物(試料)9の曳糸性測定を実施する。
実際の被検液状物(試料)9の曳糸性測定に際しては、上部接触子8を搭載している保持具7を上昇させて、図9に示すように、被検液状物(試料)9を糸引き状態としこの糸引き状態の試料9が切断され、上部接触子8を搭載している保持具7と試料受皿10間に印加されている電圧値に戻った瞬間までの上部接触子8の上昇変位量を測定する。しかし、図9に示す糸引き状態にある被検液状物(試料)9の直径dがきわめて細くなったときに、電気的導通状態は切断されているけれも被検液状物(試料)9は極細いながら完全には切断されずに残存している場合がある。被検液状物(試料)9の曳糸性測定それ自体は、上記上部接触子8下端部の試料9への接触状態から上昇変位させて試料9によって電気的導通状態が切断されるまでの曳糸長さlを測定し被検液状物(試料)9の粘性の指標とすることで全く問題はないが、被検液状物(試料)9それ自体が物質として切断されていない状態のまま次の曳糸性測定のために上部接触子8を搭載している保持具7を降下させると、被検液状物(試料)9の直径dが再び太くなって電気的導通状態となり測定が成り立たなくなる。
図10に、上部接触子8の直径:Dと曳糸状態にある被検液状物(試料)9の直径:dの比D/dと曳糸長さlとの関係において、電気的導通状態検知可能領域を斜線部分で示す。而して本発明においては、被検液状物(試料)9の物質としての完全切断が行われない場合には、電気的導通状態が切断された後、所定時間上部接触子8の再変位を止めた状態で保持し、被検液状物(試料)9の物質としての完全切断が行われるのを確認した後に上部接触子8の再降下を開始するかまたは、電気的導通状態が切断された後、上部接触子8を上限リミッタ13が作動するまで上昇せしめ、被検液状物(試料)9の物質としての完全切断が行われるのを確認した後に上部接触子8の再降下を開始するようにしている。このプロセスを採ることによって、正しい曳糸性測定が保証される。
また、実際の被検液状物(試料)9の曳糸性測定にあっては、上部接触子8の下端部をアルコール洗浄などした後にそのまま上部接触子8を降下させて試料受皿10内の被検液状物(試料)9にその下端部を接触させると、上部接触子8下端部の表面性状に起因する測定値のばらつきを生じる場合がある。そこで本発明においては、先に述べたキャリブレーションを行う際に、上部接触子8下端部を被検液状物(試料)9に接触させて湿潤状態としこの状態で試料の曳糸性測定に入ると、上部接触子8の下端部が試料受皿10内の被検液状物(試料)9に融合接触状態となり、上部接触子8下端部の表面性状に起因する測定値のばらつきをなくすことができた。
一方、上部接触子8下端部を湿潤状態とした被検液状物(試料)9の表面張力による盛り上がりの頂点が上部接触子8下端部横断面中心に位置していない場合は、上部接触子8を降下させたときに、試料受皿10内の被検液状物(試料)9の盛り上がりの頂点からずれた位置で試料受皿10内の被検液状物(試料)9に接し、そこで電気的導通状態となって上部接触子8が上昇せしめられて試料の曳糸性測定が遂行されるから測定値が小さな値となる問題がある。そこで本発明においては、たとえば図3および図11に示すように、上部接触子8下端部の形状を凸球面状或は凹球面状または、直径方向に一文字状に延在する凸条又は凹溝或は直径方向に十文字状に延在する凸条又は凹溝とすることによって、上部接触子8下端部を湿潤状態とした被検液状物(試料)9の表面張力による盛り上がりの頂点が上部接触子8下端部横断面中心に位置するようにした。こうして、上部接触子8下端部を湿潤状態とした被検液状物(試料)9の表面張力による盛り上がりの頂点を試料受皿10内の被検液状物(試料)9の盛り上がりの頂点に合致させることができる。また、試料受皿10の縦断面形状を、図4に示すように、浅い円筒状凹部または浅い逆円錐台形状凹部とすることによって、被検液状物(試料)9が試料受皿10の平面中心に位置しやすくなる。
この実施例における液状物の曳糸性測定方法は、予め上部接触子8下端部を湿潤状態として、電気的導通状態が切断されるまでの糸引き長さを測定することを複数回繰り返し、試料群内の平均値や分布状況などを抽出するウェット試験法と、上部接触子8下端部を被検液状物(試料)9で濡らすことなくドライな状態として電気的導通状態が切断されるまでの糸引き長さを1回測定するドライ試験法とがある。
ウェット試験法は、粘性、弾性、表面張力、粘着力をある程度以上有する被検液状物(試料)9を測定対象とするのに適している。ドライ試験法は、粘着力が強く弾性の小さな被検液状物(試料)9を測定対象とするのに適している。
実施例2
図1に示す液状物の曳糸性測定装置を用い、電気的導通状態が切断されるまでの糸引き長さを測定することを複数回繰り返し、糸引き長さの変化量を測定する。1回目の測定結果を基準値とし、基準値のある割合たとえば50%の糸引き長さとなるまでの時間或は測定回数を被検液状物(試料)9の凝固性のパラメータとする。
実施例3
図1に示す液状物の曳糸性測定装置を用い、被検液状物(試料)9が切断しない際限内の一定値として上部接触子を上昇させ、試料受皿10と上部接触子間の一定間隔で電気的導通状態が切断されるまでの糸引き長さを測定することを複数回繰り返し、その繰り返し回数或は時間を被検液状物(試料)9の凝固性のパラメータとする。
実施例4
図1に示す液状物の曳糸性測定装置を用い、上部接触子を所定距離上昇させ、その位置で糸引き状態の被検液状物(試料)9を保持し、電気伝導度の経時変化を測定する。この測定値を被検液状物(試料)9の揮発性のパラメータとする。 実施例5
図13に、本発明の一実施例に係る液状物の曳糸性測定装置を示す。
図13において、図1におけると同じ符号は図1に示した構成要素と同じである。この実施例における上部接触子28は、その下端部に掬い取りフック部38を有している。掬い取りフック部38は、その先端部が試料受皿10内の被検液状物(試料)9に挿入され、上部接触子28の上昇によって被検液状物(試料)9の所定量を掬い上げ、電気的導通状態が切断されるまでの曳糸長さを測定すべく機能する。この実施例になる液状物の曳糸性測定装置は、試料の粘性や弾性が比較的高く、表面張力が大きくて試料受皿に試料が一定の強度で付着し難く粘着性が劣る場合であってかつ、流動性が高い被検液状物(試料)9を測定対象とするのに適している。図13において、101は試料押さえであって、平面二股状であり試料受皿10に固定される。この試料押さえ101によって、被検液状物(試料)9の全量が掬い取りフック部38によって持ち上げられるのを防止する。掬い取りフック部38先端部の断面形状は、逆三角形、方形、円形、スプーン形状など被検液状物(試料)9の物性に応じて種々選択することができる。
実施例6
図14に、本発明の一実施例に係る液状物の曳糸性測定装置を示す。
図14において、図1におけると同じ符号は図1に示した構成要素と同じである。この実施例においては、被検液状物(試料)9は試料壷48下端部に形成されているチューブ481または試料壷48下端部に穿設されているスリット482或はオリフィス483から流下する。この実施例における液状物の曳糸性測定方法は、予め、試料壷48の下端部のチューブ481先端、スリット482或はオリフィス483の何れかを試料受皿10の底面に接触させておいて被検液状物(試料)9の所定量を試料壷内に注入しまたは、チューブ481先端、スリット482或はオリフィス483の何れかを細い棒状物で閉止しておいて被検液状物(試料)9の所定量を試料壷内に注入し測定開始と同時に開き、上部接触子28を上昇させて電気的導通状態が切断されるまでの曳糸長さを測定する。この実施例に係る液状物の曳糸性測定装置及び方法は、粘性、弾性、表面張力、粘着性がともに低く流動性の高い被検液状物(試料)9を測定対象とするのに適している。この試験法をフロー試験法と呼ぶ。
実施例7
図15に、本発明の一実施例に係る液状物の曳糸性測定装置を示す。
図15において、図1におけると同じ符号は図1に示した構成要素と同じである。この実施例においては、被検液状物(試料)9は上部接触子28の横断面中心に穿設され下端部に開口を有する流出孔281から流下する。被検液状物(試料)9はシリンジ48或はスポイド48で貯留される。この実施例における液状物の曳糸性測定方法は、予め、流出孔281開口を試料受皿10の底面に接触させておいて被検液状物(試料)9の所定量を貯留しておき、測定開始と同時にシリンジのピストン或はスポイドを開き、上部接触子28を上昇させて電気的導通状態が切断されるまでの曳糸長さを測定する。この実施例に係る液状物の曳糸性測定装置及び方法は、粘性、弾性、表面張力、粘着性がともに低く流動性の高い被検液状物(試料)9を測定対象とするのに適している。この試験法もフロー試験法の一実施形態である。
本発明の液状物の曳糸性測定装置は上記のように実施されるが、液状物の曳糸性測定に影響を及ぼす因子は、測定時の環境の温度、湿度、被検液状物(試料)の温度、上部接触子の試料に接する部分の表面性状(表面粗さなど)、上部接触子の大きさ、形状、上部接触子の上昇速度などである。被検液状物(試料)に対応してこれら諸因子を総合的に判断して規格化することが必要である。
図16に、本発明の液状物の曳糸性測定装置および曳糸性測定方法による測定結果と、シリンダーゲージによる実測値との対応関係を示す。図16から明らかなように、きわめてよい対応関係を示している。
また、本発明の液状物の曳糸性測定装置および曳糸性測定方法が対象とし得る液状物は、唾液のほか、尿、鼻汁、痰など医療分野における液状物のほか、油脂、インク、塗料など産業分野で取り扱われる液状物やドレッシング、ミルクなど食品分野における液状物さらには、ゲル、エマルジョンなど曳糸性を有する導電性液状物やペースト状のものを全て測定対象とし得る。
請求項1および請求項10に記載の発明によれば、曳糸性を有する導電性液状物の粘性を高精度下に、測定者の個人差を生じることなく測定することができる。また、本発明の液状物の曳糸性測定装置および曳糸性測定方法は、可及的に少量の試料での自動測定が可能であり、測定結果はディジタル表示されるから、針の位置を読む等の判定誤差を生じることがない。また上部接触子を保持具に遊嵌状態で搭載し、上部接触子が保持具から浮き上がる構成としたから、上部接触子による測定機器の損傷を回避できるとともに、下限リミッタの位置調整が容易となる。さらに、装置の組み立てが容易であり、上部接触子の洗浄も容易に行える。
請求項2に記載の発明によれば、上部接触子の上昇速度のばらつきに起因する液状物の曳糸性測定値のばらつきをなくすことができる。
請求項3に記載の発明によれば、試料の、上部接触子の横断面中心からのずれに起因する液状物の曳糸性測定精度の低下を防ぐことができる。
請求項4に記載の発明によれば、量の異なる試料の曳糸性測定に迅速に対応できる。また、試料受皿を浅い円筒状或は逆円錐台状凹部とすることにより、試料のセンタリングや試料装入量の目視を容易にすることができる。
請求項6に記載の発明によれば、流動性の高い試料の曳糸性測定を高精度下に行うことができる。
請求項7に記載の発明によれば、試料受皿からの試料の持ち上がりに起因するトラブルを防止できる。
請求項8、請求項9、請求項14、および請求項15に記載の発明によれば、流動性の高い試料の曳糸性測定を高精度下に行うことができる。
請求項11に記載の発明によれば、測定に先立ってモーターの回転速度の帰還制御が十分になされるので、高精度下に安定した液状物の曳糸性測定が可能となる。
請求項12に記載の発明によれば、液状物の曳糸性測定における誤測定トラブルをなくすことができる。
請求項13に記載の発明によれば、上部接触子下端部の表面性状に起因する測定値のばらつきをなくすことができる。
請求項16および請求項17に記載の発明によれば、液状物の曳糸性をパラメータとして液状物の凝固性を試験することができる。
請求項18に記載の発明によれば、液状物の曳糸性をパラメータとして液状物の揮発性を試験することができる。
【図面の簡単な説明】
図1は、本発明の液状物の曳糸性測定装置を示す模式図である。
図2は、本発明の液状物の曳糸性測定装置における操作回路、モーター駆動回路、モーターおよびその回転速度検出手段からなる帰還制御系を示す模式図である。
図3は、本発明の液状物の曳糸性測定装置における上部接触子下端部形状の一実施例を示す正面図である。
図4は、本発明の液状物の曳糸性測定装置における試料受皿の一実施例を示す縦断面図である。
図5は、本発明の液状物の曳糸性測定装置において、上部接触子が保持具に搭載されている状態を示す縦断面図である。
図6は、本発明の液状物の曳糸性測定装置において、上部接触子が保持具から浮き上がり、保持具と上部接触子間で電気的結合が切断されている状態を示す縦断面図である。
図7は、モーター回転速度の帰還制御を行うときのステップを示すブロックダイアグラムである。
図8は、モーター回転速度の帰還制御を行うときの過渡状態および定常状態を示すブロックダイアグラムである。
図9は、本発明の液状物の曳糸性測定方法における、試料(被検液状物)の曳糸状態の一例を示す正面図である。
図10は、本発明の液状物の曳糸性測定方法における、上部接触子下端部の直径Dと曳糸状態にある試料(被検液状物)のdの比D/dと、試料(被検液状物)の曳糸長さlとの関係における電気的導通検知可能領域を示すグラフである。
図11は、本発明の液状物の曳糸性測定装置における上部接触子下端部形状の他の実施例を示す正面図である。
図12は、本発明の液状物の曳糸性測定装置における試料受皿の他の実施例を示す縦断面図である。
図13は、本発明の液状物の曳糸性測定装置における、上部接触子下端部に付設される試料掬い取りフック部の一実施例を示す正面図である。
図14は、本発明の液状物の曳糸性測定装置における、上部接触子下端部に付設される試料壷の実施例を示す正面図である。
図15は、本発明の液状物の曳糸性測定装置における、試料流下方式用上部接触子の実施例を示す正面図である。
図16は、本発明の液状物の曳糸性測定装置及び測定方法による測定結果と実測値との対応関係を示すグラフである。
Technical field
The present invention relates to an apparatus for measuring the physical properties of a liquid material using as a parameter the spinnability of a liquid or viscous fluid (hereinafter referred to as a liquid), and to measure the spinnability using the device. Regarding the method.
Background art
For example, in the medical field, the viscosity of saliva and the degree of mental and physical fatigue are related to each other, and it is known that the viscosity of saliva increases as the fatigue level increases. The need to do so has been recognized. In addition, in clinical dry mouth and hyposalivation, despite the increased saliva viscosity, an objective evaluation system has not been established. There were many cases that were judged to be in the normal range even though they had changed. For patients complaining of dry mouth, examinations centered on saliva during stimulation are often adopted, and there was little evaluation of the difference between saliva at rest and saliva during stimulation. It was also a problem in diagnosis of hyposalivation. In addition, it was difficult to collect a large amount of saliva from patients who had dry mouth.
As a means for measuring the viscosity of saliva or the like, for example, there is a method of measuring a shear stress value (viscosity: mPa · s unit) after a certain time using a saliva at 25 ° C. as a sample by a cone plate type rotational viscometer. However, it is not widely used due to temperature management and the price of measuring equipment. On the other hand, there is a viscosity measurement method using an inclined plate. This method involves hanging a certain amount of saliva on the slope plate and gradually increasing the angle of the slope plate to measure the angle at which saliva begins to flow, or keeping the angle of the slope plate constant and saliva. Is measured on the slope plate and the flow length is measured. However, there are problems of evaluation of the property and angle of the slope plate and the amount of saliva, and it is not generalized. There has been a strong demand for a means for simply and accurately measuring the viscosity of oil and other liquid materials having viscosity, not limited to the measurement of physical properties of saliva.
As a means for measuring the viscosity of the liquid material, there is a method of measuring the length of stringing using the spinnability of the liquid material and using this measured value as a viscosity parameter. In this method, the tip of a rod is brought into contact with the liquid material visually, the rod is pulled upward, and the stringing length of the liquid material at that time is measured. However, whether or not the stick is in contact with the liquid material that is the subject depends on human visual judgment. In addition, since the determination at the moment when the stringing of the liquid material is broken relies on human beings, there is a problem that a considerable individual difference and error occur in the measured value.
In the present invention, (1) the spinnability of a liquid substance can be measured with as little sample as possible. (2) Digital measurement is possible. (3) Automatic measurement is possible, and individual differences in measurement results can be eliminated. An object of the present invention is to provide a means for measuring the spinnability. Another object of the present invention is a liquid substance containing body fluids such as saliva and blood, inks, paints, oils, greases, etc. and various gels, colloids, slurries such as soy sauce, sauces, mayonnaise, dairy products, soups in the food field. A device for measuring physical properties of a liquid under test conditions that define chemical conditions such as chemical composition, pH, and physical conditions such as temperature, using the spinnability of the liquid as a parameter, and using the same Is to provide a method.
Disclosure of the invention
The invention according to claim 1 for solving the above-mentioned problem is that the lower end of the sample tray made of a conductive material containing the liquid sample to be tested and the liquid sample in the sample tray is in contact with the sample pan. It functions to detect the thread length of the liquid to be tested by ascending, and has an insertion hole whose inner peripheral surface is formed of an electrically insulating material and slides up and down in the insertion hole of the holder made of a conductive material. It is made of a conductive material that is freely movably fitted, and is electrically connected to the conductive portion of the holder by line weight or multipoint contact by its own weight or by a mechanical reduction force. Flat bottom, convex spherical shape, convex cone shape, convex pyramid shape, convex pyramid shape with spherical tip, concave spherical shape, concave conical shape, concave pyramid shape, one letter in diameter direction Convex ridges or grooves extending in a shape, convex extending in a cross shape in the diameter direction Or an upper contact having a shape of either a concave groove, an upper contact elevating means for grasping and lifting the holder, an upper contact elevating motor, and a rotational speed for digitally detecting the rotational speed of the motor An operation circuit incorporating a detection means, a feedback control system for outputting an operation amount for erasing the deviation based on a deviation between the rotation speed detection result by the rotation speed detection means and the rotation speed target value; The motor is driven based on the output signal and the output signal from the sample / upper contact contact judgment circuit that detects the electrical connection between the sample pan and the upper contact through the liquid to be detected and outputs the result. And a motor driving circuit for measuring the spinnability of a liquid material.
The invention according to claim 2 is characterized in that the sample tray is configured such that the sample trays having different sample storage amounts are formed on the front and back sides so that the reversal switching can be used. It is.
According to the third aspect of the present invention, there is provided a sample tray made of a conductive material that contains the test liquid substance, and the lower end portion of the sample liquid dish in the sample tray is in contact with the sample liquid dish, and the rise of the test liquid substance The inner peripheral surface that functions to detect the string length has an insertion hole formed of an electrically insulating material, and is loosely fitted in the insertion hole of the holder made of a conductive material so as to be slidable up and down. It is made of a conductive material, and is electrically connected in line contact or multipoint contact with the conductive portion of the holder by its own weight or by a mechanical reduction force, and is in contact with the liquid to be tested in the sample tray. An upper contact having a scooping hook portion attached to the lower end of the scooping hook that functions to scoop up and lift the liquid sample in the sample tray at the lower end, and an upper contact lifting / lowering means for gripping and lifting the holder , Motor for raising and lowering the upper contact, and motor rotation speed An operation circuit incorporating a rotation speed detection means for digitally detecting a rotation speed and a feedback control system for outputting an operation amount for eliminating the deviation based on a deviation between a rotation speed detection result by the rotation speed detection means and a rotation speed target value And an output signal from the operation circuit and an output from the sample / upper contact contact determination circuit for detecting that the sample tray and the upper contact are electrically coupled via the liquid to be detected and outputting the result. A liquid material spinnability measuring apparatus having a motor drive circuit for driving a motor based on a signal.
According to a fourth aspect of the present invention, there is provided a liquid material according to any one of the first to third aspects, wherein the sample tray is provided with a sample presser that functions so that the entire stored sample does not lift. The spinnability measuring apparatus.
According to the fifth aspect of the present invention, there is provided a sample tray made of a conductive material that contains a liquid to be tested, and a tube, a slit, or an orifice is formed at the lower end of the sample tray, and the tube is moved upward from the tray. The inner peripheral surface of the sample liquid that has a sample rod that allows the test liquid to flow down from any one of the slit and the orifice and that functions to detect the string length of the test liquid is formed of an electrically insulating material. A conductive portion and a line of the holder made of a conductive material, which has an insertion hole and is loosely fitted in the insertion hole of the holder made of a conductive material so as to be slidable in the vertical direction. An upper contact that is electrically connected by contact or multipoint contact, an upper contact elevating means that grasps and lifts the holder, an upper contact elevating motor, and a rotational speed of the motor are digitally detected. An operation circuit incorporating a rotation speed detection means, a feedback control system for outputting an operation amount for eliminating the deviation based on a deviation between the rotation speed detection result by the rotation speed detection means and the rotation speed target value, and the operation circuit And a motor based on the output signal from the sample / upper contact detection circuit for detecting that the sample tray and the upper contact are electrically coupled via the liquid to be detected and outputting the result. And a motor driving circuit for driving the liquid material.
The invention described in claim 6 has a sample tray made of a conductive material that contains the test liquid substance, and an outflow hole that allows the test liquid substance to flow down from the lower end portion thereof by rising from the sample tray. It functions to detect the thread length of the liquid to be detected, and has an insertion hole whose inner peripheral surface is formed of an electrically insulating material and is slidable up and down in the insertion hole of the holder made of a conductive material. An upper contact that is made of a conductive material that is loosely fitted and is electrically coupled in line contact or multipoint contact with the conductive portion of the holder by its own weight or by a mechanical reduction force, and grips the holder The upper contact lifting / lowering means, the upper contact lifting / lowering motor, the rotational speed detection means for digitally detecting the rotational speed of the motor, the rotational speed detection result by the rotational speed detection means, and the rotational speed target value, Deviation based on deviation An operation circuit incorporating a feedback control system for outputting the operation amount to be removed, an output signal from the operation circuit, and detecting that the sample tray and the upper contact are electrically coupled via the liquid to be tested. It is a liquid material spinnability measuring apparatus having a motor drive circuit that drives a motor based on an output signal from a sample / upper contact contact determination circuit that outputs the result.
The invention according to claim 7 is directed to the insertion hole in the holding tool through the upper contact lifting / lowering means and the holding tool by the rotational drive of the motor at a given speed toward the liquid sample in the sample tray. Lower the upper contact that is loosely fitted up and down and is electrically coupled by its own weight or by means of a mechanical reduction force with the conductive part of the holder in line contact or multipoint contact. A holder in which the upper contact is mounted by an operation circuit at the moment when the lower end of the contact is in contact with the liquid to be tested and the sample tray and the upper contact are brought into electrical conduction through the liquid to be tested. Then, the holding tool carrying the upper contact is raised by rotating the motor, and the electrical connection between the upper contact and the sample tray is interrupted by the extension of the liquid to be tested. Depending on the upward displacement of the upper contact Detecting the stringing length of the test liquid was a spinnability method for measuring liquid material which is adapted to measure the viscosity of the liquid.
According to the eighth aspect of the present invention, prior to the measurement of the spinnability of the liquid to be tested, the holder on which the upper contactor is mounted is lowered by a certain distance, and then is raised by a certain distance. 8. The method for measuring the stringiness of a liquid according to claim 7, wherein feedback control is performed so as to achieve a given descending and ascending speed.
According to the ninth aspect of the present invention, after the lower end of the upper contact comes into contact with the test liquid in the sample tray, the holder on which the upper contact is mounted is raised by the rotational drive of the motor, and the test liquid is After the electrical continuity state through the object is interrupted, if the liquid to be tested is still in the stringing state, insert a delay time until the next upper contactor lowers or mount the upper contactor 10. The method for measuring the spinnability of a liquid material according to claim 7 or 9, wherein the holding tool is further raised by rotating the motor to completely cut the test liquid material.
According to the tenth aspect of the present invention, prior to measuring the spinnability of the test liquid, the holder on which the upper contactor is mounted is lowered to wet the lower end of the upper contact with the test liquid. The method for measuring the spinnability of a liquid according to any one of claims 7 to 9, which is in a state.
The invention according to claim 11 stores a predetermined amount of the test liquid in the sample bowl in a state in which any of the tube, slit, and orifice at the lower end of the sample bowl is in contact with the sample tray, Raise the upper contact to which the sample jar is attached to cause the test liquid to flow down from any of the tube, slit, or orifice at the lower end of the sample tub, and the tip of the flowing test liquid is broken into droplets This is a method for measuring the stringiness of a liquid material so as to measure the stringing length until it becomes.
The invention according to claim 12 stores a predetermined amount of the test liquid in the sample container in a state where any of the tube, slit, and orifice at the lower end of the sample container is in contact with the sample tray, Raise the upper contact to which the sample jar is attached and let the test liquid flow down from any of the tube, slit, or orifice at the lower end of the sample jar, until the test liquid in the sample tub has finished flowing out Is a method for measuring the spinnability of a liquid material.
The invention according to claim 13 is a liquid material in which the thread pulling length of the test liquid material in the first measurement is used as a reference value, and the time or the number of times of measurement until a certain ratio of the reference value is obtained is measured. This is a method for measuring the spinnability.
In the invention according to claim 14, the ascending distance of the upper contact is set to a constant value within the limit when the test liquid does not cut, and the contact of the lower end of the upper contact with the test liquid in the sample tray is the upper contact. This is a method for measuring the spinnability of a liquid material, in which the time until the liquid material to be cut or the number of times of measurement is measured within the constant ascent distance is measured.
The invention according to claim 15 is a method for measuring the spinnability of a liquid material in which the upper contact is raised by a certain distance and held in that state, and the change over time in the electrical conductivity of the liquid material to be detected is detected. is there.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described according to preferred embodiments thereof.
The present invention defines the chemical composition of the test liquid, chemical conditions such as pH, and physical conditions such as temperature, and the spinnability of the test liquid is determined by the length, load, and measured values. The measurement is performed using measurement parameters such as time or the number of measurements over time, and electrical conductivity. In addition, the physical property of a test liquid such as saliva when the saliva is expressed sensuously from a patient, such as saliva, or a test liquid that has a coagulability such as blood is measured by a stringiness measuring means suitable for it. By measuring and performing a relative comparison between test liquid substances (samples), it can be used as data for diagnosis of human health, quality control in the industrial field, food field, etc., and development of new products, for example. . Furthermore, the spinnability as a manifestation of the viscosity, elasticity and viscoelasticity of the test liquid is measured.
Example 1
FIG. 1 shows an apparatus for measuring the spinnability of a liquid according to one embodiment of the present invention.
In FIG. 1, reference numeral 1 denotes an operation circuit, which is provided with a switch for raising and lowering a holder 7 on which an upper contactor 8 is mounted so as to be movable up and down. Further, as shown in FIG. 2, the operation circuit 1 includes a reflector having a black and white contrast formed in the circumferential direction at predetermined intervals on the outer peripheral surface for digitally detecting the rotation speed of the motor 3. , The infrared ray is reflected from the infrared retroreflective photointerrupter (encoder), the reflected infrared ray reflected from the white part is regarded as a pulse signal, the pulse width and number are input, and the rotation speed of the motor 3 is increased or decreased by a given amount. A feedback control system is incorporated that manipulates the pulse width so that the pulse per time matches the target value given to the holder 7 for the speed.
A motor drive circuit 2 receives the output from the operation circuit 1 and receives electric power to drive the holder 7 on which the upper contact 8 is vertically movable to the motor 3 in the upward or downward direction. . The motor drive circuit 2 is also activated by a signal from the test liquid substance (sample) / upper contactor determination circuit 11 to cut off the power to the motor 3. Further, the motor drive circuit 2 is operated by signals from the upper limiter 13 and the adjustment limiter 14 to cut off the power to the motor 3.
A drive belt 4 is wound around a pulley provided on the output shaft of the motor 3 and a pulley provided on one end of the lifting screw shaft 5 to rotate the motor 3 to the lifting screw shaft 5. It works to communicate. The means for transmitting the rotation of the motor 3 to the lifting screw shaft 5 may be a gear train. The elevating screw shaft 5 is screwed with a female screw in the elevating table 6, and elevates the elevating table 6 by rotating in the forward and reverse directions. In this embodiment, the elevating speed of the elevating table 6 is variable within a range of 5 mm / s to 20 mm / s. A holder 7 is fixed to one end of the lifting table 6, and an upper contact 8 is loosely fitted to the holder 7 so as to be movable up and down. Thus, the lifting screw shaft 5, the lifting table 6 and the holder 7 constitute lifting means for the upper contact 8.
The upper contact 8 is made of a conductive material such as stainless steel. In this example, the diameter was 1 mm to 10 mm and the cross section was circular. However, the cross section is not limited to a circle, but may be a polygon more than a triangle. In this embodiment, the lower end portion of the upper contact 8 has a convex spherical shape or a concave spherical shape as shown in FIG. 3, but it has a convex conical shape, a convex pyramid shape, or a convex shape having a spherical tip. A pyramid, a concave cone, a concave pyramid, and a ridge or groove extending in a letter shape in the diametrical direction or a ridge or groove extending in a cross shape in the diametrical direction as shown in FIG. May be.
In the holder 7 in which the upper contact 8 is loosely fitted and mounted so as to be movable up and down, a flat portion is formed on the top of the upper contact 8 and the lower end of the spindle of the digital dial gauge 12 is in contact. The digital dial gauge 12 detects the vertical displacement of the upper contact 8 with high accuracy and displays the result digitally. In this example, the vertical displacement of the upper contact 8 was detected with an accuracy of 20 μm.
Reference numeral 10 denotes a sample tray, which is formed in a shallow cylindrical shape or an inverted conical shape and accommodates a test liquid material (sample) 9. The sample tray 10 is made of a conductive material such as stainless steel, and is detachable. One end of the sample tray 10 is electrically connected to the sample / upper contact contact determination circuit 11. In this embodiment, as shown in FIG. 4, shallow cylindrical recesses with different diameters are formed on both the front and back surfaces, and the spinnability measurement with different test liquid (sample) 9 capacity is reversed, and the sample tray 10 is inverted. It was possible to use it. In addition, by forming a shallow cylindrical recess, the deviation of the sample position on the plane of the sample tray 10 can be prevented, and the top of the swell due to the surface tension of the liquid sample (sample) 9 is located at the center of the plane of the sample tray 10. In addition to making it possible to measure with high accuracy, visual judgment of the capacity of the test liquid substance (sample) 9 was facilitated.
Depending on the physical properties of the liquid sample (sample) 9 to be tested, a columnar sample tray 20 having a flat upper surface as shown in FIG.
The sample / upper contact contact determination circuit 11 applies a voltage between the upper contact 8 and the sample tray 10 via the holder 7, and when the voltage between the two drops, the test liquid (sample) ) When the upper contact 8 and the sample tray 10 are electrically coupled via 9, that is, when the upper contact 8 comes into contact with the test liquid material (sample) 9.
An upper limiter 13 functions to determine the upper limit of the upper contact 8. That is, when the upper contact 8 rises through the lifting table 6 and the holder 7 by the rotation of the lifting screw shaft 5, and the lifting table 6 operates the upper limiter 13, the signal is sent to the motor drive circuit 2. As a result, the motor drive circuit 2 cuts off the power to the motor 3 to stop the motor 3 and stops the upper contactor 8 from rising. Reference numeral 14 denotes a lower limiter that functions to determine the lowering limit of the holder 7. When the lifting table 6 activates the lower limiter 14 by the reverse operation, the signal is input to the motor drive circuit 2, and as a result, the motor drive circuit 2 cuts off the electric power to the motor 3 and turns off the motor 3. Stop and stop the descent of the holder 7.
The pattern of mounting and holding the upper contact 8 by the holder 7 is shown in FIGS. As shown in FIG. 5, the inner peripheral surface of the upper contact 8 insertion hole in the holder 7 is formed of an electrically insulating collar 71. The remaining part of the holder 7 is made of a conductive material such as stainless steel. The upper contact 8 is loosely fitted in the insertion hole so as to freely move up and down, and the outer peripheral surface of the upper stepped large diameter portion of the upper contact 8 is in line contact with the conductive material portion of the holder 7 in a ring shape. Thus, the knife edge portion 81 is formed. Instead of the knife edge portion 81 that makes a line contact in a ring shape, point contact may be made at three or more points at equal intervals in the circumferential direction. With this configuration, when the upper contact 8 is mounted on the holder 7, electrical connection between the upper contact 8 and the holder 7 is performed by means of an elastic reduction means such as the weight of the upper contact 8 or a compression coil spring. Is formed.
Thus, as shown in FIG. 6, when the lower end of the upper contact 8 reaches the bottom surface of the sample tray 10 and the holder 7 is lowered, the upper contact 8 is lifted from the holder 7 and the upper contact is brought about. Avoid damage to the measuring device by the child 8. And if the raising / lowering table 6 operates the lower limiter 14, the motor 3 will be stopped and the holding tool 7 will stop descending.
Normally, the upper and lower limits of the holder 7 are stopped by the upper limiter 13 and the lower limiter 14. However, when the upper contactor 8 is fixed to the holder 7, the position of the lower limiter 14 is not set very accurately. When the lowering amount of the holder 7 becomes excessive, the device is destroyed. On the other hand, when the amount of the liquid sample (sample) 9 in the sample tray 10 is small, the lower limiter 14 is activated. In addition, the state where the lower end part of the upper contactor 8 does not come into contact with the liquid material (sample) 9 to be tested is brought about.
Therefore, in the present invention, the setting position of the lower limiter 14 is set sufficiently low so that the upper contactor 8 is always in contact with the test liquid (when the amount of the test liquid (sample) 9 in the sample tray 10 is small. (Sample) 9 is brought into contact. Even if the liquid to be tested (sample) 9 is non-conductive, as shown in FIG. 6, the lower end of the upper contact 8 reaches the bottom surface of the sample tray 10 and still holds the holder. Even if 7 is lowered, the upper contact 8 is lifted from the holder 7, and damage to the measuring device due to the upper contact 8 is avoided. When the upper contactor 8 is lifted from the holder 7, the knife edge portion 81 of the upper contactor 8 and the holder 7 are detached and the electrical connection is cut. However, the upper contactor 8 is in a correct state with respect to the holder 7. Even when it is not set, the electrical conduction state of both cannot be obtained. Therefore, even if the liquid sample (sample) 9 is accommodated in the sample tray 10 and the upper contactor 8 is lowered and the lower end thereof contacts the liquid sample (sample) 9, the upper contactor 8 is retained. When the tool 7 is not set in the correct state, the measurement (rising of the upper contact 8) is not performed and the upper contact 8 is lifted from the holder 7. Thus, when the test liquid material (sample) 9 is electrically conductive and has an appropriate amount, even if the upper contactor 8 is lowered and its lower end contacts the test liquid material (sample) 9. When there is no electrical continuity and measurement is not possible, this indicates a problem in the setting of the upper contact 8 and the holder 7.
Next, a method for measuring the spinnability using the liquid spinnability measuring apparatus of the present invention shown in Example 1 will be described. First, in order to raise the holder 7 in which the upper contactor 8 is loosely fitted and mounted so as to freely move up and down, the raising switch in the operation circuit 1 is turned on. Then, the motor drive circuit 2 is activated, and electric power is applied to drive the motor 3 to rotate in the direction of raising the lifting table 6 to the lifting screw shaft 5. The rotation of the motor 3 is transmitted to the elevating screw shaft 5 via a drive belt or a gear train, and the elevating table 6 is raised by screwing of the elevating screw shaft 5 and the female screw in the elevating table 6. As a result, the holder 7 on which the upper contactor 8 is freely fitted and mounted so as to freely move up and down is raised.
In order to lower the holder 7 in which the upper contactor 8 is loosely fitted and mounted so as to be movable up and down, when the lowering switch in the operation circuit 1 is turned on, the motor driving circuit 2 is activated and the lifting table 6 is lowered. In order to apply the rotation to the lifting screw shaft 5, electric power is applied to rotate the motor 3. The rotation of the motor 3 is transmitted to the elevating screw shaft 5 via a drive belt or a gear train, and the elevating table 6 is lowered by screwing of the elevating screw shaft 5 and the female screw in the elevating table 6. As a result, the holder 7 on which the upper contactor 8 is freely fitted and mounted so as to be movable up and down is lowered.
Next, the operation for measuring the spinnability of the test liquid material (sample) 9 will be described. In a state where the holder 7 on which the upper contactor 8 is freely fitted and mounted so as to be freely movable up and down is raised, a liquid sample (sample) 9 is loaded into a detachable sample tray 10. Next, the lowering switch in the operation circuit 1 is turned on. As a result, the motor drive circuit 2 is actuated, and the motor 3 is rotationally driven to rotate the lifting screw shaft 5 so as to be in the rotational direction in which the lifting table 6 is lowered. The rotation of the motor 3 is transmitted to the elevating screw shaft 5 via a drive belt or a gear train, and the elevating table 6 is lowered by screwing of the elevating screw shaft 5 and the female screw in the elevating table 6. As a result, the holder 7 on which the upper contactor 8 is freely fitted and mounted so as to be movable up and down is lowered.
The holder 7 and the sample tray 10 on which the upper contact 8 made of a conductive material is freely fitted and mounted so as to be movable up and down are electrically connected to the sample / upper contact contact determination circuit 11, and the sample The upper contactor determination circuit 11 applies a voltage between the holder 7 and the sample tray 10 on which the upper contactor 8 is loosely fitted and mounted so as to be movable up and down. Thus, the upper contact is made at the moment when the holder 7 on which the upper contact 8 is freely fitted and mounted so as to move up and down is lowered and the lower end of the upper contact 8 comes into contact with the liquid sample (sample) 9. The potential difference between the holder 7 on which the child 8 is freely fitted and mounted so as to be movable up and down and the sample tray 10 is lowered, and the sample / upper contact contact judgment circuit 11 outputs this signal.
Based on the output signal of the sample / upper contact contact determination circuit 11, the motor drive circuit 2 operates to cut off the power to the motor 3. As a result, the upper contact 8 stops in a state where the lower end thereof is in contact with the test liquid material (sample) 9. At this point, the zero / clear button of the digital dial gauge 12 is pushed to zero the display.
Next, the switch in the operation circuit 1 is turned on. As a result, the motor drive circuit 2 is operated, and the motor 3 is rotationally driven so as to rotate the lifting screw shaft 5 so as to be in the rotational direction in which the lifting table 6 is lifted. The rotation of the motor 3 is transmitted to the elevating screw shaft 5 via a drive belt or a gear train, and the elevating table 6 is raised by screwing of the elevating screw shaft 5 and the female screw in the elevating table 6. As a result, the holder 7 on which the upper contactor 8 is freely fitted and mounted so as to freely move up and down is raised.
As the upper contactor 8 rises, the holder 7 and the sample on which the upper contactor 8 is mounted in a state where the test liquid material (sample) 9 is slender and pulled due to the stringiness of the test liquid material (sample) 9 The electrical connection between the trays 10 continues, but when the limit point is reached, the test liquid material (sample) 9 in the stringing state breaks, and at this moment, the holder 7 and the sample on which the upper contactor 8 is mounted. The electrical coupling between the trays 10 is broken. The moment when this electrical coupling is cut off is detected by the sample / upper contact contact determination circuit 11 electrically connected to the holder 7 carrying the upper contact 8 and the sample tray 10 respectively. The signal is output to the motor drive circuit 2. The motor drive circuit 2 cuts off the power to the motor 3 based on the signal from the sample / upper contact contact determination circuit 11. Thereby, the raise of the holder 7 carrying the upper contact 8 is stopped. The digital dial gauge 12 detects the amount of displacement from the position at which the upper contact 8 starts to rise to the stop position due to the breakage of the liquid material (sample) 9 to be detected, and the result is digitally displayed. The amount of displacement of the upper contact 8 becomes the string length of the test liquid material (sample) 9.
As described above, the lower limiter 14 is set at a sufficiently low position, so that the lower end portion of the upper contact 8 is surely placed even when the liquid sample (sample) 9 in the sample tray 10 is small. It is brought into contact with the liquid to be tested (sample) 9. On the other hand, when the liquid sample (sample) 9 in the sample tray 10 is non-conductive, when the lower end of the upper contact 8 is in contact with the bottom surface of the sample tray 10 and the holder 7 is still lowered. Since the insertion hole of the upper contact 8 in the holder 7 is loosely fitted, the upper contact 8 is relatively lifted from the holder 7 and avoids damage to the measuring instrument due to the lowering of the upper contact 8. In addition, since the inner peripheral surface of the insertion hole of the upper contact 8 in the holder 7 is formed of the electrical insulator collar 71, an electrical conduction state is established unless the upper contact 8 and the holder 7 are set appropriately. It is not obtained and the measurement operation (upward movement of the upper contactor 8) cannot be performed, so that the failure of the measurement condition can be easily determined. In this way, damage to the apparatus is reliably prevented, and the position adjustment / setting of the lower limiter 14 is facilitated. Moreover, since the upper contactor 8 can be easily removed from the holder 7, it can be easily cleaned.
According to the knowledge of the inventors, the fluctuation of the rotational speed of the motor 3, that is, the rising speed of the holder 7 on which the upper contactor 8 is mounted, is the accuracy of the measurement of the spinnability of the liquid sample (sample) 9. Affects. Thus, the rotational speed of the motor 3 may not be constant due to voltage fluctuations, individual differences in the motor, sliding resistance of the rotating part, and the like. Therefore, in this embodiment, in order to detect the rotation speed of the motor 3 digitally, a reflector having a black and white contrast is provided at one end of the motor rotation shaft, and infrared rays are transmitted using a retroreflective photo interrupter. The reflected recursive infrared ray from the white contrast portion is projected and the number of pulses per time is detected. Thus, feedback (feedback) control is performed so that the rotational speed of the DC motor 3 becomes a given value. The operation amount in the feedback control system is an ON-OFF width ratio in a pulse input from the operation circuit 1 to the motor 3 via the motor drive circuit 2. That is, speed control using a pulse width modulation method.
In the present invention, prior to actual measurement of the spinnability of the liquid material (sample) 9 to be tested, the rotational speed of the motor 3 is controlled by the feedback control system for each spinnability measuring device, Calibration is performed so that the holder 7 carrying the contact 8 is displaced at a given elevation speed. That is, as shown in FIG. 7, a test liquid material (sample) 9 is inserted into the sample tray 10 in advance, and a certain amount is obtained until the lower end of the upper contact 8 comes into contact with the test liquid material (sample) 9. The holder 7 carrying the upper contact 8 is lowered and then raised by a certain amount. In this process, the feedback control is performed so that the ascending / descending speed of the holder 7 on which the upper contact 8 is mounted is converged to a given target value as shown in FIG. For each individual spinnability measuring device, the spinnability of the test liquid material (sample) 9 is measured after performing this calibration.
When actually measuring the spinnability of the test liquid substance (sample) 9, the holder 7 on which the upper contactor 8 is mounted is raised, and as shown in FIG. The upper contactor 8 up to the moment when the sample 9 in the threaded state is cut and the voltage value applied between the holder 7 carrying the upper contactor 8 and the sample tray 10 is restored. Measure the upward displacement of. However, when the diameter d of the test liquid substance (sample) 9 in the stringing state shown in FIG. 9 becomes very thin, the test liquid substance (sample) 9 is not cut even though the electrical conduction state is cut off. Although it is extremely thin, it may remain without being completely cut. The measurement of the spinnability of the liquid to be tested (sample) 9 itself is performed until the electrical conduction state is cut by the sample 9 by moving upward from the contact state of the lower end portion of the upper contact 8 to the sample 9. There is no problem at all by measuring the yarn length l and using it as an index of the viscosity of the test liquid (sample) 9, but the test liquid (sample) 9 itself remains uncut as a substance. When the holder 7 carrying the upper contactor 8 is lowered for the measurement of the spinnability, the diameter d of the test liquid material (sample) 9 becomes thick again and becomes electrically conductive, and the measurement cannot be performed. .
FIG. 10 shows the electrical conduction state in the relationship between the ratio D / d of the diameter: d of the liquid material (sample) 9 to be tested and the diameter: D of the upper contactor 8 and the stringed length l. A detectable region is indicated by a hatched portion. Therefore, in the present invention, when the complete cutting as the substance of the liquid sample (sample) 9 is not performed, the upper contactor 8 is re-displaced for a predetermined time after the electric conduction state is cut. After being held in a stopped state and confirming that the test liquid material (sample) 9 is completely cut as a substance, the upper contactor 8 starts to descend again, or the electrical conduction state is cut off. After that, the upper contactor 8 is raised until the upper limiter 13 is operated, and after confirming that the test liquid material (sample) 9 is completely cut as a substance, the upper contactor 8 starts to descend again. I have to. By taking this process, the correct spinnability measurement is guaranteed.
In the measurement of the spinnability of the actual liquid to be tested (sample) 9, the upper contact 8 is lowered as it is after the lower end of the upper contact 8 is cleaned with alcohol or the like, and the sample in the sample tray 10 is dropped. When the lower end of the liquid sample (sample) 9 is brought into contact, there may be a variation in measurement values due to the surface properties of the lower end of the upper contact 8. Therefore, in the present invention, when the above-described calibration is performed, the lower end portion of the upper contact 8 is brought into contact with the liquid sample (sample) 9 to be in a wet state, and measurement of the spinnability of the sample is started in this state. Then, the lower end portion of the upper contact 8 is brought into a fusion contact state with the liquid to be tested (sample) 9 in the sample tray 10, and variations in measured values due to the surface properties of the lower end portion of the upper contact 8 can be eliminated. It was.
On the other hand, when the top of the bulge due to the surface tension of the test liquid material (sample) 9 with the lower end of the upper contact 8 in a wet state is not located at the center of the cross section of the lower end of the upper contact 8, the upper contact 8 When the sample is lowered, the liquid sample (sample) 9 in the sample tray 10 is in contact with the liquid sample (sample) 9 at a position shifted from the peak of the rise of the liquid sample (sample) 9 in the sample tray 10, and is in an electrically conductive state there. As a result, the upper contactor 8 is raised and the spinnability measurement of the sample is performed, so that there is a problem that the measured value becomes a small value. Therefore, in the present invention, for example, as shown in FIGS. 3 and 11, the shape of the lower end portion of the upper contact 8 is a convex spherical shape or a concave spherical shape, or a ridge or a concave groove extending in a diametrical shape. Alternatively, the top of the swell due to the surface tension of the liquid sample (sample) 9 in which the lower end of the upper contact 8 is in a wet state is formed by forming a ridge or groove extending in a cross shape in the diameter direction. It was made to be located in the center of the cross section of the child 8 lower end part. In this way, the peak of the rising due to the surface tension of the liquid sample (sample) 9 with the lower end of the upper contact 8 in a wet state is matched with the peak of the liquid sample (sample) 9 in the sample tray 10. Can do. Further, as shown in FIG. 4, the vertical cross-sectional shape of the sample tray 10 is a shallow cylindrical recess or a shallow inverted frustoconical recess, so that the liquid sample (sample) 9 is placed in the center of the plane of the sample tray 10. It becomes easy to position.
In this embodiment, the method for measuring the stringiness of the liquid material is repeated a plurality of times by measuring the stringing length until the electrically conductive state is cut with the lower end of the upper contact 8 in advance in a wet state. Wet test method for extracting the average value and distribution status within the group, and until the lower end part of the upper contact 8 is dry without being wetted by the liquid material (sample) 9 until the electrical conduction state is cut off There is a dry test method in which the thread drawing length is measured once.
The wet test method is suitable for measuring a test liquid material (sample) 9 having viscosity, elasticity, surface tension, and adhesive strength to some extent. The dry test method is suitable for measuring a test liquid material (sample) 9 having high adhesive strength and low elasticity.
Example 2
Using the apparatus for measuring the stringiness of a liquid material shown in FIG. 1, measuring the thread pulling length until the electrical conduction state is cut is repeated a plurality of times, and the amount of change in the thread pulling length is measured. The measurement result of the first time is used as a reference value, and the time or the number of measurements until a certain ratio of the reference value, for example, 50%, is used as a coagulation parameter of the test liquid material (sample) 9.
Example 3
1 is used to raise the upper contact as a constant value within the limit when the test liquid (sample) 9 is not cut, and to maintain a constant interval between the sample tray 10 and the upper contact. The measurement of the thread drawing length until the electrically conductive state is cut is repeated a plurality of times, and the number of repetitions or time is set as the coagulation parameter of the liquid material (sample) 9 to be tested.
Example 4
Using the apparatus for measuring the stringiness of a liquid material shown in FIG. 1, the upper contactor is raised by a predetermined distance, and the test liquid material (sample) 9 in a stringed state is held at that position, and the change in electrical conductivity over time is measured. taking measurement. This measured value is used as a volatile parameter of the test liquid material (sample) 9. Example 5
FIG. 13 shows an apparatus for measuring the spinnability of a liquid according to one embodiment of the present invention.
In FIG. 13, the same reference numerals as those in FIG. 1 are the same as the components shown in FIG. The upper contact 28 in this embodiment has a scooping hook portion 38 at its lower end. The scooping hook portion 38 is inserted into the test liquid material (sample) 9 in the sample tray 10 at the tip thereof, and the predetermined amount of the test liquid material (sample) 9 is scooped up by raising the upper contact 28. It functions to measure the string length until the electrical continuity is broken. The apparatus for measuring the spinnability of a liquid material according to this embodiment is a case where the viscosity and elasticity of the sample are relatively high, the surface tension is large, the sample is difficult to adhere to the sample tray with a certain strength, and the adhesiveness is poor. And it is suitable for making the test liquid substance (sample) 9 with high fluidity into a measuring object. In FIG. 13, reference numeral 101 denotes a sample presser that has a bifurcated plane shape and is fixed to the sample tray 10. This sample presser 101 prevents the entire amount of the test liquid material (sample) 9 from being lifted by the scooping hook portion 38. The cross-sectional shape of the distal end portion of the scooping hook portion 38 can be variously selected according to the physical properties of the test liquid material (sample) 9 such as an inverted triangle, a square, a circle, or a spoon.
Example 6
FIG. 14 shows an apparatus for measuring the spinnability of a liquid according to one embodiment of the present invention.
14, the same reference numerals as those in FIG. 1 are the same as the components shown in FIG. In this embodiment, the test liquid material (sample) 9 flows down from a tube 481 formed at the lower end of the sample bottle 48 or a slit 482 or an orifice 483 formed at the lower end of the sample bowl 48. In this embodiment, the method for measuring the spinnability of the liquid material is such that either the tip of the tube 481 at the lower end of the sample bottle 48, the slit 482 or the orifice 483 is brought into contact with the bottom surface of the sample tray 10 in advance. A predetermined amount of the liquid material (sample) 9 is injected into the sample bowl, or the tip of the tube 481, the slit 482 or the orifice 483 is closed with a thin rod-shaped material and the liquid material (sample) 9 to be tested is A predetermined amount is injected into the sample cage and opened at the same time as the measurement is started, and the upper contact 28 is raised to measure the length of the kite thread until the electrical conduction state is cut off. The apparatus and method for measuring the spinnability of a liquid material according to this example is suitable for measuring a test liquid material (sample) 9 having low viscosity, elasticity, surface tension and adhesiveness and high fluidity. Yes. This test method is called a flow test method.
Example 7
FIG. 15 shows an apparatus for measuring the spinnability of a liquid according to one embodiment of the present invention.
In FIG. 15, the same reference numerals as those in FIG. 1 are the same as the constituent elements shown in FIG. In this embodiment, the test liquid material (sample) 9 flows down from the outflow hole 281 which is drilled in the center of the cross section of the upper contact 28 and has an opening at the lower end. A test liquid material (sample) 9 is stored by a syringe 48 or a spoid 48. In this embodiment, the method for measuring the spinnability of the liquid material is performed by storing a predetermined amount of the liquid material (sample) 9 to be tested by previously bringing the opening of the outflow hole 281 into contact with the bottom surface of the sample tray 10. Simultaneously with the start, the syringe piston or dropper is opened, and the upper contact 28 is raised to measure the length of the string until the electrical conduction state is cut off. The apparatus and method for measuring the spinnability of a liquid material according to this example is suitable for measuring a test liquid material (sample) 9 having low viscosity, elasticity, surface tension and adhesiveness and high fluidity. Yes. This test method is also an embodiment of the flow test method.
The apparatus for measuring the spinnability of a liquid material according to the present invention is implemented as described above. Factors that affect the measurement of the spinnability of a liquid material include the temperature, humidity, and test liquid material (sample) at the time of measurement. ), The surface properties (surface roughness, etc.) of the portion of the upper contact with the sample, the size and shape of the upper contact, the rising speed of the upper contact, and the like. It is necessary to comprehensively judge and standardize these factors corresponding to the liquid to be tested (sample).
FIG. 16 shows the correspondence relationship between the measurement results obtained by the liquid material spinnability measuring apparatus and the spinnability measurement method of the present invention and the actual measurement values obtained by the cylinder gauge. As is apparent from FIG. 16, a very good correspondence is shown.
In addition to saliva, liquid materials in the medical field such as urine, nasal discharge, sputum, oils and fats, inks, paints, and the like that can be targeted by the liquid material spinnability measuring apparatus and spinnability measuring method of the present invention Liquid substances handled in the industrial field such as liquids, dressings, liquids in the food field such as milk, and conductive liquids having a spinnability such as gels and emulsions and pastes can all be measured.
According to the first and tenth aspects of the present invention, the viscosity of the conductive liquid material having the spinnability can be measured with high accuracy without causing individual differences of the measurer. The liquid material spinnability measuring apparatus and spinnability measuring method of the present invention can perform automatic measurement with as little sample as possible, and the measurement result is digitally displayed. There is no determination error such as reading. In addition, since the upper contact is mounted on the holder in a loosely fitted state and the upper contact is lifted from the holder, it is possible to avoid damaging the measuring device due to the upper contact and to easily adjust the position of the lower limiter. . Furthermore, the assembly of the apparatus is easy and the upper contact can be easily cleaned.
According to invention of Claim 2, the dispersion | variation in the measured value of the spinnability of a liquid substance resulting from the dispersion | variation in the raising speed of an upper contactor can be eliminated.
According to the third aspect of the present invention, it is possible to prevent a decrease in the spinnability measurement accuracy of the liquid material caused by the deviation of the sample from the center of the cross section of the upper contact.
According to the invention described in claim 4, it is possible to quickly cope with the measurement of the spinnability of samples having different amounts. Further, by making the sample tray into a shallow cylindrical or inverted frustoconical concave portion, the centering of the sample and the visual inspection of the sample loading amount can be facilitated.
According to the invention described in claim 6, the spinnability measurement of a sample with high fluidity can be performed with high accuracy.
According to invention of Claim 7, the trouble resulting from the lifting of the sample from a sample tray can be prevented.
According to the inventions of claims 8, 9, 14, and 15, the spinnability measurement of a sample with high fluidity can be performed with high accuracy.
According to the eleventh aspect of the present invention, since the feedback control of the rotational speed of the motor is sufficiently performed prior to the measurement, it is possible to stably measure the spinnability of the liquid material with high accuracy.
According to the twelfth aspect of the present invention, it is possible to eliminate an erroneous measurement trouble in measuring the spinnability of a liquid material.
According to the thirteenth aspect of the present invention, it is possible to eliminate variations in measurement values caused by the surface properties of the lower end portion of the upper contact.
According to the sixteenth and seventeenth aspects of the present invention, the coagulability of the liquid material can be tested using the stringiness of the liquid material as a parameter.
According to the eighteenth aspect of the present invention, the volatility of the liquid material can be tested using the spinnability of the liquid material as a parameter.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an apparatus for measuring the spinnability of a liquid according to the present invention.
FIG. 2 is a schematic diagram showing a feedback control system including an operation circuit, a motor drive circuit, a motor, and a rotation speed detecting means thereof in the liquid material spinnability measuring apparatus of the present invention.
FIG. 3 is a front view showing an embodiment of the shape of the lower end of the upper contact in the apparatus for measuring the spinnability of a liquid according to the present invention.
FIG. 4 is a longitudinal sectional view showing an example of a sample tray in the liquid spinnability measuring apparatus of the present invention.
FIG. 5 is a longitudinal sectional view showing a state in which the upper contact is mounted on the holder in the liquid spinnability measuring apparatus of the present invention.
FIG. 6 is a longitudinal cross-sectional view showing a state in which the upper contact is lifted from the holder and the electrical coupling is cut between the holder and the upper contact in the apparatus for measuring the spinnability of a liquid according to the present invention. .
FIG. 7 is a block diagram showing steps when feedback control of the motor rotation speed is performed.
FIG. 8 is a block diagram showing a transient state and a steady state when feedback control of the motor rotation speed is performed.
FIG. 9 is a front view showing an example of a spinning state of a sample (test liquid material) in the method for measuring the spinning property of a liquid according to the present invention.
FIG. 10 shows the ratio D / d of the diameter D of the lower end portion of the upper contactor and the sample (test liquid material) in the stringed state in the method for measuring the spinnability of the liquid according to the present invention. It is a graph which shows the electric conduction | electrical_connection detection possible area | region in the relationship with the string length l of the (liquid inspection material).
FIG. 11 is a front view showing another embodiment of the shape of the lower end portion of the upper contact in the liquid stringiness measuring device of the present invention.
FIG. 12 is a longitudinal sectional view showing another embodiment of the sample tray in the liquid spinnability measuring apparatus of the present invention.
FIG. 13: is a front view which shows one Example of the sample scooping hook part attached to the lower end part of an upper contact in the liquid spinnability measuring apparatus of this invention.
FIG. 14 is a front view showing an example of a sample kit attached to the lower end portion of the upper contact in the liquid spinnability measuring apparatus of the present invention.
FIG. 15 is a front view showing an example of an upper contact for the sample flow method in the liquid spinnability measuring apparatus of the present invention.
FIG. 16 is a graph showing a correspondence relationship between measurement results and actual measurement values of the liquid material spinnability measurement apparatus and measurement method of the present invention.

Claims (15)

被検液状物を収容する、導電性材料からなる試料受皿と、該試料受皿内の被検液状物にその下端部が接触しその上昇によって被検液状物の曳糸長さを検出すべく機能する、その内周面が電気絶縁材料で形成されている挿通孔を有するとともに導電性材料からなる保持具の前記挿通孔に上下摺動自在に遊嵌される、導電性材料からなりその自重または弾機的圧下力によって前記保持具の導電性部分と線接触又は多点接触して電気的に結合されるとともに、試料受皿内の被検液状物に接触する下端部がフラット状、凸球面状、凸円錐状、凸角錐状、球面先端部を有する凸角錐状、凹球面状、凹円錐状、凹角錐状、直径方向に一文字状に延在する凸条又は凹溝、直径方向に十文字状に延在する凸条又は凹溝の何れかの形状をもつ上部接触子と、上記保持具を把持して昇降せしめる上部接触子昇降手段と、上部接触子昇降用モータと、モータの回転速度をデジタルに検出する回転速度検出手段と、該回転速度検出手段による回転速度検出結果と回転速度目標値との偏差に基づいて偏差を消去する操作量を出力するフィードバック制御系が組み込まれた操作回路と、該操作回路からの出力信号ならびに上記試料受皿と上部接触子が被検液状物を介して電気的に結合したことを検出しその結果を出力する試料・上部接触子接触判定回路からの出力信号に基づいてモータを駆動するモータ駆動回路とを有することを特徴とする液状物の曳糸性測定装置。  A sample tray made of a conductive material that contains the liquid sample to be tested, and a function to detect the string length of the liquid sample to be tested by its lower end contacting the liquid sample in the sample pan and rising The inner peripheral surface has an insertion hole formed of an electrically insulating material and is loosely fitted in the insertion hole of the holder made of a conductive material so as to be freely slidable up and down. It is electrically connected to the conductive part of the holder by line or multi-point contact by means of an elastic reduction force, and the lower end contacting the liquid sample in the sample tray is flat and convex spherical. , Convex cone shape, convex pyramid shape, convex pyramid shape with spherical tip, concave spherical shape, concave cone shape, concave pyramid shape, ridge or groove extending in a diametrical shape, cross shape in the diametrical direction An upper contact having a shape of either a ridge or a groove extending to Upper contact lifting / lowering means for gripping and lifting the holding tool, upper contact lifting / lowering motor, rotational speed detection means for digitally detecting the rotational speed of the motor, rotational speed detection result and rotation by the rotational speed detection means An operation circuit incorporating a feedback control system that outputs an operation amount for eliminating the deviation based on the deviation from the speed target value, an output signal from the operation circuit, and the sample tray and the upper contactor And a motor driving circuit for driving the motor based on the output signal from the sample / upper contact contact determination circuit for detecting the electrical coupling and outputting the result. Yarn property measuring device. 試料受皿が、試料収納量の異なる試料受皿を表裏に形成し、反転切換え使用可能に構成したものである請求項1に記載の液状物の曳糸性測定装置。  2. The apparatus for measuring the spinnability of a liquid material according to claim 1, wherein the sample tray is configured such that sample trays having different sample storage amounts are formed on the front and back sides so that the reverse switching can be used. 被検液状物を収容する、導電性材料からなる試料受皿と、該試料受皿内の被検液状物にその下端部が接触しその上昇によって被検液状物の曳糸長さを検出すべく機能する、その内周面が電気絶縁材料で形成されている挿通孔を有するとともに導電性材料からなる保持具の前記挿通孔に上下摺動自在に遊嵌される、導電性材料からなりその自重または弾機的圧下力によって前記保持具の導電性部分と線接触又は多点接触して電気的に結合されるとともに、試料受皿内の被検液状物に接触する下端部に試料受皿内の被検液状物を掬い取り上昇すべく機能する掬い取りフック部をその下端部に付設した上部接触子と、上記保持具を把持して昇降せしめる上部接触子昇降手段と、上部接触子昇降用モータと、モータの回転速度をデジタルに検出する回転速度検出手段と、該回転速度検出手段による回転速度検出結果と回転速度目標値との偏差に基づいて偏差を消去する操作量を出力するフィードバック制御系が組み込まれた操作回路と、該操作回路からの出力信号ならびに上記試料受皿と上部接触子が被検液状物を介して電気的に結合したことを検出しその結果を出力する試料・上部接触子接触判定回路からの出力信号に基づいてモータを駆動するモータ駆動回路とを有することを特徴とする液状物の曳糸性測定装置。  A sample tray made of a conductive material that contains the liquid sample to be tested, and a function to detect the string length of the liquid sample to be tested by its lower end contacting the liquid sample in the sample pan and rising The inner peripheral surface has an insertion hole formed of an electrically insulating material and is loosely fitted in the insertion hole of the holder made of a conductive material so as to be freely slidable up and down. The test piece in the sample tray is electrically connected to the conductive portion of the holder by line or multi-point contact by means of an elastic reduction force, and is in contact with the liquid sample in the sample tray. An upper contact having a scooping hook portion functioning to scoop up and lift the liquid material at its lower end, an upper contact lifting / lowering means for gripping and lifting the holder, and an upper contact lifting / lowering motor; Rotation to detect the rotation speed of the motor digitally An operation circuit incorporating a speed detection means, a feedback control system for outputting an operation amount for erasing the deviation based on a deviation between the rotation speed detection result by the rotation speed detection means and the rotation speed target value; Based on the output signal and the output signal from the sample / upper contact contact judgment circuit that detects that the sample tray and the upper contact are electrically coupled via the liquid to be detected and outputs the result. An apparatus for measuring the spinnability of a liquid material, comprising: a motor drive circuit for driving. 試料受皿が、収納している試料の全体が持ち上がらないように機能する試料押さえ具を付設したものである請求項1乃至請求項3何れかに記載の液状物の曳糸性測定装置。  4. The liquid string spinnability measuring apparatus according to claim 1, wherein the sample tray is provided with a sample presser that functions so that the entire stored sample does not lift. 被検液状物を収容する、導電性材料からなる試料受皿と、その下端部にチューブ、スリット、およびオリフィスの何れかが形成され前記受皿からの上昇によって前記チューブ、スリット、およびオリフィスの何れかから被検液状物を流下せしめる試料壺を有し被検液状物の曳糸長さを検出すべく機能する、その内周面が電気絶縁材料で形成されている挿通孔を有するとともに導電性材料からなる保持具の前記挿通孔に上下摺動自在に遊嵌される、導電性材料からなりその自重または弾機的圧下力によって前記保持具の導電性部分と線接触又は多点接触して電気的に結合する上部接触子と、上記保持具を把持して昇降せしめる上部接触子昇降手段と、上部接触子昇降用モータと、モータの回転速度をデジタルに検出する回転速度検出手段と、該回転速度検出手段による回転速度検出結果と回転速度目標値との偏差に基づいて偏差を消去する操作量を出力するフィードバック制御系が組み込まれた操作回路と、該操作回路からの出力信号ならびに上記試料受皿と上部接触子が被検液状物を介して電気的に結合したことを検出しその結果を出力する試料・上部接触子接触判定回路からの出力信号に基づいてモータを駆動するモータ駆動回路とを有することを特徴とする液状物の曳糸性測定装置。  A sample tray made of a conductive material that contains the liquid to be tested, and either a tube, a slit, or an orifice is formed at the lower end of the sample tray, and the tube, the slit, or the orifice is raised from the tray. It has a sample tub that allows the test liquid to flow down, and functions to detect the string length of the test liquid. The inner peripheral surface of the test liquid has an insertion hole formed of an electrically insulating material and is made of a conductive material. It is made of a conductive material that is slidably fitted in the insertion hole of the holder, and is electrically contacted with the conductive portion of the holder by a self-weight or an elastic reduction force. Upper contactor coupled to the upper contactor, upper contactor lifting / lowering means for gripping and lifting the holder, upper contactor lifting / lowering motor, rotational speed detection means for digitally detecting the rotational speed of the motor, and An operation circuit incorporating a feedback control system that outputs an operation amount for eliminating the deviation based on a deviation between the rotation speed detection result by the rotation speed detection means and the rotation speed target value, an output signal from the operation circuit, and the sample A motor drive circuit for driving the motor based on an output signal from the sample / upper contact contact determination circuit that detects that the tray and the upper contact are electrically coupled via the liquid to be tested and outputs the result; An apparatus for measuring the spinnability of a liquid material, comprising: 被検液状物を収容する、導電性材料からなる試料受皿と、該試料受皿からの上昇によって被検液状物をその下端部から流下せしめる流出孔を有し被検液状物の曳糸長さを検出すべく機能する、その内周面が電気絶縁材料で形成されている挿通孔を有するとともに導電性材料からなる保持具の前記挿通孔に上下摺動自在に遊嵌される、導電性材料からなりその自重または弾機的圧下力によって前記保持具の導電性部分と線接触又は多点接触して電気的に結合する上部接触子と、上記保持具を把持して昇降せしめる上部接触子昇降手段と、上部接触子昇降用モータと、モータの回転速度をデジタルに検出する回転速度検出手段と、該回転速度検出手段による回転速度検出結果と回転速度目標値との偏差に基づいて偏差を消去する操作量を出力するフィードバック制御系が組み込まれた操作回路と、該操作回路からの出力信号ならびに上記試料受皿と上部接触子が被検液状物を介して電気的に結合したことを検出しその結果を出力する試料・上部接触子接触判定回路からの出力信号に基づいてモータを駆動するモータ駆動回路とを有することを特徴とする液状物の曳糸性測定装置。  A sample tray made of a conductive material that contains the liquid sample to be tested, and an outflow hole that allows the liquid sample to flow down from the lower end when the sample liquid is lifted from the sample tray. From a conductive material which functions to detect, and has an insertion hole whose inner peripheral surface is formed of an electrically insulating material and is slidably fitted up and down in the insertion hole of a holder made of a conductive material. An upper contact that is electrically connected by line contact or multipoint contact with the conductive portion of the holder by its own weight or by a mechanical reduction force, and an upper contact elevating means that grips and raises the holder And the upper contact lift motor, the rotational speed detecting means for digitally detecting the rotational speed of the motor, and the deviation between the rotational speed detection result by the rotational speed detecting means and the rotational speed target value is eliminated. Output the operation amount An operation circuit incorporating a feedback control system, an output signal from the operation circuit, a sample that detects that the sample tray and the upper contact are electrically coupled via the liquid to be tested, and outputs the result. An apparatus for measuring the stringiness of a liquid material, comprising: a motor drive circuit that drives a motor based on an output signal from an upper contactor contact determination circuit. 試料受皿内の被検液状物に指向して所与の速度で、モータの回転駆動によって上部接触子昇降手段、保持具を介して、保持具における挿通孔に上下摺動自在に遊嵌されその自重または弾機的圧下力によって前記保持具の導電性部分と線接触又は多点接触して電気的に結合状態となっている上部接触子を降下せしめ、上部接触子下端部が被検液状物に接し、該被検液状物を介して前記試料受皿と上部接触子が電気的導通状態となった瞬間に操作回路によって上部接触子を搭載している保持具の降下を停止せしめ、次いで、上部接触子を搭載している保持具をモータの回転駆動によって上昇せしめ、被検液状物の延伸によって上部接触子と試料受皿間の電気的導通状態が遮断されるまでの上部接触子の上昇変位量によって被検液状物の曳糸長さを検出し、液状物の粘性を測定するようにしたことを特徴とする液状物の曳糸性測定方法。  At a given speed toward the liquid sample in the sample pan, it is loosely slidably inserted into the insertion hole in the holder via the upper contact lifting / lowering means and holder by rotating the motor. The upper contact which is in an electrically coupled state with the conductive portion of the holder by line weight or multipoint contact is lowered by its own weight or a mechanical reduction force, and the lower end of the upper contact is the liquid to be tested. And the descent of the holder carrying the upper contact by the operating circuit is stopped by the operation circuit at the moment when the sample tray and the upper contact are brought into an electrically conductive state through the liquid to be tested. Ascending displacement of the upper contact until the electrical contact between the upper contact and the sample tray is interrupted by extending the liquid material to be tested by raising the holder carrying the contact by rotating the motor. To adjust the string length of the liquid to be tested Out, spinnability measuring method of liquid material, characterized in that so as to measure the viscosity of the liquid. 被検液状物の曳糸性測定に先立ち、上部接触子を搭載している保持具を一定の距離降下せしめ、次いで、一定の距離上昇せしめてその間に、所与の下降、上昇速度となるようフィードバック制御を行うようにした請求項7に記載の液状物の曳糸性測定方法。  Prior to measuring the spinnability of the liquid to be tested, lower the holding tool carrying the upper contact by a certain distance and then raise it by a certain distance so that a given descent and ascending speed can be achieved. The method for measuring the spinnability of a liquid according to claim 7, wherein feedback control is performed. 上部接触子下端部が試料受皿内の被検液状物に接触した後、上部接触子を搭載している保持具をモータの回転駆動によって上昇せしめ、被検液状物を介しての電気的導通状態が遮断された後に、未だ被検液状物が糸引き状態にある場合に、次の上部接触子降下までに遅延時間を介挿せしめるかまたは上部接触子を搭載している保持具をモータの回転駆動によってさらに上昇せしめて被検液状物を完全に切断するようにした請求項7又は請求項9に記載の液状物の曳糸性測定方法。  After the lower end of the upper contact comes into contact with the sample liquid in the sample pan, the holder carrying the upper contact is raised by the rotation of the motor, and the electrical conduction state through the sample liquid If the liquid to be tested is still in the stringing state after the circuit is shut off, insert a delay time until the next lower contact of the upper contact or rotate the holder equipped with the upper contact. The method for measuring the spinnability of a liquid material according to claim 7 or 9, wherein the liquid material to be tested is further raised by driving to completely cut the liquid material to be tested. 被検液状物の曳糸性測定に先立ち、上部接触子を搭載している保持具を降下せしめて上部接触子下端部を被検液状物に接触させて湿潤状態としておく、請求項7乃至請求項9何れかに記載の液状物の曳糸性測定方法。  Prior to measurement of the spinnability of the liquid to be tested, the holder on which the upper contact is mounted is lowered and the lower end of the upper contact is brought into contact with the liquid to be tested to be in a wet state. Item 10. A method for measuring the spinnability of a liquid according to any one of Items 9 to 10. 試料受皿に、試料壺下端部のチューブ、スリット、およびオリフィスの何れかを接触させた状態で一定量の被検液状物を試料壺内に貯留し、次いで、試料壺が付設されている上部接触子を上昇せしめて試料壺下端部のチューブ、スリット、およびオリフィスの何れかから被検液状物を流下させ、流下する被検液状物の先端が途切れ液滴状態となるまでの糸引き長さを測定するようにしたことを特徴とする液状物の曳糸性測定方法。  Store a certain amount of liquid to be tested in the sample bowl with either the tube, slit, or orifice at the lower end of the sample bowl in contact with the sample tray, and then the upper contact where the sample bowl is attached Raise the needle to allow the sample liquid to flow down from the tube, slit, or orifice at the lower end of the sample bowl, and set the thread pulling length until the tip of the sample liquid flowing down becomes a broken liquid droplet. A method for measuring the spinnability of a liquid material, characterized in that it is measured. 試料受皿に、試料壺下端部のチューブ、スリット、およびオリフィスの何れかを接触させた状態で一定量の被検液状物を試料壺内に貯留し、次いで、試料壺が付設されている上部接触子を上昇せしめて試料壺下端部のチューブ、スリット、およびオリフィスの何れかから被検液状物を流下させ、試料壺内の被検液状物が流出し終わるまでの時間を測定するようにしたことを特徴とする液状物の曳糸性測定方法。  Store a certain amount of liquid to be tested in the sample bowl with either the tube, slit, or orifice at the lower end of the sample bowl in contact with the sample tray, and then the upper contact where the sample bowl is attached The test liquid was caused to flow down from the tube, slit, or orifice at the lower end of the sample jar, and the time until the test liquid in the sample tub was completely discharged was measured. A method for measuring the spinnability of a liquid material. 1回目の測定における被検液状物の糸引き長さを基準値とし、該基準値のある割合となるまでの時間又は測定回数を計測するようにしたことを特徴とする液状物の曳糸性測定方法。  The stringiness of the liquid material, characterized in that the thread pulling length of the test liquid material in the first measurement is used as a reference value, and the time or number of times until the reference value reaches a certain ratio is measured. Measuring method. 上部接触子の上昇距離を被検液状物が切断しない際限内の一定値とし、試料受皿における被検液状物への上部接触子下端部の接触・上部接触子の上昇を繰り返し、前記一定上昇距離内において被検液状物が切断するまでの時間または測定回数を計測するようにしたことを特徴とする液状物の曳糸性測定方法。  The distance of the upper contact is set to a constant value within the limit when the test liquid does not cut, and the above-mentioned constant increase distance is repeated by repeatedly contacting the lower end of the upper contact to the test liquid in the sample tray and raising the upper contact. A method for measuring the spinnability of a liquid material, characterized in that the time until the test liquid material is cut or the number of measurements is measured. 上部接触子を一定距離上昇させてその状態で保持し、被検液状物の電気伝導度の経時変化を検出するようにしたことを特徴とする液状物の曳糸性測定方法。  A method for measuring the spinnability of a liquid material, wherein the upper contact is lifted by a certain distance and held in that state to detect a change in electrical conductivity of the liquid material to be detected over time.
JP2004507799A 2002-05-24 2003-05-26 Apparatus for measuring spinnability of liquid and method for measuring spinnability Expired - Lifetime JP3962780B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002150540 2002-05-24
JP2002150540 2002-05-24
PCT/JP2003/006545 WO2003100388A1 (en) 2002-05-24 2003-05-26 Device for measuring stringiness of liquid material and stringiness measuring method

Publications (2)

Publication Number Publication Date
JPWO2003100388A1 JPWO2003100388A1 (en) 2005-09-22
JP3962780B2 true JP3962780B2 (en) 2007-08-22

Family

ID=29561228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004507799A Expired - Lifetime JP3962780B2 (en) 2002-05-24 2003-05-26 Apparatus for measuring spinnability of liquid and method for measuring spinnability

Country Status (3)

Country Link
JP (1) JP3962780B2 (en)
AU (1) AU2003241769A1 (en)
WO (1) WO2003100388A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522246A (en) * 2008-05-27 2011-07-28 ケン ケン ビー.ブイ. Apparatus and method for measuring rheological properties of mucus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812140B2 (en) * 1988-06-29 1996-02-07 雪印乳業株式会社 Method and apparatus for measuring stringiness of a conductive substance having stringiness
JPH08261905A (en) * 1995-03-23 1996-10-11 Sumitomo Electric Ind Ltd Measuring device for stringiness quantity of adhesive, and measuring method thereof
JP2002071542A (en) * 2000-08-25 2002-03-08 Kao Corp Apparatus for measuring threading quantity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522246A (en) * 2008-05-27 2011-07-28 ケン ケン ビー.ブイ. Apparatus and method for measuring rheological properties of mucus
US9095318B2 (en) 2008-05-27 2015-08-04 Ken Ken B.V. Device and method for determining a rheological property of mucus

Also Published As

Publication number Publication date
JPWO2003100388A1 (en) 2005-09-22
AU2003241769A1 (en) 2003-12-12
WO2003100388A1 (en) 2003-12-04
AU2003241769A8 (en) 2003-12-12

Similar Documents

Publication Publication Date Title
AU664390B2 (en) Method of sucking liquid
JP3478333B2 (en) Apparatus and method for measuring blood coagulation
JP2019020423A (en) Impedance measuring device for biological sample and impedance measuring system for biological sample
US11714038B2 (en) Device and method for viscosity determination in liquids
Green High-speed rotational viscometer of wide range. Confirmation of Thereiner equation of flow
EP3450977B1 (en) Apparatus for measuring blood coagulation data, and use method, connection member and support thereof
JP3962780B2 (en) Apparatus for measuring spinnability of liquid and method for measuring spinnability
WO2003100387A1 (en) Device for measuring stringiness of liquid material and stringiness measuring method
CN107328693B (en) Cone penetration tester
CN214121819U (en) Soft material mechanical property measuring device
WO2002086461A1 (en) Equipment for measuring stringiness of liquid material
CN202814836U (en) Coating-4-cup viscometer
US4794787A (en) High-low viscosity comparator
US11530941B2 (en) Hematocrit and liquid level sensor
JP3728528B2 (en) Spinnability measuring device
US20200209130A1 (en) Device, Fluid Testing Kit and Uses Thereof .....P34321USN1/SNB
CN216747510U (en) Automatic detection device for cold filter plugging point of petroleum product
JPS61202165A (en) Liquid measuring system
Vogel et al. Microanalytical techniques with inverted solid state ion-selective electrodes. I. Nanoliter volumes
RU2569173C1 (en) Viscosimeter
CN111175339A (en) Lubricating grease detection mold
CN215651260U (en) 24-hour urine protein quantitative collecting barrel
CN211697592U (en) Lubricating grease detection mold
CN211318099U (en) Practical viscosity measurement appearance
CN211784963U (en) A tip penetration judges suggestion device for pitch penetration test

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070410

R150 Certificate of patent or registration of utility model

Ref document number: 3962780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term