JP3962633B2 - Shielding gas for non-consumable electrodes - Google Patents

Shielding gas for non-consumable electrodes Download PDF

Info

Publication number
JP3962633B2
JP3962633B2 JP2002154742A JP2002154742A JP3962633B2 JP 3962633 B2 JP3962633 B2 JP 3962633B2 JP 2002154742 A JP2002154742 A JP 2002154742A JP 2002154742 A JP2002154742 A JP 2002154742A JP 3962633 B2 JP3962633 B2 JP 3962633B2
Authority
JP
Japan
Prior art keywords
gas
welding
carbon dioxide
shielding gas
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002154742A
Other languages
Japanese (ja)
Other versions
JP2003311414A (en
Inventor
誠夫 牛尾
一博 中田
学 田中
正明 橋本
臣哉 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP2002154742A priority Critical patent/JP3962633B2/en
Publication of JP2003311414A publication Critical patent/JP2003311414A/en
Application granted granted Critical
Publication of JP3962633B2 publication Critical patent/JP3962633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、タングステン等の非消耗電極により被溶接材を溶接するときに使用する非消耗電極用シールドガスに関し、特に非消耗電極の消耗の抑制を可能ならしめるようにした非消耗電極用シールドガスに関する。
【0002】
【従来の技術】
ステンレス鋼は、従来よりタングステン等の非消耗電極と、この非消耗電極および溶接部を大気から遮断するシールドガスとを用いる、いわゆるTIG(タングステン・イナートガス)溶接により溶接されている。このTIG溶接では、深い溶け込みを得るのが難く、またその溶接線に沿って予めフラックス剤を塗布するため、ビード表面にスラグが残存するという難点を有している。
【0003】
そこで、本願出願人は、特願2001−206167号(以下、先提案例という)において、溶加材を使用しないでステンレス鋼材を突き合わせ溶接するにあたり、深い溶け込みを確保でき、前処理としてのフラックス剤の塗布や、後処理としてのビード表面のスラグ除去を不要とする技術を提案した。
【0004】
上記先提案例は、溶加材を使用しない形式の非消耗電極式ガスシールド溶接にあたり、アルゴンやヘリウム等の不活性ガスに微量の酸素ガスを均一に混合した混合ガスを、非消耗電極用シールドガスとして使用するようにしたものである。
【0005】
【発明が解決しようとする課題】
上記先提案例に係る技術によれば、深い溶け込み量を確保でき、また溶接の前後処理を必要としないので、極めて有用であると考えられる。しかしながら、微量の酸素が含まれているために、タングステン等の電極の消耗が著しいという難点がある。
【0006】
本発明は上記実情に鑑みてなされたものであって、従って、本発明の目的は、十分の溶け込み深さを確保し、かつ前後処理を要せず、しかも電極の消耗を少なくし得る非消耗電極用シールドガスを提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するための、本発明の請求項1に係る非消耗電極用シールドガスの構成は、溶加材を使用しない形式の非消耗電極式ガスシールド溶接に使用する不活性ガスからなる非消耗電極用シールドガスにおいて、上記不活性ガス中に体積比率で1500ppm〜4500ppmの炭酸ガスが均一に混合されてなることを特徴とするものである。
【0008】
本発明の請求項2に係る非消耗電極用シールドガスの構成は、請求項1に記載の非消耗電極用シールドガスにおいて、請求項1に記載の非消耗電極用シールドガスにおいて、ステンレス鋼溶接時のシールドガスとして使用されることを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態に係る非消耗電極用シールドガス(以下、シールドガスという)を説明する。
【0010】
即ち、溶加材を使用しない形式の非消耗電極式ガスシールド溶接、つまりTIG溶接に使用するシールドガスは、不活性ガスに体積比率で1500ppm〜4500ppmの微量の炭酸ガスが均一に混合されてなるものである。
【0011】
従って、ステンレス鋼材の突き合わせ部をTIG溶接する場合には、微量の炭酸ガスが均一に混合されてなる不活性ガスがシールドガスとして供給される。溶接に際しては、このシールドガスに含まれている微量の炭酸ガスの酸素が、溶接部の必要な溶け込み深さを実現するのに使用される。つまり、アーク近傍の高温領域で微量の炭酸ガスから酸素ガスが電離し、電離した酸素ガスが表面活性化要素として表面に作用することにより、表面張力の温度係数が負から正にかわり、溶融金属の対流が変化するために深い溶け込みが得られる。そして、タングステン電極と酸素との直接反応が減少し、タングステン電極の消耗量が減少する。勿論、溶接の前後処理を必要としないので、溶接作業が向上し、溶接製品の生産性が向上する。
【0012】
【実施例】
以下、本発明の実施例を、添付図面に基づいて説明する。図1は、シールドガス中の酸素ガス及び炭酸ガス濃度に対応するタングステン電極の消耗量を示すグラフ図であり、図2は、シールドガス中の酸素ガス及び炭酸ガス濃度に対応する溶接時の溶け込み深さを示すグラフ図である。また、図3は、シールドガス中の炭酸ガス濃度に対応する溶接部の溶け込み深さを模式的に示す断面図である。
【0013】
即ち、アルゴンガスに微量の炭酸ガスを混合したシールドガスと、アルゴンガスに微量の酸素ガスを混合したシールドガスとをそれぞれ供給して、板厚10mmのステンレス鋼板(SUS304)の突き合わせ部をTIG溶接により溶接して、シールドガス中の炭酸ガス濃度、酸素ガス濃度の相違によるタングステン電極の消耗量を調べた。なお、トーチの直径が32mmで、タングステン電極の先端円錐角60度のTIG溶接装置を用いて、下記の溶接条件で溶接したものである。
溶接電流 200A
放電ギャップ 5mm
溶接速度 0.12cm/min
【0014】
先ず、タングステン電極の消耗量(mg)については、図1に示すとおりである。即ち、この図1によれば、アルゴンガスに炭酸ガスを混入したシールドガス(実線と黒四角印で示している)によるタングステン電極の消耗量は、アルゴンガスに酸素ガスを混入したシールドガス(実線と黒丸印で示している)によるタングステン電極の消耗量より遥に微量であることが分かる。従って、本発明に係るシールドガスを使用すれば、タングステン電極の消耗量を、先提案例の場合よりも大幅に削減することができる。これは、溶接部の必要な溶け込み深さの確保に、炭酸ガスから電離した酸素が使用され、タングステン電極と酸素との直接反応の度合いが減少したことに起因すると理解することができる。
【0015】
また、突き合わせ溶接部の溶け込み深さ(mm)については、図2に示すとおりである。即ち、この図2によれば、アルゴンガスに炭酸ガスを混入したシールドガス(実線と黒四角印で示している)による溶け込み深さと、アルゴンガスに酸素ガスを混入したシールドガス(実線と黒丸印で示している)による溶け込み深さとに殆ど差がなく、炭酸ガスの濃度を適切に調整することにより十分の溶け込み深さが得られることが分かる。
【0016】
因に、この溶接試験に用いたシールドガス中の炭酸ガスの濃度は体積比率で、1000ppm、2040ppm、2440ppm、3000ppm、4700ppmであり、炭酸ガスの濃度が体積比率で約2500ppmの位置に溶け込み深さ3.5mmのピークがある。このピーク位置における溶け込み深さ3.5mmは、アルゴンガスに微量の酸素ガスを混入した先提案例に係るシールドガスを用いてのTIG溶接によるピーク位置(酸素ガスの濃度は体積比率で約2000ppmである)の溶け込み深さと同等である。
【0017】
また、図2によれば、炭酸ガスの濃度が体積比率で1500ppm〜4500ppmの範囲で溶け込み深さの改善が見られ、炭酸ガスの濃度が上記範囲内であれば、酸素ガス濃度が体積比率で0ppmの場合の30%以上の溶け込み深さの改善が期待できる。因に、炭酸ガスの濃度が体積比率で2040ppm、2440ppm、3000ppmのシールドガスを用いて溶接した場合の溶け込み深さを、純アルゴンをシールドガスとして用いて溶接した場合の溶け込み深さと比較して模式的に示すと、図3のとおりである。この図3(図3においては、炭酸ガスの濃度が体積比率で2040ppmの場合をCO−0.204%、体積比率で2440ppmの場合をCO−0.244%、体積比率で3000ppmの場合をCO−0.300%と表示している)によれば、炭酸ガスを混合したシールドガスを用いて溶接した場合の溶け込み深さは、純アルゴンをシールドガスとして用いて溶接した場合の溶け込み深さよりも深く極めて優れていることが分かる。なお、本発明のように、アルゴンガスに炭酸ガスを混合した混合ガスをシールドガスとして用いる場合には、溶接表面にスラグは発生するようなことがない。
【0018】
以上では、アルゴンガスに炭酸ガスを混合したシールドガスの場合を例として説明したが、ベースとなるガスはヘリウムガスやアルゴン−ヘリウム混合ガス等のTIG溶接のシールドガスとして使用される不活性ガスであればよいので、アルゴンガスに限定されるものではない。また、以上では、溶接対象がステンレス鋼である場合を例として説明したが、アルミニウムを始めとする軽金属等、通常のTIG溶接の対象となる素材に対して適用することができる。
【0019】
【発明の効果】
以上述べたように、本発明の請求項1または2に係る非消耗電極用シールドガスによれば、溶接に際しては、シールドガスに含まれている微量の炭酸ガスの酸素が溶接部の必要な溶け込み深さを実現するのに使用される。つまり、アーク近傍の高温領域で微量の炭酸ガスから酸素ガスが電離し、電離した酸素ガスが表面活性化要素として表面に作用することにより、表面張力の温度係数が負から正にかわり、溶融金属の対流が変化するために深い溶け込みを得ることができる。そして、非消耗電極と酸素との直接反応が減少し、非消耗電極の消耗量が減少する。勿論、溶接の前後処理を必要としないので、溶接作業が向上し、溶接製品の生産性が向上する。
【図面の簡単な説明】
【図1】 シールドガス中の酸素ガス及び炭酸ガス濃度に対応するタングステン電極の消耗量を示すグラフ図である。
【図2】 シールドガス中の酸素ガス及び炭酸ガス濃度に対応する溶接時の溶け込み深さを示すグラフ図である。
【図3】 シールドガス中の炭酸ガス濃度に対応する溶接部の溶け込み深さを模式的に示す断面図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-consumable electrode shield gas used when welding a material to be welded with a non-consumable electrode such as tungsten, and more particularly to a non-consumable electrode shield gas capable of suppressing consumption of the non-consumable electrode. About.
[0002]
[Prior art]
Conventionally, stainless steel is welded by so-called TIG (tungsten inert gas) welding using a non-consumable electrode such as tungsten and a shield gas that shields the non-consumable electrode and the weld from the atmosphere. In this TIG welding, it is difficult to obtain deep penetration, and a flux agent is previously applied along the weld line, so that slag remains on the bead surface.
[0003]
Therefore, the applicant of the present application is able to ensure deep penetration in Japanese Patent Application No. 2001-206167 (hereinafter referred to as the previously proposed example) and butt-weld stainless steel materials without using a filler material. We proposed a technique that eliminates the need for slag removal from the bead surface as a post-treatment.
[0004]
The above-mentioned proposal example is a non-consumable electrode type gas shield welding method that does not use a filler metal, and a non-consumable electrode shield is mixed with a mixed gas in which a small amount of oxygen gas is uniformly mixed with an inert gas such as argon or helium. It is intended to be used as a gas.
[0005]
[Problems to be solved by the invention]
According to the technique according to the above-mentioned prior proposal example, a deep penetration amount can be ensured and no pre- and post-treatments are required for welding, which is considered extremely useful. However, since a very small amount of oxygen is contained, there is a drawback that the consumption of electrodes such as tungsten is remarkable.
[0006]
The present invention has been made in view of the above circumstances, and therefore, the object of the present invention is to ensure a sufficient penetration depth, no pre- and post-treatment, and non-consumable that can reduce electrode consumption. The object is to provide an electrode shielding gas.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the configuration of the shielding gas for non-consumable electrodes according to claim 1 of the present invention is a non-consumable electrode type gas shielding welding that does not use a filler material. The shielding gas for consumable electrodes is characterized in that carbon dioxide gas having a volume ratio of 1500 ppm to 4500 ppm is uniformly mixed in the inert gas.
[0008]
The shield gas for a non-consumable electrode according to claim 2 of the present invention is the shield gas for a non-consumable electrode according to claim 1, wherein the shield gas for a non-consumable electrode according to claim 1 is welded with stainless steel. It is used as a shielding gas.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a non-consumable electrode shielding gas (hereinafter referred to as a shielding gas) according to an embodiment of the present invention will be described.
[0010]
That is, the non-consumable electrode type gas shield welding that does not use a filler metal, that is, the shield gas used for TIG welding, is obtained by uniformly mixing a small amount of carbon dioxide gas in a volume ratio of 1500 ppm to 4500 ppm with an inert gas. Is.
[0011]
Therefore, when TIG welding is performed on the butt portion of the stainless steel material, an inert gas in which a small amount of carbon dioxide gas is uniformly mixed is supplied as a shielding gas. During welding, a small amount of carbon dioxide oxygen contained in the shield gas is used to achieve the necessary penetration depth of the weld. In other words, oxygen gas is ionized from a small amount of carbon dioxide in the high-temperature region near the arc, and the ionized oxygen gas acts on the surface as a surface activation element, so that the temperature coefficient of surface tension changes from negative to positive, and the molten metal Deep penetration is obtained due to the change in convection. The direct reaction between the tungsten electrode and oxygen is reduced, and the consumption of the tungsten electrode is reduced. Of course, since welding pre- and post-treatments are not required, the welding operation is improved and the productivity of the welded product is improved.
[0012]
【Example】
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a graph showing consumption of the tungsten electrode corresponding to the oxygen gas and carbon dioxide gas concentrations in the shield gas, and FIG. 2 is a penetration during welding corresponding to the oxygen gas and carbon dioxide gas concentrations in the shield gas. It is a graph which shows depth. Moreover, FIG. 3 is sectional drawing which shows typically the penetration depth of the welding part corresponding to the carbon dioxide gas density | concentration in shield gas.
[0013]
That is, a shield gas in which a small amount of carbon dioxide gas is mixed with argon gas and a shield gas in which a small amount of oxygen gas is mixed with argon gas are supplied, respectively, and a butt portion of a stainless steel plate (SUS304) having a thickness of 10 mm is TIG welded. The amount of consumption of the tungsten electrode due to the difference in carbon dioxide gas concentration and oxygen gas concentration in the shield gas was examined. In addition, it welded on the following welding conditions using the TIG welding apparatus whose diameter of a torch is 32 mm, and the tip cone angle of a tungsten electrode is 60 degree | times.
Welding current 200A
Discharge gap 5mm
Welding speed 0.12cm / min
[0014]
First, the consumption amount (mg) of the tungsten electrode is as shown in FIG. That is, according to FIG. 1, the consumption amount of the tungsten electrode by the shielding gas (indicated by the solid line and the black square mark) in which carbon dioxide gas is mixed in argon gas is the same as that in the shielding gas (solid line in which oxygen gas is mixed in argon gas). It can be seen that the amount is much smaller than the consumption of the tungsten electrode due to the black circles). Therefore, if the shielding gas according to the present invention is used, the consumption amount of the tungsten electrode can be significantly reduced as compared with the case of the previously proposed example. This can be understood to be due to the fact that oxygen ionized from carbon dioxide gas was used to secure the necessary penetration depth of the weld and the degree of direct reaction between the tungsten electrode and oxygen was reduced.
[0015]
Moreover, about the penetration depth (mm) of a butt-welding part, it is as showing in FIG. That is, according to FIG. 2, the penetration depth by the shielding gas (indicated by solid lines and black squares) in which carbon dioxide gas is mixed into argon gas, and the shielding gas (indicated by solid lines and black circles) in which oxygen gas is mixed into argon gas. It is understood that a sufficient penetration depth can be obtained by appropriately adjusting the concentration of carbon dioxide gas.
[0016]
Incidentally, the concentration of carbon dioxide in the shielding gas used in this welding test is 1000 ppm, 2040 ppm, 2440 ppm, 3000 ppm, 4700 ppm in volume ratio , and the carbon dioxide concentration is dissolved at a depth of about 2500 ppm in volume ratio. There is a peak of 3.5 mm. The penetration depth of 3.5 mm at this peak position is the peak position by the TIG welding using the shielding gas according to the previously proposed example in which a trace amount of oxygen gas is mixed in argon gas (the concentration of oxygen gas is about 2000 ppm by volume ratio). Equivalent to the depth of penetration).
[0017]
Further, according to FIG. 2, the improvement of the penetration depth is seen when the concentration of carbon dioxide is in the range of 1500 ppm to 4500 ppm by volume ratio. If the concentration of carbon dioxide is within the above range, the oxygen gas concentration is in volume ratio. An improvement in penetration depth of 30% or more in the case of 0 ppm can be expected. For example, the penetration depth when welding using a shielding gas with a carbon dioxide concentration of 2040 ppm, 2440 ppm, and 3000 ppm in volume ratio is compared with the penetration depth when welding using pure argon as the shielding gas. Specifically, it is as shown in FIG. In FIG 3 (FIG. 3, the CO 2 -0.204% when the concentration of carbon dioxide of 2040ppm in volume ratio, CO 2 -0.244% in the case of 2440ppm in volume ratio, the case of 3000ppm in volume ratio Is expressed as CO 2 -0.300%), the penetration depth when welding using a shielding gas mixed with carbon dioxide gas is the penetration depth when welding using pure argon as the shielding gas. It can be seen that it is deeper and deeper than depth. In addition, when using the mixed gas which mixed carbon dioxide gas in argon gas as shielding gas like this invention, slag does not generate | occur | produce on the welding surface.
[0018]
In the above description, the shielding gas in which carbon dioxide gas is mixed with argon gas has been described as an example. However, the base gas is an inert gas used as a shielding gas for TIG welding such as helium gas or argon-helium mixed gas. Since it is sufficient, it is not limited to argon gas. In the above description, the case where the welding target is stainless steel has been described as an example. However, the present invention can be applied to a material to be subjected to normal TIG welding, such as a light metal such as aluminum.
[0019]
【The invention's effect】
As described above, according to the shield gas for a non-consumable electrode according to claim 1 or 2 of the present invention, a small amount of carbon dioxide oxygen contained in the shield gas is necessary for the weld to dissolve during welding. Used to realize depth. In other words, oxygen gas is ionized from a small amount of carbon dioxide in the high-temperature region near the arc, and the ionized oxygen gas acts on the surface as a surface activation element, so that the temperature coefficient of surface tension changes from negative to positive, and the molten metal Deep penetration can be obtained due to the change in convection. And the direct reaction of a non-consumable electrode and oxygen reduces, and the consumption of a non-consumable electrode reduces. Of course, since welding pre- and post-treatments are not required, the welding operation is improved and the productivity of the welded product is improved.
[Brief description of the drawings]
FIG. 1 is a graph showing a consumption amount of a tungsten electrode corresponding to oxygen gas and carbon dioxide gas concentrations in a shield gas.
FIG. 2 is a graph showing the penetration depth at the time of welding corresponding to the oxygen gas and carbon dioxide concentrations in the shield gas.
FIG. 3 is a cross-sectional view schematically showing a penetration depth of a weld corresponding to a carbon dioxide gas concentration in a shielding gas.

Claims (2)

溶加材を使用しない形式の非消耗電極式ガスシールド溶接に使用する不活性ガスからなる非消耗電極用シールドガスにおいて、上記不活性ガス中に体積比率で1500ppm〜4500ppmの炭酸ガスが均一に混合されてなることを特徴とする非消耗電極用シールドガス。In non-consumable electrode shield gas made of non-consumable electrode type gas shield welding without using filler metal, carbon dioxide gas of 1500 ppm to 4500 ppm by volume is uniformly mixed in the inert gas. A shielding gas for non-consumable electrodes, wherein 請求項1に記載の非消耗電極用シールドガスにおいて、ステンレス鋼溶接時のシールドガスとして使用されることを特徴とする非消耗電極用シールドガス。  The shielding gas for non-consumable electrodes according to claim 1, wherein the shielding gas is used as a shielding gas for welding stainless steel.
JP2002154742A 2002-04-20 2002-04-20 Shielding gas for non-consumable electrodes Expired - Fee Related JP3962633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002154742A JP3962633B2 (en) 2002-04-20 2002-04-20 Shielding gas for non-consumable electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002154742A JP3962633B2 (en) 2002-04-20 2002-04-20 Shielding gas for non-consumable electrodes

Publications (2)

Publication Number Publication Date
JP2003311414A JP2003311414A (en) 2003-11-05
JP3962633B2 true JP3962633B2 (en) 2007-08-22

Family

ID=29545474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002154742A Expired - Fee Related JP3962633B2 (en) 2002-04-20 2002-04-20 Shielding gas for non-consumable electrodes

Country Status (1)

Country Link
JP (1) JP3962633B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5066683B2 (en) * 2005-08-11 2012-11-07 国立大学法人大阪大学 TIG welding method and workpiece
WO2009119561A1 (en) 2008-03-26 2009-10-01 大陽日酸株式会社 Plasma welding process and outer gas for use in the plasma welding process

Also Published As

Publication number Publication date
JP2003311414A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP5294573B2 (en) Laser and arc combined welding apparatus and method
WO2009119561A1 (en) Plasma welding process and outer gas for use in the plasma welding process
EP1459830B1 (en) Tig welding method and welded object
JP2011255393A (en) Welding method and welding equipment
JP5066683B2 (en) TIG welding method and workpiece
US20190299314A1 (en) Method of cleaning a workpiece after a thermal joining process with cathodic cleaning; cleaning device and processing gas
JP5582602B2 (en) TIG welding method
US20080206586A1 (en) Penetration welding method of t-type joint and penetration welding structure of t-type joint
JP5302558B2 (en) Plasma welding method and outer gas used therefor
JP2012081480A (en) Welding gas and plasma welding method
JP3962633B2 (en) Shielding gas for non-consumable electrodes
JP4327153B2 (en) Arc constriction shield nozzle
JP3936342B2 (en) TIG welding method
JP2006075847A (en) Hybrid welding method by laser beam and arc
JP2006026651A (en) Shielding gas for stainless steel welding
KR101051667B1 (en) Tungsten-Inert-Gas Welding Apparatus and Tungsten-Inert-Gas Welding Method
JPH11147175A (en) Gas shield arc welding method
JPS5938073B2 (en) Non-consumable electrode type welding torch
JPH06277847A (en) Tig welding method for stainless steel system
JP5392052B2 (en) Non-consumable electrode type gas shielded arc welding method
JP2010179353A (en) Gas-shield arc welding method
JP2003019561A (en) Shield gas for non-consumable electrode type gas shield welding
JP2010046677A (en) Gma welding method
JPH06297149A (en) Double shielded tig welding method
JP3674477B2 (en) Plasma keyhole circumferential welding method for metal tubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent or registration of utility model

Ref document number: 3962633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees