JP3962261B2 - Lumped constant temperature variable attenuator - Google Patents

Lumped constant temperature variable attenuator Download PDF

Info

Publication number
JP3962261B2
JP3962261B2 JP2002007489A JP2002007489A JP3962261B2 JP 3962261 B2 JP3962261 B2 JP 3962261B2 JP 2002007489 A JP2002007489 A JP 2002007489A JP 2002007489 A JP2002007489 A JP 2002007489A JP 3962261 B2 JP3962261 B2 JP 3962261B2
Authority
JP
Japan
Prior art keywords
resistance
temperature
variable attenuator
thermistor
temperature variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002007489A
Other languages
Japanese (ja)
Other versions
JP2003209453A (en
Inventor
泰弘 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2002007489A priority Critical patent/JP3962261B2/en
Publication of JP2003209453A publication Critical patent/JP2003209453A/en
Application granted granted Critical
Publication of JP3962261B2 publication Critical patent/JP3962261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Attenuators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は温度可変減衰器、特に低周波数帯信号の伝送において使用される集中定数型温度可変減衰器の構成に関する。
【0002】
【従来の技術】
従来から、低周波数帯の信号の伝送ラインにおいて周囲温度に応じて減衰量が変化する温度可変減衰器が用いられており、この温度可変減衰器の構成として、例えば図7,図9に示される従来例A,Bがある。
【0003】
図7において、従来例A(π型減衰器)は主線路11Aと11Bの間に配置されたPINダイオードD〜D、熱検知センサー12、制御回路13、電源回路14等から構成され、上記熱検知センサー12で周囲温度が検知されると、温度検知信号に基づいた制御電圧が上記制御回路13から出力され、上記ダイオードD〜Dの抵抗分を変化させることにより温度可変減衰器として動作する。
【0004】
この図7の減衰器は、ダイオードD及びDがシリーズ抵抗、ダイオードD及びDがシャント抵抗に相当するπ型減衰器となっており、電気的特性としては、上記ダイオードD及びDの抵抗分は周囲温度に比例する制御電圧に反比例し、反対にダイオードD及びDの抵抗分は制御電圧に比例する。この結果、広い周囲温度範囲においてπ型減衰器としての整合を保ちながら可変減衰特性が得られ、この場合の減衰量と電圧定在波比(VSWR)の温度特性は図8に示されるようになる(減衰量特性J及びVSWR特性C)。
【0005】
一方、図9の従来例Bは、π型減衰器の変形であり、主線路11A,11Bとグランドとの間に接続された一対の固定抵抗(シャント抵抗)16A,16B、この固定抵抗16A,16Bに挟まれる形で主線路11A,11Bにシリーズに挿入されかつ並列接続されたサーミスタ17及び固定抵抗(器)18から構成される。この場合も、周囲温度の変化に応じて上記サーミスタ17の抵抗が変化することにより温度可変減衰器として動作しており、この従来例Bの減衰量と電圧定在波比(VSWR)の温度特性は図11に示されるようになる(減衰量特性J及びVSWR特性C)。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した図7の従来例Aの温度可変減衰器では、図8のCのように良好なVSWR特性が得られ、広範囲の温度において整合が保たれるという利点があるが、PINダイオードD〜D、制御回路13及び電源回路14が必要となるため高価となり、また占有面積が大きく小型化に不向きであるという問題がある。
【0007】
一方、図9の従来例Bの温度可変減衰器は、廉価であり、占有面積も小さく小型化できるという利点があるが、周囲温度の変化に伴って減衰量が変化した際のVSWRは狭い温度範囲でしか良好な値が得られず、整合状態が不十分であるという問題があった。このことを図10乃至図12により説明する。
【0008】
図10には、従来例Bの減衰器におけるある一定周囲温度での等価回路が示されている。ここで、図9のサーミスタ17及び固定抵抗18の抵抗値をR、シャント抵抗である固定抵抗16A,16BをR、主線路11A,11Bの特性インピーダンスをZとし、VSWRが1.0(完全整合)となる条件下で、上記抵抗値R,Rと減衰量Jとの関係は次式で与えられる。
【0009】
【数1】

Figure 0003962261
【数2】
Figure 0003962261
【0010】
上記の式1及び2に基づき、減衰量Jが低温にて大きく、高温にて小さくなる温度可変減衰器に必要な上記抵抗値R,Rをグラフにしたものを図12に示している。この図から分かるように、サーミスタ17及び固定抵抗器18に対応する抵抗値Rは、特性曲線CR3に示されるように減衰量が減少した際(高温時)に減少し、他方の固定抵抗16A,16Bに対応する抵抗値Rは特性曲線CR4に示されるように増加するという互いに逆方向となる作用が要求される。
【0011】
しかしながら、上記抵抗値Rの変化(曲線CR3)は温度に対し反比例することから並列接続されたサーミスタ17及び固定抵抗器18の抵抗群によって近似可能であるが、上記抵抗値Rについては、その変化(曲線CR4)が温度に対し比例することから固定抵抗16A,16Bによっては温度変化に対応した抵抗値(減衰量が減少した際の抵抗値の増加)を得ることができない。従って、周囲温度の変化に伴い減衰量が変化した際のVSWRが狭い範囲でしか良好な値とならず、図11の特性線CのS,Sの部分のように、低温側(S)と高温側(S)にてVSWRの劣化が生じ、広い温度範囲で良好な整合状態を保つことができない。なお、上記の一対の固定抵抗16A,16Bをポジティブサーミスタに置き換えても、現存するポジティブサーミスタでは変化量が微量であることから上記の図12の抵抗値Rの変化に近似させることは不可能である。
【0012】
本発明は上記問題点に鑑みてなされたものであり、その目的は、VSWRの劣化を改善して広い温度範囲で良好な整合状態が保たれ、また廉価で小型にすることができる集中定数型温度可変減衰器を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る集中定数型温度可変減衰器は、少なくともサーミスタを含む複数の抵抗群を伝送ラインにシリーズに挿入し、この複数の抵抗群を、透過位相が90度となる(使用周波数の波長が1/4波長だけ遅れる)ように構成されたコンデンサ及びコイルからなる集中定数網によって接続してなることを特徴とする。
【0014】
上記の構成によれば、図12の従来例Bの曲線CR4のように、一方の抵抗値(R)が減衰量の減少に伴って大きく増加(上昇)するという特性ではなく、図3の曲線CR1,CR2に示されるように、減衰量が減少する(高温になる)に従って抵抗値(R,R)が減少(低下)するという特性となるので、この特性にサーミスタを含む抵抗群の抵抗値を近似させることができる。この結果、周囲温度の変化に伴って減衰量が変化した際のVSWRを広い温度範囲で良好な値に維持することが可能となる。
【0015】
【発明の実施の形態】
図1には、本発明の実施例に係る集中定数型温度可変減衰器の構成が示され、図2(A)にはこの減衰器の実際の実装図が示されており、この減衰器は、主線路11Aと11Bの間において、例えば第1サーミスタ1と第1固定抵抗2が並列接続された中央の抵抗群、この抵抗群の両脇において第2サーミスタ3と第2固定抵抗4が並列接続された2つの抵抗群がシリーズに接続される。そして、これら3つの抵抗群の間に、静電容量Cのコンデンサ5A,5BとインダクタンスLのコイル6によりπ型に構成されたπ型エレメント(CLCの集中定数回路)を設け、このπ型エレメントによって使用周波数信号の透過位相が90度に設定される。なお、このような減衰器の実装は、図2(A)のようになる。
【0016】
上記π型エレメントは、第1サーミスタ1と第1固定抵抗2からなる抵抗群と、第2サーミスタ3と第2固定抵抗4からなる抵抗群との間の透過位相が90度となるような回路、即ち使用周波数(伝送信号)の波長を1/4波長だけ遅らせる回路であり、この回路中のC,Lは、次式で表す定数となる。
【0017】
【数3】
Figure 0003962261
【数4】
Figure 0003962261
ここで、上記fは伝送信号の中心周波数、上記Zは主線路(伝送ライン)11A,11Bの特性インピーダンスである。
【0018】
実施例の集中定数型温度可変減衰器は以上の構成からなり、次にその作用を説明する。図2(B)には、図1の温度可変減衰器のある一定温度での等価回路が示されており、この図では、中央の抵抗8が第1サーミスタ1及び第1固定抵抗2からなる抵抗群の抵抗に相当し、両端の抵抗9が第2サーミスタ3及び第2固定抵抗4からなる2つの抵抗群の抵抗に相当する。ここで、上記の抵抗8の値をR、抵抗9の値Rとし、コンデンサ5A,5Bの容量C、コイル6のインダクタンスLを上記式3及び4で示される値としたとき、この図2(B)の等価回路は、図10に示した従来例Bのπ型減衰器に置き換えることが可能となる。但し、各図の抵抗値R〜Rは、次の関係となる。
【0019】
【数5】
=R
【数6】
=Z /R
【0020】
そして、上記従来例Bの場合と同様に、VSWRが1.0(完全整合)となる条件下で、上記R,Rと減衰量Jとの関係は、上記式1,2,5,6から次式で与えられる。
【0021】
【数7】
Figure 0003962261
【数8】
Figure 0003962261
【0022】
この式7及び8に基づいて、整合を保ちつつ、低温にて減衰量Lが大きく、高温にて減衰量Lが小さくなる温度可変減衰器に必要な上記の抵抗値R(抵抗9)とR(抵抗8)の関係を求めると、図3の特性曲線CR1,R2に示すようになる。この図3と図12を比較すると、曲線CR2は曲線CR4とは変化が逆の特性となり、当該実施例の減衰器では、その減数量が減衰するとき、即ち高温になるときに、抵抗9及び抵抗8の値R,Rは共に減少する必要があることが理解される。
【0023】
そして、曲線CR2に示す抵抗値Rの変化に対しては、主線路11A,11Bに挿入された第1サーミスタ1及び第1固定抵抗2からなる抵抗群において近似でき、また曲線CR1に示す抵抗値Rの変化に対しては、第2サーミスタ3及び第2固定抵抗4からなる抵抗群において近似できることになる。このようにして、当該例では、周囲温度が変化した際のVSWRを広い温度範囲で良好な値に維持することができ、概念的に図4に示すような特性(減衰量特性J及びVSWR特性C)が得られる。
【0024】
図5には、当該例において1.5GHzの低周波数帯を伝送する場合に得られた減衰量及びVSWRの実測値が示されており、実測においても図5の減衰量特性J及びVSWR特性Cのように良好な値が得られた。
【0025】
この実施例において、抵抗群としてサーミスタと固定抵抗の並列接続体を用いたが、所望の精度が確保できるサーミスタであれば、サーミスタのみでもよいことになる。また、抵抗群を3つ設け、等価であるπ型減衰器としては1段の場合を説明したが、サーミスタを含む抵抗群が3つ以上であっても同様の効果を得ることができる。更に、図1のコンデンサ5A,5Bとコイル6(π型エレメント)により、伝送信号の透過位相が90度となるようにしたが、このコンデンサとコイルの組合せとしては、透過位相が{N(但し、N≧1)×90}度となるその他の構成を採用することができる。
【0026】
図6には、上記コンデンサとコイルの組合せの他の例が示されており、図示されるように、インダクタンスLのコイル6A,Bと静電容量Cのコンデンサ5とによりT型に構成されたT型エレメント(LCLの集中定数回路)を採用することができる。このT型エレメントを、サーミスタを含む抵抗群の間に挿入することによっても、上記例と同様の効果を得ることが可能となる。
【0027】
【発明の効果】
以上説明したように、本発明によれば、サーミスタを含む複数の抵抗群を伝送ラインにシリーズに挿入し、この抵抗群を、透過位相が90度となるように構成されたコンデンサ及びコイルからなる集中定数網により接続したので、減衰量の減少に伴って抵抗値が低下する特性の減衰器が得られ、この特性に上記抵抗群の抵抗値を近似させることができる。この結果、低温側及び高温側におけるVSWRの劣化が改善され、広い温度範囲で良好な整合状態が保たれることになる。また、従来例Aのように、PINダイオード、制御回路や電源回路等の回路が不必要となり、廉価な減衰器が得られると共に、小型化にも寄与することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施例に係る集中定数型温度可変減衰器の構成を示す回路図である。
【図2】図1の集中定数型温度可変減衰器の実装状態[図(A)]と一定温度時の等価回路[図(B)]を示す図である。
【図3】図2(B)の等価回路の抵抗値R,Rの減衰量及び周囲温度の変動に対する変化を示す特性図である。
【図4】本発明の温度可変減衰器の特性の概念を示す図である。
【図5】図1の実施例の温度可変減衰器で実測した特性を示す図である。
【図6】実施例において透過位相が90度となるように設定するコンデンサとコイルの組合せの他の例を示す回路図である。
【図7】従来例Aの温度可変減衰器の構成を示す回路図である。
【図8】図7の温度可変減衰器の特性の概念を示す図である。
【図9】従来例Bの温度可変減衰器の構成を示す回路図である。
【図10】従来例Bの温度可変減衰器における一定温度時の等価回路を示す図である。
【図11】図10の温度可変減衰器の特性の概念を示す図である。
【図12】図10の等価回路の抵抗値R,Rの減衰量及び周囲温度の変動に対する変化を示す特性図である。
【符号の説明】
1,3,17…サーミスタ、
2,4,16A,16B,18…固定抵抗(器)、
5,5A,5B…コンデンサ、
6,6A,6B…コイル、
11A,11B…主線路、
,R,R,R…抵抗値。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature variable attenuator, and more particularly to a configuration of a lumped constant temperature variable attenuator used in transmission of a low frequency band signal.
[0002]
[Prior art]
Conventionally, a temperature variable attenuator whose attenuation varies with the ambient temperature in a low frequency band signal transmission line has been used. The configuration of this temperature variable attenuator is shown in FIGS. 7 and 9, for example. There are conventional examples A and B.
[0003]
In FIG. 7, the conventional example A (π-type attenuator) is composed of PIN diodes D 1 to D 4 arranged between main lines 11A and 11B, a heat detection sensor 12, a control circuit 13, a power supply circuit 14, and the like. When the ambient temperature is detected by the heat detecting sensor 12, the control voltage based on the temperature detection signal outputted from the control circuit 13, the temperature variable attenuator by changing the resistance of the diode D 1 to D 4 Works as.
[0004]
Attenuator of Figure 7, the diode D 2 and D 3 is the series resistance, the diode D 1 and D 4 have a π-type attenuator corresponding to the shunt resistor, as the electrical characteristic, the diode D 2 and resistance of D 3 is inversely proportional to a control voltage proportional to the ambient temperature, the resistance of the diode D 1 and D 4 in the opposite is proportional to the control voltage. As a result, a variable attenuation characteristic can be obtained while maintaining matching as a π-type attenuator in a wide ambient temperature range, and the temperature characteristic of the attenuation amount and the voltage standing wave ratio (VSWR) in this case is as shown in FIG. comprising (attenuation characteristic J 3 and VSWR characteristic C 3).
[0005]
9 is a modification of the π-type attenuator, and a pair of fixed resistors (shunt resistors) 16A, 16B connected between the main lines 11A, 11B and the ground, the fixed resistors 16A, It is composed of a thermistor 17 and a fixed resistor (unit) 18 inserted in series in the main lines 11A and 11B in a form sandwiched by 16B and connected in parallel. Also in this case, the resistance of the thermistor 17 is changed according to the change in the ambient temperature, so that it operates as a temperature variable attenuator. The temperature characteristic of the attenuation amount and the voltage standing wave ratio (VSWR) of the conventional example B Is as shown in FIG. 11 (attenuation characteristic J 4 and VSWR characteristic C 4 ).
[0006]
[Problems to be solved by the invention]
However, the temperature variable attenuator in the conventional example A in FIG. 7 described above, good VSWR characteristics are obtained as C 3 in FIG. 8 has the advantage of matching a wide range of temperatures is maintained, PIN diodes Since D 1 to D 4 , the control circuit 13 and the power supply circuit 14 are required, the cost becomes high, and the occupied area is large and unsuitable for downsizing.
[0007]
On the other hand, the temperature variable attenuator of the conventional example B of FIG. 9 is advantageous in that it is inexpensive and has a small occupied area and can be downsized. However, the VSWR when the attenuation changes with the change in the ambient temperature is a narrow temperature. There was a problem that good values could be obtained only in the range and the alignment state was insufficient. This will be described with reference to FIGS.
[0008]
FIG. 10 shows an equivalent circuit at a constant ambient temperature in the attenuator of Conventional Example B. Here, the resistance values of the thermistor 17 and fixed resistor 18 in FIG. 9 are R 3 , the fixed resistors 16A and 16B, which are shunt resistors, are R 4 , the characteristic impedance of the main lines 11A and 11B is Z 0 , and the VSWR is 1.0. Under the condition of (perfect matching), the relationship between the resistance values R 3 and R 4 and the attenuation J is given by the following equation.
[0009]
[Expression 1]
Figure 0003962261
[Expression 2]
Figure 0003962261
[0010]
FIG. 12 is a graph showing the resistance values R 3 and R 4 necessary for the temperature variable attenuator based on the above formulas 1 and 2 and having a large attenuation J at a low temperature and small at a high temperature. . As can be seen from this figure, the resistance value R 3 corresponding to the thermistor 17 and the fixed resistor 18 is decreased when the attenuation as shown in the characteristic curve C R3 has decreased (at high temperature), the other fixed resistance 16A, the resistance value R 4 corresponding to 16B are action to be opposite to each other that increases as shown by the characteristic curve C R4 is required.
[0011]
However, the change of the resistance value R 3 is (curve C R3) can be approximated by a resistance group in the thermistor 17 and the fixed resistor 18 connected in parallel from the inversely proportional to temperature, for the resistance value R 4 is Since the change (curve C R4 ) is proportional to the temperature, the fixed resistors 16A and 16B cannot obtain a resistance value corresponding to the temperature change (increase in resistance value when the attenuation decreases). Accordingly, the VSWR when the attenuation changes with the change in the ambient temperature is a good value only in a narrow range, and the low temperature side (S 1 , S 2 portion of the characteristic line C 4 in FIG. 11 ( Degradation of VSWR occurs at S 1 ) and the high temperature side (S 2 ), and a good matching state cannot be maintained over a wide temperature range. Even substituting the above pair of fixed resistors 16A, and 16B to the positive thermistor, the change amount is a positive thermistor existing is to approximate the change in the resistance value R 4 in the above FIG. 12 since it is very small is not It is.
[0012]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a lumped constant type which can improve the deterioration of the VSWR, maintain a good matching state in a wide temperature range, and can be reduced in price and size. The object is to provide a variable temperature attenuator.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a lumped constant temperature variable attenuator according to the present invention has a plurality of resistance groups including at least a thermistor inserted in series in a transmission line, and the plurality of resistance groups have a transmission phase of 90 degrees. It is characterized in that they are connected by a lumped constant network composed of capacitors and coils configured so that the wavelength of the used frequency is delayed by 1/4 wavelength.
[0014]
According to the above configuration, one of the resistance values (R 4 ) does not greatly increase (rise) as the amount of attenuation decreases, as shown by the curve C R4 of Conventional Example B in FIG. As shown by the curves C R1 and C R2 , the resistance value (R 1 , R 2 ) decreases (decreases) as the attenuation decreases (high temperature). It is possible to approximate the resistance value of the included resistance group. As a result, it is possible to maintain the VSWR when the amount of attenuation changes with a change in the ambient temperature at a good value in a wide temperature range.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a configuration of a lumped constant temperature variable attenuator according to an embodiment of the present invention, and FIG. 2A shows an actual mounting diagram of this attenuator. Between the main lines 11A and 11B, for example, a central resistor group in which the first thermistor 1 and the first fixed resistor 2 are connected in parallel, and the second thermistor 3 and the second fixed resistor 4 are in parallel on both sides of the resistor group. Two connected resistance groups are connected in series. Between these three resistance groups, a π-type element (CLC lumped constant circuit) constituted by a π-type is provided by capacitors 5A and 5B having capacitance C and a coil 6 having inductance L, and this π-type element Thus, the transmission phase of the use frequency signal is set to 90 degrees. Note that such an attenuator is mounted as shown in FIG.
[0016]
The π-type element is a circuit in which the transmission phase between the resistance group including the first thermistor 1 and the first fixed resistor 2 and the resistance group including the second thermistor 3 and the second fixed resistor 4 is 90 degrees. That is, this is a circuit that delays the wavelength of the used frequency (transmission signal) by ¼ wavelength, and C and L in this circuit are constants represented by the following equations.
[0017]
[Equation 3]
Figure 0003962261
[Expression 4]
Figure 0003962261
Here, f 0 is the center frequency of the transmission signal, and Z 0 is the characteristic impedance of the main lines (transmission lines) 11A and 11B.
[0018]
The lumped constant temperature variable attenuator of the embodiment has the above configuration, and the operation thereof will be described next. FIG. 2B shows an equivalent circuit of the temperature variable attenuator of FIG. 1 at a certain constant temperature. In this figure, the central resistor 8 includes the first thermistor 1 and the first fixed resistor 2. The resistance 9 corresponds to the resistance of the resistance group, and the resistance 9 at both ends corresponds to the resistance of the two resistance groups including the second thermistor 3 and the second fixed resistance 4. Here, when the value of the resistor 8 is R 2 , the value R 1 of the resistor 9, and the capacitance C of the capacitors 5 A and 5 B and the inductance L of the coil 6 are values represented by the above equations 3 and 4, The equivalent circuit of 2 (B) can be replaced with the conventional π-type attenuator B shown in FIG. However, the resistance values R 1 to R 4 in each figure have the following relationship.
[0019]
[Equation 5]
R 3 = R 2
[Formula 6]
R 4 = Z 0 2 / R 1
[0020]
As in the case of the conventional example B, the relationship between the R 3 , R 4 and the attenuation amount J under the condition that the VSWR is 1.0 (perfect matching) is expressed by the above formulas 1, 2, 5, 6 is given by the following equation.
[0021]
[Expression 7]
Figure 0003962261
[Equation 8]
Figure 0003962261
[0022]
Based on the equations 7 and 8, while maintaining the matching, the above-described resistance value R 1 (resistor 9) required for the temperature variable attenuator having a large attenuation L at a low temperature and a small attenuation L at a high temperature. When the relationship of R 2 (resistor 8) is obtained, the characteristic curves C R1 and C R2 in FIG. 3 are obtained. Comparing FIG. 3 and FIG. 12, the curve C R2 has a characteristic opposite to that of the curve C R4. In the attenuator of this embodiment, the resistance decreases when the reduction amount is attenuated, that is, when the temperature becomes high. It will be appreciated that both 9 and the values of resistors R 1 and R 2 need to decrease.
[0023]
Then, with respect to the change in the resistance value R 2 as shown in curve C R2, can be approximated in the main line 11A, the first thermistor 1 and the first fixed resistor 2 and a resistor group inserted in 11B, also the curve C R1 The change in the resistance value R 1 shown can be approximated by a resistor group including the second thermistor 3 and the second fixed resistor 4. Thus, in this example, it is possible to maintain a good value in a wide temperature range VSWR when the ambient temperature changes, conceptual characteristics as shown in FIG. 4 (attenuation characteristic J 1 and VSWR Characteristic C 1 ) is obtained.
[0024]
5 shows, the measured values of the resulting attenuation and VSWR when transmitting a 1.5GHz low frequency band in the example has been shown, the attenuation characteristic J 2 and the VSWR characteristic of FIG. 5 also in the actual measurement good values as C 2 was obtained.
[0025]
In this embodiment, a parallel connection body of a thermistor and a fixed resistor is used as the resistor group, but only the thermistor may be used if it is a thermistor that can ensure desired accuracy. In addition, although the case where three resistance groups are provided and the equivalent π-type attenuator has one stage has been described, the same effect can be obtained even if there are three or more resistance groups including the thermistor. Further, the transmission phase of the transmission signal is set to 90 degrees by the capacitors 5A and 5B and the coil 6 (π-type element) of FIG. 1, but the transmission phase is {N (provided that this capacitor and coil are combined). , N ≧ 1) × 90} degrees can be employed.
[0026]
FIG. 6 shows another example of the combination of the capacitor and the coil. As shown in the figure, the coil 6A, B with inductance L and the capacitor 5 with capacitance C are configured in a T shape. A T-type element (LCL lumped constant circuit) can be employed. By inserting this T-type element between resistance groups including the thermistor, the same effect as in the above example can be obtained.
[0027]
【The invention's effect】
As described above, according to the present invention, a plurality of resistance groups including a thermistor are inserted into a series in a transmission line, and the resistance groups are composed of a capacitor and a coil configured to have a transmission phase of 90 degrees. Since they are connected by a lumped constant network, an attenuator having a characteristic in which the resistance value decreases as the attenuation decreases, and the resistance value of the resistor group can be approximated to this characteristic. As a result, the deterioration of the VSWR on the low temperature side and the high temperature side is improved, and a good matching state is maintained over a wide temperature range. Further, unlike the conventional example A, circuits such as a PIN diode, a control circuit, and a power supply circuit are unnecessary, so that an inexpensive attenuator can be obtained and the size can be reduced.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a configuration of a lumped constant temperature variable attenuator according to an embodiment of the present invention.
2 is a diagram showing a mounting state [FIG. (A)] of the lumped constant temperature variable attenuator of FIG. 1 and an equivalent circuit [FIG. (B)] at a constant temperature.
FIG. 3 is a characteristic diagram showing changes in resistance values R 1 and R 2 of the equivalent circuit of FIG.
FIG. 4 is a diagram showing a concept of characteristics of a temperature variable attenuator of the present invention.
FIG. 5 is a diagram showing characteristics actually measured by the temperature variable attenuator of the embodiment of FIG. 1;
FIG. 6 is a circuit diagram showing another example of a combination of a capacitor and a coil set so that a transmission phase is 90 degrees in the embodiment.
7 is a circuit diagram showing a configuration of a temperature variable attenuator of Conventional Example A. FIG.
8 is a diagram illustrating a concept of characteristics of the temperature variable attenuator in FIG. 7;
9 is a circuit diagram showing a configuration of a temperature variable attenuator of Conventional Example B. FIG.
10 is a diagram showing an equivalent circuit at a constant temperature in the temperature variable attenuator of Conventional Example B. FIG.
11 is a diagram showing a concept of characteristics of the temperature variable attenuator of FIG.
12 is a characteristic diagram showing changes in resistance values R 3 and R 4 of the equivalent circuit of FIG. 10 with respect to the amount of attenuation and changes in ambient temperature.
[Explanation of symbols]
1,3,17 ... Thermistor,
2, 4, 16A, 16B, 18 ... fixed resistors (units),
5, 5A, 5B ... capacitors
6, 6A, 6B ... coil,
11A, 11B ... main line,
R 1 , R 2 , R 3 , R 4 ... resistance values.

Claims (1)

少なくともサーミスタを含む複数の抵抗群を伝送ラインにシリーズに挿入し、
この複数の抵抗群を、透過位相が90度となるように構成されたコンデンサ及びコイルからなる集中定数網によって接続してなる集中定数型温度可変減衰器。
Insert a series of resistors including at least thermistor into the transmission line,
A lumped-constant temperature variable attenuator formed by connecting the plurality of resistance groups by a lumped-constant network composed of a capacitor and a coil having a transmission phase of 90 degrees.
JP2002007489A 2002-01-16 2002-01-16 Lumped constant temperature variable attenuator Expired - Fee Related JP3962261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002007489A JP3962261B2 (en) 2002-01-16 2002-01-16 Lumped constant temperature variable attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002007489A JP3962261B2 (en) 2002-01-16 2002-01-16 Lumped constant temperature variable attenuator

Publications (2)

Publication Number Publication Date
JP2003209453A JP2003209453A (en) 2003-07-25
JP3962261B2 true JP3962261B2 (en) 2007-08-22

Family

ID=27645994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002007489A Expired - Fee Related JP3962261B2 (en) 2002-01-16 2002-01-16 Lumped constant temperature variable attenuator

Country Status (1)

Country Link
JP (1) JP3962261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621388A (en) * 2012-04-13 2012-08-01 山东电力集团公司潍坊供电公司 Electric transmission line lumped parameter on-line determination method based on synchronous time domain signals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621388A (en) * 2012-04-13 2012-08-01 山东电力集团公司潍坊供电公司 Electric transmission line lumped parameter on-line determination method based on synchronous time domain signals

Also Published As

Publication number Publication date
JP2003209453A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
US7528677B2 (en) Temperature compensation attenuator
US7215219B2 (en) Temperature and frequency variable gain attenuator
JP2006191355A (en) Equalizer
AU594984B2 (en) Improvements to pin diode attenuators
US20090015355A1 (en) Compensated attenuator
US6472949B1 (en) Signal attenuators
JP3962261B2 (en) Lumped constant temperature variable attenuator
US7352259B2 (en) Broadband step attenuator with improved time domain performance
JP5197224B2 (en) High frequency variable filter
JP2000196395A (en) Temperature compensated attenuator and microwave device
JPH09139646A (en) Temperature variable attenuator
JPS5834046B2 (en) Bridging T-type variable equalizer
US7119632B2 (en) High-frequency temperature-variable attenuator
US7202759B2 (en) Wideband temperature-variable attenuator
JP4940166B2 (en) High frequency temperature attenuator
US7855615B1 (en) Frequency adaptive temperature variable attenuator
JP2002208803A (en) Temperature sensing attenuator
KR101497018B1 (en) 360° reflective analog phase shifter
JP4236811B2 (en) Variable attenuator
US7990230B2 (en) Temperature compensation attenuator
RU2807424C1 (en) Microwave filter
CN100488039C (en) Thermal attenuator and radio transciever
JP4668599B2 (en) Wideband offset circuit
JP4525391B2 (en) Method and apparatus for measuring impedance of π-type impedance network
JP2011055181A (en) Temperature variable attenuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees