JP3961459B2 - Liquid curing agent and method for hydrosetting inorganic materials - Google Patents

Liquid curing agent and method for hydrosetting inorganic materials Download PDF

Info

Publication number
JP3961459B2
JP3961459B2 JP2003197731A JP2003197731A JP3961459B2 JP 3961459 B2 JP3961459 B2 JP 3961459B2 JP 2003197731 A JP2003197731 A JP 2003197731A JP 2003197731 A JP2003197731 A JP 2003197731A JP 3961459 B2 JP3961459 B2 JP 3961459B2
Authority
JP
Japan
Prior art keywords
curing agent
liquid curing
inorganic material
acid
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003197731A
Other languages
Japanese (ja)
Other versions
JP2005067901A (en
Inventor
勇吉 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2003197731A priority Critical patent/JP3961459B2/en
Publication of JP2005067901A publication Critical patent/JP2005067901A/en
Application granted granted Critical
Publication of JP3961459B2 publication Critical patent/JP3961459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セメントなどの加水硬化性無機材料に添加され、該無機材料の硬化、固化に有効な酸性液状硬化剤、特に、該加水硬化性無機材料により地盤を補強する際、または該加水硬化性無機材料により産業廃棄物を固化する際に有効な酸性液状硬化剤に関し、さらには地盤補強工法および産業廃棄物の固化工法に関するものである。
【0002】
【従来の技術】
道路、鉄道や建造物などを支える地盤は、一般的にそれらを支えるための設計強度に比べ弱く、また水の影響を受けやすく、セメントなどによる補強が必要な場合が極めて多い。これまでも、補強材の硬化剤、硬化促進剤として固体状、液状のものが各種提案されている。例えば、塩化コバルトのアンモニア水溶液にアルカリ金属を加えた土壌硬化剤(特許文献1)、アルカリ金属塩水溶液に塩化コバルト錯化合物を含有させたアルカリ性の土壌硬化処理剤(特許文献2)が提案されている。
【0003】
また、フライアッシュ、オイルスラッジ、下水汚泥などの固体状、液状の産業廃棄物を、その焼却前または後に、あるいはその焼却灰を、セメントを用いて固化し、資材として利用する、または無害化する手段が各種提案されている。例えば、アルカリ金属塩水溶液に塩化コバルト錯化合物を含有させたアルカリ性土壌硬化処理剤(特許文献3)、アルカリ金属塩・アンモニウム塩混合水溶液に2価コバルトイオンを含有させたアルカリ性処理剤(特許文献4、5)、アルカリ金属塩・アンモニウム塩混合水溶液に2価コバルトイオンと炭酸塩または重炭酸塩を含有させた処理剤(特許文献6)が提案されている。
【0004】
また、アルカリ金属塩のアルカリ性水溶液Aと、コバルトアンミン錯体の酸性ないし中性溶液Bとの組合せからなる二液型産業廃棄物処理剤と、産業廃棄物を該A液で処理した後、該B液で処理し、セメントで固化する産業廃棄物の二段処理方法(特許文献7、8)も提案されている。具体的には、炭酸カリウム、炭酸ナトリウム、水酸化ナトリウムを含有するアルカリ性水溶液Aと、塩化アンモニウム、塩化コバルト、塩酸を含有する酸性水溶液Bとの組合せが提案されている。
【0005】
従来の液状硬化剤(硬化処理剤、処理剤)は、可溶性のコバルトイオンを含有させるところに特徴があるが、アルカリ性の水溶液では、コバルトイオンが加水分解を起こしやすく、不安定なため、それを防止するために錯化剤としてアンモニウムイオンを添加している。また、液状硬化剤をアルカリ性にするために、高価な炭酸塩が使用されるが、炭酸イオンは、産業廃棄物などの表面および内部に含有される有機物を除去し、水中に分散させる作用をするものと推定される。しかし、炭酸塩は高価であるという問題があった。
また、従来の液状硬化剤は、硬化速度が遅く、セメント硬化体の圧縮強度を十分高くすることができず、またセメント硬化体を白化させる欠点があった。
【0006】
【特許文献1】
特開昭54−146410号公報
【特許文献2】
特開昭60−23475号公報
【特許文献3】
特開昭60−23470号公報
【特許文献4】
特開昭62−59705号公報
【特許文献5】
特開平5−237466号公報
【特許文献6】
特開平5−317453号公報
【特許文献7】
特開平8−52445号公報
【特許文献8】
特開平8−57443号公報
【0007】
【発明が解決しようとする課題】
本発明は、コバルトイオン、アンモニウムイオン、炭酸イオンを含有する従来のアルカリ性の一液型硬化剤による、セメントなどの加水硬化性無機材料の硬化・固化の際に生じる白化がなく、該無機材料の硬化速度が速く・硬化時間が短く、かつ硬化後の土壌・産業廃棄物などの圧縮強度が大きい、各種土壌、各種産業廃棄物などに広く適用可能な一液型の加水硬化性無機材料用液状硬化剤を提供することを目的とする。また、該液状硬化剤を加水硬化性無機材料と併用して、土壌・地盤を補強する工法、産業廃棄物を固化する工法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、アルカリ金属イオンおよびコバルトイオンを含有するPH1〜3の酸性水溶液であることを特徴とする加水硬化性無機材料用液状硬化剤である。
【0009】
本発明の加水硬化性無機材料用液状硬化剤は、有機酸を含有することが好ましい。
【0010】
本発明の加水硬化性無機材料用液状硬化剤は、有機酸がオキシカルボン酸であることが好ましい。
【0011】
また、本発明は、前記の液状硬化剤を、加水硬化性無機材料と併用して、該無機材料を硬化することを特徴とする地盤の補強工法である。
【0012】
また、本発明は、前記の液状硬化剤を、加水硬化性無機材料と併用して、該無機材料を硬化することを特徴とする産業廃棄物の固化工法である。
【0013】
【発明の実施の形態】
本発明の液状硬化剤は、コバルトイオンおよびアルカリ金属イオンを含有する酸性水溶液であるが、アルカリ土類金属イオンを含有していてもよい。
【0014】
コバルトは、可溶性の塩として水に添加するのが好ましく、特に、入手の容易さ、コストの点から塩化物などのハロゲン化物として添加するのが好ましい。アルカリ金属、アルカリ土類金属も、同様に可溶性の塩として水に添加するのが好ましく、特に、入手の容易さ、コストの点から塩化物などのハロゲン化物として添加するのが好ましい。これらの金属の可溶性の塩として炭酸塩を使用した場合は、所望のpH(酸性)を得るための酸の使用量が増大する問題、炭酸ガスが発生する問題などがある。
アルカリ金属としてはナトリウム、カリウムが好ましく、アルカリ土類金属としては、カルシウムが好ましい。アルカリ金属、アルカリ土類金属は、それぞれ2種以上を併用することができる。
【0015】
コバルト塩の水溶液は、コバルトイオンの加水分解作用により、それ自体弱酸性を呈するが、本発明においては、酸を積極的に添加して、液状硬化剤をpH1〜3、好ましくは1〜2の強酸性ないし弱酸性に調整する。これにより、後述するように、従来のアルカリ性水溶液からなる液状硬化剤とは異なる、速い硬化速度、満足できる圧縮強度を有する硬化体を得ることができる。
本発明の液状硬化剤の各成分の濃度は質量%で、コバルトイオンは0.5〜2.0%、好ましくは0.8〜1.2%、アルカリ金属イオンは20〜30%、好ましくは26〜28%、アルカリ土類金属イオンは40〜46%、好ましくは42〜44%である。
【0016】
酸は、有機酸でも無機酸でも差支えないが、有機酸であるのが好ましい。有機酸は、コバルトイオンと可溶性の錯体を形成し、処理の際にpH上昇が起こっても、コバルトイオンを安定に保つ。また、pH緩衝能があるので、処理の際の局所的なpH上昇を阻止して、硬化を均一にする。オキシカルボン酸はコバルトとの配位能力が高い。なお、有機酸は完全解離しなくてもよい。また、コバルトイオンは、可溶性錯体の形態を含む。アンモニウムイオンはコバルトの錯化剤なので、含有されても差し支えない。
有機酸としては、カルボン酸、スルホン酸、オキシカルボン酸などが好ましく、オキシカルボン酸が特に好ましい。カルボン酸としては、酢酸、シュウ酸、オキシカルボン酸としては、クエン酸、酒石酸、リンゴ酸、乳酸、グリコール酸などの脂肪族系のもの、サリチル酸、没食子酸、ピクリン酸などの芳香族系のものが挙げられるが、クエン酸、ピクリン酸、酒石酸が好ましい。
【0017】
本発明の液状硬化剤に含有される各成分は、例えば、コバルトのハロゲン化物、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物などの形態で水性溶媒に添加され、溶解される。
各成分は任意の順序で水性溶媒に添加され、混合液を攪拌すれば、容易に均一な水溶液として調製することができる。もちろん加熱すれば、溶解速度が上昇するので、好ましい。
【0018】
本発明の液状硬化剤には、セメント増強剤、膨張剤、凝結剤、減水剤などを添加する必要はないが、勿論添加してもよい。
本発明の液状硬化剤は、一般的に、さらに数倍〜十数倍量の水性溶媒が追加され、各用途に好適な濃度に希釈され、使用される。希釈水として、塩水、海水を使用することもできる。
【0019】
本発明の液状硬化剤が適用される加水硬化性無機材料は、水により硬化する無機材料であり、セメント(ポルトランドセメント、スラグセメント、フライアッシュセメント、急硬性セメント、中庸熱セメント)、石灰、石膏、モルタルなどであるが、セメントまたは石灰が好ましい。
【0020】
本発明の液状硬化剤は、セメントなどの加水硬化性無機材料に対し、好ましくは0.05〜2.5質量%、特に好ましくは1〜2質量%の少量使用するだけで、十分な硬化促進効果を発揮することができる。なお、加水硬化性無機材料は、補強すべき地盤や固化すべき産業廃棄物に対し、従来の工法の場合と同程度の割合で配合される。
【0021】
本発明の液状硬化剤は、自然土舗装、ダム、護岸、海底、農地などの地盤補強や海底、湖底、埋立地などの液状化防止などを目的として、赤土から腐葉土に至る各種土壌、地盤などを、セメント、石灰などの加水硬化性無機材料を加えて補強する際に、無機材料と併用または混合して使用される。例えば、仮設道路や路床工事の場合、セメントを散布し、トラクターで攪拌し、液状硬化剤を散水車で散布し、転圧し、その後養生するだけでよい。1〜3日程度経過すれば、セメントが硬化し、地盤補強がなり、建造物などの建設工事が可能になる。
【0022】
また、本発明の液状硬化剤は、家庭ごみなどの焼却灰、工場などから排出されるスラッジや廃油、廃ガラス、廃タイヤ、廃プラスチック、ヘドロなどの産業廃棄物に、セメント、石灰などの加水硬化性無機材料を散布、混合して、産業廃棄物を固化する際に、無機材料と併用または混合使用し、必要ならば、転圧し、7〜18日程度養生するだけでよい。固化により、産業廃棄物の体積が大幅に低減し、嵩比重が増加する。そして、産業廃棄物の中に含有されている重金属成分や、PCB、トリクロルエチレン、ダイオキシンなどの有機ハロゲン系有害物質を、該無機材料の固化により、封じ込めることができるので、産業廃棄物の無害化に著しい効果が発現される。また、固化物を再利用することも可能である。
さらに、本発明の液状硬化剤は、おが屑、活性炭に、該無機材料と混合して加えて、抗菌性新建材とすることもできる。
【0023】
また、本発明の液状硬化剤は、該無機材料と併用または混合して使用されるが、さらに海砂、山砂などの骨材と併用することもできる。例えば、ペーパースラッジ、焼却灰などに、山砂などとともに、該無機材料と液状硬化剤を添加してグリ石状にすることにより、新骨材に変えることもできる。
【0024】
【実施例】
(実施例1)
塩化ナトリウム734g、塩化カリウム1.467kg、塩化カルシウム934g、塩化コバルト33gおよびクエン酸167gを、水17.599kgに混合し、全量を20kgとし、攪拌して、溶解させて液状硬化剤(pH約1)を調製した。
海砂(嵩密度2.0g/cm3 :含水率20質量%)100質量部に、ポルトランドセメント(含水率20質量%)25質量部を満遍なく混合し、さらに、該液状硬化剤4質量部と水300質量部を散水器を用いて散布して、約5分間攪拌した。その後、路面の不陸を調整し、圧力40MPa で転圧して、セメント硬化体を得た。該硬化体の一軸圧縮強度の経日変化(28日間)を調査し、その結果を表1に示した。
一軸圧縮強度はJIS A5201「セメントの強さに関する試験」に準拠して測定した。
【0025】
海砂の代わりに、堆積土(嵩密度1.5g/cm3 :含水率30質量%)を用いて、上記と同様にセメント硬化体を得、該硬化体の一軸圧縮強度の経日変化を調査し、結果を表1に示した。
海砂の代わりに、石炭灰(嵩密度1.7g/cm3 :含水率10質量%)1000質量部、ポルトランドセメント(含水率20質量%)300質量部、該液状硬化剤6質量部を水600質量部と混合し、攪拌して、セメント硬化体を得た。該硬化体の一軸圧縮強度の経日変化を調査し、結果を表1に示した。
【0026】
(実施例2)
実施例1において、塩化ナトリウム734g、塩化カリウム1.467kg、塩化カルシウム934g、塩化コバルト33gおよびピクリン酸167gを、水16.832kgに混合し、全量を20kgとし、攪拌して、溶解させて液状硬化剤(pH約1)を調製した。
該液状硬化剤を用いて、実施例1と同様にセメント硬化体を得、該硬化体の一軸圧縮強度の経日変化を調査し、結果を表1に示した。
【0027】
(比較例1)
実施例1において、該液状硬化剤を添加する以外は、上記と同様にセメント硬化体を得、該硬化体の一軸圧縮強度の経日変化を調査し、結果を表1に示した。
【0028】
(比較例2)
炭酸ナトリウム2.5g、炭酸カリウム2.0g、塩化ナトリウム2.5g、塩化カリウム1.5g、塩化アンモニウム2.0gおよび塩化コバルト0.5gを、水89gに加え全量を100gとし、攪拌して、溶解させ、液状硬化剤(pH約10)を調製した。
該液状硬化剤を用いて、実施例1と同様にセメント硬化体を得、該硬化体の一軸圧縮強度の経日変化を調査し、結果を表1に示した。
【0029】
(実施例3)
塩化ナトリウム734g、塩化カリウム1.467kg、塩化カルシウム934g、塩化コバルト33gおよびクエン酸167gを、水16.832kgに混合し、全量を20kgとし、攪拌して、溶解させて液状硬化剤(pH約1)を調製した。
石炭灰(嵩密度1.6g/cm3 :含水率20質量%:溶出カドミウム0.3ppm 、鉛15ppm 、水銀0.51ppm 、総クロム45ppm 、ヒ素45ppm )1000重量部、ポルトランドセメント(含水率20質量%)300重量部、該液状硬化剤6重量部、および水500重量部をミキサーを用いて満遍なく混合して、該セメントを硬化させた。7日経過後および28日経過後に、硬化体から溶出した重金属の分析を行った。溶出カドミウムは0.001ppm 以下、鉛は0.001ppm 以下、水銀は不検出、総クロムは0.07ppm 以下、ヒ素は0.001ppm 以下であり、溶出量は大幅に低減した。結果を表2に示した。
重金属の溶出試験は、廃棄物処理法に準拠した溶出試験を環境庁告示第13号による検定方法に基づいて実施した。
【0030】
(実施例4)
実施例3において、塩化ナトリウム734g、塩化カリウム1.467kg、塩化カルシウム934g、塩化コバルト33gおよびピクリン酸167gを、水16.832kgに混合し、全量を20kgとし、攪拌して、溶解させて液状硬化剤(pH約1)を調製した。
該液状硬化剤を用いて、実施例3と同様にセメント硬化体を得、該硬化体から溶出した重金属の分析を行った。結果を表2に示した。
【0031】
(比較例3)
炭酸ナトリウム2.5g、炭酸カリウム2.0g、塩化ナトリウム2.5g、塩化カリウム1.5g、塩化アンモニウム2.0gおよび塩化コバルト0.5gを、水89gに加え全量を100gとし、攪拌して、溶解させ、液状硬化剤(pH約10)を調製した。
該液状硬化剤を用いて、実施例1と同様に石炭灰を硬化させ、硬化体を得た。該硬化体からの重金属の溶出試験を行い、結果を表2に示した。
【0032】
【表1】

Figure 0003961459
【0033】
【表2】
Figure 0003961459
【0034】
【発明の効果】
本発明の液状硬化剤は、液状であるため、地盤や産業廃棄物の中に深く、かつ速やかに浸透して、加水硬化性無機材料の硬化を促進するため、工法の簡略化・省力化、工期の短縮に顕著な効果を示すばかりでなく、無機材料や液状硬化剤の使用量を減量できる。すなわち、セメントなどの溶出液はアルカリ性であり、本発明の液状硬化剤を適用すると中和熱が発生し、短時間で硬化が進行するため、養生時間が短くてすむ。また、硬化の対象物の表面が活性化されるため、処理が均一になる。
また、フライアッシュなどのアルカリ性物質の産業廃棄物を固化する場合には、液状硬化剤の使用量を少なくすることができ、かつ無機材料の添加・配合量を低減することができる。
【0035】
さらに、工法終了後の補強地盤の強度や硬化した産業廃棄物の圧縮強度が大きく、白化がなく、かつ重金属成分などの溶出防止効果、悪臭の抑制効果、クラックの発生防止効果が大きく、環境保護にも優れている。
また、本発明の液状硬化剤は、零下20℃でも凍結することがないので、寒冷地での使用も可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention is an acidic liquid curing agent which is added to a hydrosetting inorganic material such as cement and is effective for curing and solidifying the inorganic material, particularly when the ground is reinforced with the hydrosetting inorganic material, or the hydrosetting The present invention relates to an acidic liquid curing agent effective in solidifying industrial waste with a conductive inorganic material, and further relates to a ground reinforcement construction method and a solidification method for industrial waste.
[0002]
[Prior art]
The ground that supports roads, railways, buildings, etc. is generally weaker than the design strength to support them, is easily affected by water, and is often required to be reinforced with cement. Until now, various solid and liquid curing agents and reinforcing accelerators have been proposed. For example, a soil hardening agent in which an alkali metal is added to an aqueous solution of cobalt chloride (Patent Document 1), and an alkaline soil hardening agent in which an alkali metal salt aqueous solution contains a cobalt chloride complex compound (Patent Document 2) have been proposed. Yes.
[0003]
In addition, solid or liquid industrial waste such as fly ash, oil sludge, sewage sludge, etc. is solidified before or after incineration, or the incineration ash is cemented and used as a material or rendered harmless. Various means have been proposed. For example, an alkaline soil hardening treatment agent containing a cobalt chloride complex compound in an alkali metal salt aqueous solution (Patent Document 3), an alkaline treatment agent containing divalent cobalt ions in an alkali metal salt / ammonium salt mixed aqueous solution (Patent Document 4). 5) A treatment agent (Patent Document 6) in which a divalent cobalt ion and carbonate or bicarbonate are contained in a mixed aqueous solution of alkali metal salt and ammonium salt has been proposed.
[0004]
Further, a two-part type industrial waste treating agent comprising a combination of an alkaline aqueous solution A of an alkali metal salt and an acidic or neutral solution B of a cobalt ammine complex; A two-stage treatment method for industrial waste that is treated with liquid and solidified with cement (Patent Documents 7 and 8) has also been proposed. Specifically, a combination of an alkaline aqueous solution A containing potassium carbonate, sodium carbonate and sodium hydroxide and an acidic aqueous solution B containing ammonium chloride, cobalt chloride and hydrochloric acid has been proposed.
[0005]
Conventional liquid curing agents (curing treatment agents, treatment agents) are characterized in that they contain soluble cobalt ions, but in alkaline aqueous solutions, cobalt ions are prone to hydrolysis and are unstable. In order to prevent this, ammonium ions are added as a complexing agent. Also, expensive carbonates are used to make the liquid curing agent alkaline, but carbonate ions act to remove organic substances contained on the surface and inside of industrial wastes and disperse them in water. Estimated. However, there is a problem that carbonate is expensive.
Further, the conventional liquid curing agent has a drawback that the curing speed is slow, the compressive strength of the cement cured body cannot be sufficiently increased, and the cement cured body is whitened.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 54-146410 [Patent Document 2]
Japanese Patent Laid-Open No. 60-23475 [Patent Document 3]
JP 60-23470 A [Patent Document 4]
JP 62-59705 A [Patent Document 5]
JP-A-5-237466 [Patent Document 6]
JP-A-5-317453 [Patent Document 7]
Japanese Patent Laid-Open No. 8-52445 [Patent Document 8]
Japanese Patent Laid-Open No. 8-57443
[Problems to be solved by the invention]
The present invention is free from whitening that occurs during curing and solidification of a hydrosetting inorganic material such as cement by a conventional alkaline one-component curing agent containing cobalt ions, ammonium ions, and carbonate ions. Liquid for one-component hydrosetting inorganic materials that can be widely applied to various soils and various industrial wastes, with high curing speed, short curing time, and high compressive strength such as soil and industrial waste after curing An object is to provide a curing agent. Another object of the present invention is to provide a method for reinforcing soil and ground and a method for solidifying industrial waste by using the liquid curing agent in combination with a hydrosetting inorganic material.
[0008]
[Means for Solving the Problems]
The present invention is a liquid curing agent for a hydrocurable inorganic material, which is an acidic aqueous solution of PH1 to 3 containing alkali metal ions and cobalt ions.
[0009]
It is preferable that the liquid curing agent for a hydrocurable inorganic material of the present invention contains an organic acid.
[0010]
In the liquid curing agent for a hydrocurable inorganic material of the present invention, the organic acid is preferably an oxycarboxylic acid.
[0011]
The present invention is also a ground reinforcing method characterized by curing the inorganic material by using the liquid curing agent in combination with a hydrosetting inorganic material.
[0012]
The present invention is also a solidification method for industrial waste, characterized in that the liquid curing agent is used in combination with a hydrosetting inorganic material to cure the inorganic material.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The liquid curing agent of the present invention is an acidic aqueous solution containing cobalt ions and alkali metal ions, but may contain alkaline earth metal ions.
[0014]
Cobalt is preferably added to water as a soluble salt, and is particularly preferably added as a halide such as chloride from the viewpoint of availability and cost. Similarly, alkali metals and alkaline earth metals are also preferably added to water as soluble salts, and are particularly preferably added as halides such as chlorides from the viewpoint of availability and cost. When carbonates are used as the soluble salts of these metals, there are problems that the amount of acid used to obtain a desired pH (acidity) increases, carbon dioxide gas is generated, and the like.
Sodium and potassium are preferable as the alkali metal, and calcium is preferable as the alkaline earth metal. Two or more alkali metals and alkaline earth metals can be used in combination.
[0015]
The aqueous solution of cobalt salt itself exhibits weak acidity due to the hydrolysis action of cobalt ions. However, in the present invention, an acid is positively added, and the liquid curing agent has a pH of 1 to 3, preferably 1 to 2. Adjust to strong or weak acidity. Thereby, as will be described later, it is possible to obtain a cured body having a fast curing speed and satisfactory compressive strength, which is different from a conventional liquid curing agent made of an alkaline aqueous solution.
The concentration of each component of the liquid curing agent of the present invention is mass%, cobalt ions are 0.5 to 2.0%, preferably 0.8 to 1.2%, alkali metal ions are 20 to 30%, preferably 26-28%, alkaline earth metal ions are 40-46%, preferably 42-44%.
[0016]
The acid can be an organic acid or an inorganic acid, but is preferably an organic acid. The organic acid forms a soluble complex with the cobalt ion and keeps the cobalt ion stable even if the pH rises during the treatment. In addition, since it has a pH buffering ability, it prevents local pH increase during processing and makes the curing uniform. Oxycarboxylic acid has a high coordination ability with cobalt. The organic acid may not be completely dissociated. Cobalt ions also include soluble complex forms. Since ammonium ions are complexing agents for cobalt, they can be contained.
As the organic acid, carboxylic acid, sulfonic acid, oxycarboxylic acid and the like are preferable, and oxycarboxylic acid is particularly preferable. As carboxylic acid, acetic acid, oxalic acid, and oxycarboxylic acid include aliphatic ones such as citric acid, tartaric acid, malic acid, lactic acid and glycolic acid, and aromatic ones such as salicylic acid, gallic acid and picric acid. Citric acid, picric acid, and tartaric acid are preferable.
[0017]
Each component contained in the liquid curing agent of the present invention is added and dissolved in an aqueous solvent in the form of, for example, a cobalt halide, an alkali metal halide, an alkaline earth metal halide, or the like.
Each component is added to the aqueous solvent in an arbitrary order, and if the mixed solution is stirred, it can be easily prepared as a uniform aqueous solution. Of course, heating is preferable because the dissolution rate increases.
[0018]
Although it is not necessary to add a cement enhancer, a swelling agent, a coagulant, a water reducing agent, etc. to the liquid hardening | curing agent of this invention, of course, you may add.
In general, the liquid curing agent of the present invention is further diluted with an aqueous solvent in an amount of several to tens of times, diluted to a concentration suitable for each application, and used. Salt water and sea water can also be used as dilution water.
[0019]
The hydrocurable inorganic material to which the liquid curing agent of the present invention is applied is an inorganic material that is cured by water, such as cement (Portland cement, slag cement, fly ash cement, quick-hardening cement, medium heat cement), lime, gypsum. Mortar, etc., preferably cement or lime.
[0020]
The liquid curing agent of the present invention is sufficiently cured only by using a small amount of 0.05 to 2.5% by mass, particularly preferably 1 to 2% by mass with respect to a hydrosetting inorganic material such as cement. The effect can be demonstrated. In addition, a hydrosetting inorganic material is mix | blended in the ratio comparable as the case of the conventional construction method with respect to the ground which should be reinforced, or the industrial waste which should be solidified.
[0021]
The liquid curing agent of the present invention is for various soils such as natural soil pavement, dam, revetment, seabed, farmland, etc., and various soils ranging from red soil to humus for the purpose of liquefaction prevention such as seabed, lake bottom, landfill, etc. Is used in combination with or mixed with an inorganic material when it is reinforced by adding a hydrosetting inorganic material such as cement or lime. For example, in the case of temporary roads or roadbed construction, it is only necessary to spread cement, stir with a tractor, spray a liquid curing agent with a watering wheel, roll, and then cure. If about 1 to 3 days elapses, the cement will harden, the ground will be reinforced, and construction works such as buildings will be possible.
[0022]
In addition, the liquid curing agent of the present invention can be used for incineration ash such as household waste, sludge and waste oil discharged from factories, waste glass, waste tires, waste plastic, sludge and other industrial waste such as cement and lime. When the industrial waste is solidified by spraying and mixing the curable inorganic material, it may be used together with or mixed with the inorganic material, and if necessary, it may be rolled and cured for about 7 to 18 days. Solidification significantly reduces the volume of industrial waste and increases bulk specific gravity. In addition, heavy metal components contained in industrial waste and organic halogen-based hazardous substances such as PCB, trichloroethylene, and dioxin can be contained by solidifying the inorganic material. A significant effect is exhibited. It is also possible to reuse the solidified product.
Furthermore, the liquid hardening | curing agent of this invention can also be mixed with this inorganic material to sawdust and activated carbon, and can also be used as an antibacterial new building material.
[0023]
Further, the liquid curing agent of the present invention is used in combination with or mixed with the inorganic material, but can also be used in combination with aggregates such as sea sand and mountain sand. For example, paper sludge, incinerated ash, etc. can be converted into new aggregate by adding the inorganic material and liquid curing agent together with mountain sand and the like to form a grindstone.
[0024]
【Example】
Example 1
734 g of sodium chloride, 1.467 kg of potassium chloride, 934 g of calcium chloride, 33 g of cobalt chloride and 167 g of citric acid are mixed with 17.599 kg of water to make a total amount of 20 kg, stirred and dissolved to form a liquid curing agent (pH about 1 ) Was prepared.
100 parts by mass of sea sand (bulk density 2.0 g / cm 3 : water content 20% by mass) is mixed evenly with 25 parts by mass of Portland cement (water content 20% by mass), and further 4 parts by mass of the liquid curing agent 300 parts by mass of water was sprayed using a sprinkler and stirred for about 5 minutes. After that, the unevenness of the road surface was adjusted and rolled at a pressure of 40 MPa to obtain a hardened cement body. The daily change (28 days) in the uniaxial compressive strength of the cured product was investigated, and the results are shown in Table 1.
The uniaxial compressive strength was measured in accordance with JIS A5201 “Test on strength of cement”.
[0025]
Instead of sea sand, using sedimentary soil (bulk density 1.5 g / cm 3 : water content 30% by mass), a hardened cement body is obtained in the same manner as above, and the uniaxial compressive strength of the hardened body over time is changed. The results are shown in Table 1.
Instead of sea sand, coal ash (bulk density 1.7 g / cm 3 : water content 10% by mass) 1000 parts by mass, Portland cement (water content 20% by mass) 300 parts by mass, and the liquid curing agent 6 parts by mass The mixture was mixed with 600 parts by mass and stirred to obtain a hardened cement body. The changes over time in the uniaxial compressive strength of the cured product were investigated, and the results are shown in Table 1.
[0026]
(Example 2)
In Example 1, 734 g of sodium chloride, 1.467 kg of potassium chloride, 934 g of calcium chloride, 33 g of cobalt chloride and 167 g of picric acid were mixed with 16.832 kg of water to make a total amount of 20 kg, stirred, dissolved and liquid cured. An agent (pH about 1) was prepared.
Using the liquid curing agent, a cement cured body was obtained in the same manner as in Example 1. The uniaxial compressive strength change with time of the cured body was investigated, and the results are shown in Table 1.
[0027]
(Comparative Example 1)
In Example 1, except that the liquid curing agent was added, a cement cured body was obtained in the same manner as described above, and changes with time in the uniaxial compressive strength of the cured body were investigated. The results are shown in Table 1.
[0028]
(Comparative Example 2)
Sodium carbonate 2.5 g, potassium carbonate 2.0 g, sodium chloride 2.5 g, potassium chloride 1.5 g, ammonium chloride 2.0 g and cobalt chloride 0.5 g were added to water 89 g to make a total amount of 100 g, and stirred. Dissolved to prepare a liquid curing agent (pH about 10).
Using the liquid curing agent, a cement cured body was obtained in the same manner as in Example 1. The uniaxial compressive strength change with time of the cured body was investigated, and the results are shown in Table 1.
[0029]
(Example 3)
734 g of sodium chloride, 1.467 kg of potassium chloride, 934 g of calcium chloride, 33 g of cobalt chloride and 167 g of citric acid are mixed with 16.832 kg of water to make a total amount of 20 kg, stirred and dissolved to form a liquid curing agent (pH about 1). ) Was prepared.
Coal ash (bulk density 1.6 g / cm 3 : moisture content 20 mass%: eluted cadmium 0.3 ppm, lead 15 ppm, mercury 0.51 ppm, total chromium 45 ppm, arsenic 45 ppm) 1000 parts by weight, Portland cement (moisture content 20 mass) %) 300 parts by weight, 6 parts by weight of the liquid curing agent, and 500 parts by weight of water were mixed evenly using a mixer to cure the cement. After 7 days and 28 days, heavy metals eluted from the cured body were analyzed. Elution cadmium was 0.001 ppm or less, lead was 0.001 ppm or less, mercury was not detected, total chromium was 0.07 ppm or less, and arsenic was 0.001 ppm or less. The results are shown in Table 2.
In the heavy metal dissolution test, a dissolution test based on the Waste Disposal Law was conducted based on the verification method according to Notification No. 13 of the Environment Agency.
[0030]
Example 4
In Example 3, 734 g of sodium chloride, 1.467 kg of potassium chloride, 934 g of calcium chloride, 33 g of cobalt chloride and 167 g of picric acid were mixed with 16.832 kg of water to make a total amount of 20 kg, stirred and dissolved to be liquid cured. An agent (pH about 1) was prepared.
Using the liquid curing agent, a cement cured body was obtained in the same manner as in Example 3, and heavy metals eluted from the cured body were analyzed. The results are shown in Table 2.
[0031]
(Comparative Example 3)
Sodium carbonate 2.5 g, potassium carbonate 2.0 g, sodium chloride 2.5 g, potassium chloride 1.5 g, ammonium chloride 2.0 g and cobalt chloride 0.5 g were added to water 89 g to make a total amount of 100 g, and stirred. Dissolved to prepare a liquid curing agent (pH about 10).
Using the liquid curing agent, coal ash was cured in the same manner as in Example 1 to obtain a cured product. An elution test for heavy metals from the cured product was performed, and the results are shown in Table 2.
[0032]
[Table 1]
Figure 0003961459
[0033]
[Table 2]
Figure 0003961459
[0034]
【The invention's effect】
Since the liquid curing agent of the present invention is in a liquid state, it deeply and quickly penetrates into the ground and industrial waste, and promotes the curing of the hydrosetting inorganic material. Not only has a remarkable effect on shortening the construction period, but also the amount of inorganic material and liquid curing agent used can be reduced. That is, the eluate such as cement is alkaline, and when the liquid curing agent of the present invention is applied, heat of neutralization is generated and curing proceeds in a short time, so that the curing time can be shortened. Further, since the surface of the object to be cured is activated, the treatment becomes uniform.
Moreover, when solidifying the industrial waste of alkaline substances, such as fly ash, the usage-amount of a liquid hardening | curing agent can be decreased and the addition and the compounding quantity of an inorganic material can be reduced.
[0035]
In addition, the strength of the reinforced ground after completion of the construction method and the compressive strength of hardened industrial waste are large, there is no whitening, the elution prevention effect of heavy metal components, etc. Also excellent.
Moreover, since the liquid hardening | curing agent of this invention does not freeze even at 20 degreeC under zero, the use in a cold district is also possible.

Claims (5)

コバルトイオンおよびアルカリ金属イオンを含有するPH1〜3の酸性水溶液であることを特徴とする加水硬化性無機材料用液状硬化剤。A liquid curing agent for a hydrocurable inorganic material, which is an acidic aqueous solution of PH1 to 3 containing cobalt ions and alkali metal ions. 液状硬化剤が有機酸を含有することを特徴とする請求項1に記載の加水硬化性無機材料用液状硬化剤。The liquid curing agent for hydrocurable inorganic materials according to claim 1, wherein the liquid curing agent contains an organic acid. 有機酸がオキシカルボン酸であることを特徴とする請求項2に記載の加水硬化性無機材料用液状硬化剤。The liquid curing agent for a hydrocurable inorganic material according to claim 2, wherein the organic acid is an oxycarboxylic acid. 請求項1〜3のいずれかに記載の液状硬化剤を加水硬化性無機材料と併用して、該無機材料を硬化することを特徴とする地盤の補強工法。A ground reinforcing method, wherein the liquid curing agent according to any one of claims 1 to 3 is used in combination with a hydrosetting inorganic material to cure the inorganic material. 請求項1〜3のいずれかに記載の液状硬化剤を加水硬化性無機材料と併用して、該無機材料を硬化することを特徴とする産業廃棄物の固化工法。A solidification method for industrial waste, wherein the liquid curing agent according to any one of claims 1 to 3 is used in combination with a hydrocurable inorganic material to cure the inorganic material.
JP2003197731A 2003-06-30 2003-07-16 Liquid curing agent and method for hydrosetting inorganic materials Expired - Fee Related JP3961459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197731A JP3961459B2 (en) 2003-06-30 2003-07-16 Liquid curing agent and method for hydrosetting inorganic materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003187406 2003-06-30
JP2003197731A JP3961459B2 (en) 2003-06-30 2003-07-16 Liquid curing agent and method for hydrosetting inorganic materials

Publications (2)

Publication Number Publication Date
JP2005067901A JP2005067901A (en) 2005-03-17
JP3961459B2 true JP3961459B2 (en) 2007-08-22

Family

ID=34425038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197731A Expired - Fee Related JP3961459B2 (en) 2003-06-30 2003-07-16 Liquid curing agent and method for hydrosetting inorganic materials

Country Status (1)

Country Link
JP (1) JP3961459B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105417981A (en) * 2015-12-11 2016-03-23 安徽中铁工程材料科技有限公司 Alkali-free liquid accelerating agent and preparing method thereof

Also Published As

Publication number Publication date
JP2005067901A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
Zhou et al. Sewage sludge ash-incorporated stabilisation/solidification for recycling and remediation of marine sediments
JP3840124B2 (en) Greening / soil stabilization material with insolubility of heavy metals, thick layer seed spraying method using the same, soil stabilization method, and contaminated soil treatment method
JP3479715B2 (en) Soil solidifying agent
JP2003117532A (en) Solidifying material and solidifying method for suppressing elution of heavy metal
JPH06167597A (en) Composition for manufacture of barrier for prevention of diffusion of contaminant and manufacture of barrier
KR0134253B1 (en) Curing method of industrial waste and soil mixture
JP3961459B2 (en) Liquid curing agent and method for hydrosetting inorganic materials
JP3274376B2 (en) Agglomerating agent for mud, solidifying agent using it
JP2002322475A (en) Neutral solidifying agent for soil
JP2583729B2 (en) Detoxification and stabilization of waste containing hazardous heavy metals
JP2002121552A (en) Solidifier for water-containing soil and process for solidifying water-containing soil using this
JP2006111489A (en) Solidification method and solidifying agent used in the same
JP4093808B2 (en) Soil solidifying agent
JP3952834B2 (en) Alkaline mud treatment method and alkaline mud modifier
JP3213054B2 (en) Treatment method for incinerated ash containing heavy metals
JP5077777B2 (en) Elution reduction material and elution reduction treatment method
JPH09155319A (en) Method for processing for making heavy metal-containing incineration ash, etc., and shredder dust pollution-free and manufacture of reuse material
JP2001038321A (en) Method for solidifying heavy metal-containing waste and solid material
JPH10212479A (en) Solidifying material for soil improvement
JP3599711B2 (en) Hexavalent chromium fixative mixture and hexavalent chromium elution prevention method
JPH0971777A (en) Process for neutralizing solidified soil resulting from solidification of sludge and soft soil
JP3005617B2 (en) Method for stable solidification of incinerated ash and solidified products
JP2003334597A (en) Surplus soil sodification treatment agent and surplus soil solidification treatment method
JPH10236856A (en) Cement additive composition, and cement solidifying method using the cement additive composition
JPH04166279A (en) Hardening agent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees