JP3959303B2 - Vehicle height detection device - Google Patents

Vehicle height detection device Download PDF

Info

Publication number
JP3959303B2
JP3959303B2 JP2002136072A JP2002136072A JP3959303B2 JP 3959303 B2 JP3959303 B2 JP 3959303B2 JP 2002136072 A JP2002136072 A JP 2002136072A JP 2002136072 A JP2002136072 A JP 2002136072A JP 3959303 B2 JP3959303 B2 JP 3959303B2
Authority
JP
Japan
Prior art keywords
winding
vehicle
wire
displacement
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002136072A
Other languages
Japanese (ja)
Other versions
JP2003329403A (en
Inventor
忠敏 後藤
宏 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amiteq Co Ltd
Original Assignee
Amiteq Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amiteq Co Ltd filed Critical Amiteq Co Ltd
Priority to JP2002136072A priority Critical patent/JP3959303B2/en
Publication of JP2003329403A publication Critical patent/JP2003329403A/en
Application granted granted Critical
Publication of JP3959303B2 publication Critical patent/JP3959303B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自動車などの車両に配置され、車体と車軸との相対的高さを検出する車高検出装置に関する。
【0002】
【従来の技術】
自動車などの車両では、車体後部の荷台やトランクなどに搭載した荷物などによって当該車体後部が後輪車軸に対して沈み込むと、車体前部が前輪車軸に対して浮き上がり、ヘッドランプの照射方向が上向きになって対向車等に眩光を与えることがある。このような問題を解消するため、従来、車体の姿勢変化に応じてヘッドランプの照射方向を補正する光軸調整装置が種々提案されている。この種の装置では、一般に、車両の後輪車軸及び前輪車軸に配置された車高センサによって該各車軸に対する車体の高さ変化を検出し、その検出信号に基づき車体前後の傾き角の変化を求め、この変化に応じてヘッドランプの照射方向を制御するように構成される。
【0003】
【発明が解決しようとする課題】
自動車などの車両にあっては、車体と前輪車軸及び後輪車軸との間にサスペンションなどが配置されるため、車高センサを各車軸に取り付けようとした場合に、センサの設置スペースや取付け位置などが制限されてしまうという問題があった。
【0004】
本発明は、上記の点に鑑みて為されたもので、小型かつシンプルな構造を持つと共に、車両に対する取付け位置の自由度を向上できるワイヤ巻取り機能付きの車高検出装置を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明に係る車高検出装置は、車両の車軸又は車体の一方に一端が結合されたワイヤと、前記車軸又は車体の他方に配置されてなり、前記ワイヤの他端を巻取り軸に結合して該ワイヤを該巻取り軸の回りに巻くことができる巻取り手段と、前記巻取り手段の前記巻取り軸に対して前記ワイヤを巻取る方向にテンションを付与し、これにより前記車軸と車体との相対的高さの変化に応じて前記ワイヤが前記巻取り軸に巻取られる又はそこから繰り出されるようにするテンション付与手段と、前記巻取り軸に出入りする前記ワイヤの変位に連動して変位する磁気応答性の変位部材、該変位部材の変位に応じたインダクタンス変化を生じるコイル手段を含んで構成される検出手段とを具備し、前記検出手段のコイル手段から前記インダクタンス変化に応じた出力信号を生じ、該出力信号に基づき前記車軸と車体との相対的高さを検出することを特徴とするものである。これによれば、前記車軸と車体との相対的高さの変化に応じて前記巻取り手段の巻取り軸に巻取られる又はそこから繰り出されて該巻取り軸に出入りするワイヤの変位を前記検出手段で検出することによって、該車軸と車体との相対的高さを検出することができる。また、車軸と車体との相対的高さを検出するにあたり、前記巻取り手段を該車軸又は車体の他方に配置することができ、よって、車両に対する取付け位置の自由度を向上できる。また、前記ワイヤと巻取り手段とテンション付与手段と検出手段とで構成できるので、小型かつシンプルな構造とすることができる。更に、検出手段は、前記巻取り軸に出入りする前記ワイヤの変位に連動して変位する磁気応答性の変位部材、該変位部材の変位に応じたインダクタンス変化を生じるコイル手段を含んで構成され、コイル手段から前記インダクタンス変化に応じた出力信号を生じる構成であるので、シンプルでありながら、アブソリュート位置検出に適した構成とすることができる。
【0006】
【発明の実施の形態】
添付図面を参照して本実施の形態を詳細に説明する。
図1は、本発明に係る車高検出装置の一実施例を示すもので、電磁誘導型の直線位置検出器を備えるワイヤ巻取り機能付きの車高検出装置Sの概略構成を示す。
図1において、車高検出装置Sは、ワイヤWと、ワイヤ巻取り用の巻取り部1と、直線位置検出器2などからなる。ワイヤWは、例えばステンレス製ワイヤであり、ピアノ線あるいは耐屈曲性SUS拠り線などが適宜用いられる。ワイヤWの一端は、追って説明するように、車両の車軸に結合される。
【0007】
巻取り部1は、筒状のケース11の一端と他端とに固定された軸保持部材12A及び12Bのほぼ中央に固定軸13を有する。固定軸13は、一端が一方の軸保持部材12Aに固定保持され、他端が他方の軸保持部材12Bに軸受B1を介して保持されてなる。ケース11内には、ワイヤWの他端(以下、ワイヤ他端という)W2を巻き取るための巻取りリール14と、ゼンマイ式板ばねからなる巻取りばね15とが配置される。巻取りリール14は、巻取り環14Aと、該巻取り環14Aの両端に固定された一対の側板14B及び14Cとからなり、該各側板14B,14Cがそれぞれ固定軸13に軸受B2,B3を介して回転自在に取り付けられる。巻取り環14Aの外周面の一端部側(図示例では、右端部側)には螺旋状の巻取り溝14A1が形成されており、該巻取り溝14A1の一部にはケース11に設けられた導入口11Aから引き込まれたワイヤ他端W2が巻回されている。ワイヤ他端W2は、巻取り環14Aを貫通し、該巻取り環14Aの内面に係止されている。巻取りばね15は、巻取り環14A内で一対の側板14B及び14C間に配置されてなり、一端15Aが固定軸13に、他端15Bが巻取り環14Aにそれぞれ取り付けられている。これによって、巻取りリール14を例えば時計方向CWにn回転させてワイヤ他端W2を巻取り環14Aに巻き取るテンション(巻取り力)を該巻取りリール14に付与する。
【0008】
直線位置検出器2は、例えば本出願人に係る特開2001−141410号公報に示された技術を用いて構成したものであり、巻取り部1の軸保持部材12B側に配置される。例えば、直線位置検出器2は、巻取りリール14の一方の側板14Cに固定取り付けされたねじ軸21と、該ねじ軸21に螺入されたリング状の磁性体コア22と、該磁性体コア22に対して磁気的に結合されるコイル部23とを具備する。ねじ軸21は、ケース11の他端側の軸保持部材12Bに軸受B1を介して回転自在に保持され、固定軸13の軸方向に延出してなる。磁性体コア22は、例えば鉄等の磁性体からなるもの、あるいは銅等の導電体からなるもの、あるいは磁性体と導電体との組み合わせからなるものなど、磁気結合係数を変化させる材質からなる。この磁性体コア22は、ねじ軸21が巻取りリール14と共に回転したときに、該ねじ軸21に対して直線移動するよう外周面に設けられた突条22Aをコイル部23の内周面に凹設した直線状のガイド溝23Aに係合させている。コイル部23は、所定の1相の交流信号によって励磁される複数のコイル区間(図示例では4つのコイル区間LA,LB,LC,LD)を磁性体コア22の移動範囲内でねじ軸21に沿って順次配列してなる。例えば、各コイル区間LA,LB,LC,LDは、巻数、コイル長等の性質が同等であるとする。
【0009】
車高検出装置Sを例えば光軸調整装置の車高センサとして用いる場合、図5に示されるように、自動車の車体Bの任意の位置に2つ配置される。一例として、2つの車高検出装置Sは、車体に設けられた光軸調整装置(図示せず)の制御部に近接して配置するとよい。これによって、各車高検出装置Sの直線位置検出器2と制御部との間の配線を短くすることができる。2つの車高検出装置Sのうち、1つの車高検出装置Sは、車体Bと前輪車軸SF1との相対的高さ位置の変位を検出するためのものであり、ワイヤWの一端W1が該車軸SF1に結合されている。残りの他の1つの車高検出装置Sは、車体Bと後輪車軸SF2との相対的高さ位置の変位を検出するためのものであり、ワイヤWの一端W1が例えばローラRなどを介して該車軸SF2に結合されている。
【0010】
このような構成の車高検出装置Sでは、巻取りリール14に巻取りばね15によって常にテンションが作用しているので、図5において、例えば車体Bの後部が後輪車軸SF2に対して沈み込み、該車体Bの前部が前輪車軸SF1に対して浮き上がると、巻取りリール14が時計方向CWに回転し、巻取り環14Aの巻取り溝14A1でワイヤ他端W2を巻き取る。また、車体Bの前部が前輪車軸SF1に対して沈み込むと、巻取りリール14が巻取りばね15のテンションに抗して反時計方向CCWに回転し、巻取り環14Aの巻取り溝14A1で巻き取られたワイヤ他端W2を繰り出す。このように、巻取りリール14がワイヤ他端W2を巻取る又は繰り出すときに回転する回転量は、車体Bと前輪車軸SF1との相対的高さの変化量(変位量)に対応している。一例として、巻取りリール14が図1に示す位置でフルに3回転して巻取り環14Aにワイヤ他端W2を巻き取ったものとすると、磁性体コア22は、同図に実線で示す所定の基準位置からねじ軸21の先端側に向けて直線移動する。これによって、磁性体コア22は、最初にコイル区間LAに侵入し、次にコイル区間LB,LCの順に侵入し、最後にコイル区間LDに侵入する。このときの磁性体コア22のコイル部23に対する侵入量(移動量)は、巻取りリール14の回転量に対応している。なお、符号22’は、磁性体コア22がコイル区間LDに侵入したときの位置を示す。
【0011】
直線位置検出器2において、各コイル区間LA,LB,LC,LD(以下、各コイル区間LA,LB,LC,LDを、単に「コイル」という)は、交流発生源から発生される所定の1相の交流信号(例えば、sinωt)によって定電圧または定電流で励磁される。各コイルに対する磁性体コア22の近接または侵入の度合いが増すほど該各コイルの自己インダクタンスが増加し、該磁性体コア22の端部が1つのコイルの一端から他端まで変位していく間で該コイルに生じる電圧(つまり両端子間電圧若しくは端子間電圧)が漸増する。複数のコイルがねじ軸21すなわち磁性体コア22の移動方向(変位方向)に沿って順次配列されてなることにより、これら各コイルに対する磁性体コア22の位置が変位するにつれ、各コイルの電圧の漸増(又は漸減)変化が順番に起こる。一例として、磁性体コア22の端部が或る1つのコイルの一端から他端まで変位する間に生じる該コイルの電圧の漸増変化は、サイン又はコサイン関数における90度の範囲の関数値変化になぞらえることができる。本例の場合、巻取りリール14がフルに3回転したときの回転角度は1080度であるので、該巻取りリール14の全回転角度(=1080度)を4等分した回転角度範囲(270度)の関数値変化を、1つのコイルのサイン又はコサイン関数における90度の範囲の関数値変化に対応付けることができる。
そこで、各コイルの出力電圧をそれぞれ適切に組み合わせてアナログ演算回路で加算及び/又は減算することにより、車体Bと前輪車軸SF1との相対的高さの変化量に応じたサイン及びコサイン関数特性を示す振幅をそれぞれ持つ2つの交流出力信号sinθsinωt及びcosθsinωtを生成することができる。こうして生成されたサイン及びコサイン関数特性の交流出力信号における振幅関数sinθ及びcosθの位相成分θを、位相検出回路(若しくは振幅位相変換手段)で計測することで、該変位量をアブソリュートで検出することができる。すなわち、各交流出力信号の振幅成分であるサイン及びコサイン関数における90度の範囲の位相角θが、1個のコイルの長さKに対応している。従って、4Kの長さの有効検出範囲は、位相角θの0度から360度までの範囲に対応している。よって、この位相角θを検出することにより、4Kの長さの範囲における該変位量をアブソリュートで検出することができる。なお、位相検出回路としては、例えば本出願人に係る特開平9−126809号公報に示された技術を用いて構成するとよい。
【0012】
このように、車高検出装置Sを車両の前輪車軸SF1と後輪車軸SF2に対応してそれぞれ設け、前輪車軸SF1と車体Bとの相対的高さを検出すると共に、後輪車軸SF2と車体Bとの相対的高さを検出し、検出した両相対的高さの差に基づき前記車両の路面に対する前後方向の傾きを検出することができる。
【0013】
図1に示される車高検出装置Sでは、直線位置検出器2において、巻取りリール14の回転変位を直線変位に変換する変換機構として、ねじ軸21に磁性体コア22を螺入してなるねじ機構を採用したが、ラック・ピニオン機構を適宜採用してよい。図2は、そのようなラック・ピニオン機構を用いた直線位置検出器2を備えるワイヤ巻取り機能付きの車高検出装置の概略構成を示す。
なお、図2に示す車高検出装置Sでは、図1に示す車高検出装置Sの部材と共通する部材には同一符号を付して、その説明を援用する。図3及び図4に示される車高検出装置も同様とする。
【0014】
図2に示される車高検出装置Sでは、巻取り部1において、固定軸13の両端がケース11の各軸保持部材12A及び12Bのほぼ中央に固定保持されてなる。巻取りばね15が巻取りリール14に時計方向CWにn回転させるようなテンション付与することは前述の装置と同様である。直線位置検出器2は、ケース11の内周面に設けられた直線状のガイド溝11B内に移動自在に配置されたスライドプレート16と、該スライドプレート16の後端に設けられた棒状の磁性体コア26と、該磁性体コア26を介して磁気的に結合されるコイル部23とを具備する。スライドプレート16は、先端下面に突設された複数の突起(図示例では2つの突起)16Aが巻取り環14Aの他端側に設けられた螺旋溝14A2に係合している。したがって、スライドプレート16がラック・ピニオン機構のラックに相当し、巻取り環14Aが同機構のピニオンに相当する。コイル部23は、所定の1相の交流信号によって励磁される複数のコイル区間(図示例では4つのコイル区間LA,LB,LC,LD)を磁性体コア26に沿って順次配列してなる。
【0015】
本例に示される車高検出装置Sでは、一例として、巻取りリール14が図2に示す位置でフルに3回転して巻取り環14Aにワイヤ他端W2を巻き取ったものとすると、磁性体コア26は、図2に実線で示す所定の基準位置から巻取り環14Aのガイド溝11Bに沿ってコイル部23側に向けて直線移動する。これによって、磁性体コア26は、最初にコイル区間LAに侵入し、次にコイル区間LB,LCの順に侵入し、最後にコイル区間LDに侵入する。なお、符号26’は、磁性体コア26がコイル区間LDに侵入したときの位置を示す。
直線位置検出器2において、各コイルに対する磁性体コア26の近接または侵入の度合いが増すほど該各コイルの自己インダクタンスが増加し、該コアが1つのコイルの一端から他端まで変位する間で該コイルの両端間電圧が漸増する。このときの各コイルの出力電圧をそれぞれ適切に組み合わせてアナログ演算回路で加算及び/又は減算することにより、前述の変位量に応じたサイン及びコサイン関数特性を示す振幅をそれぞれ持つ2つの交流出力信号sinθsinωt及びcosθsinωtを生成することができる。それらのサイン及びコサイン関数特性の交流出力信号における振幅関数sinθ及びcosθの位相成分θを、位相検出回路で計測することで、該変位量をアブソリュートで検出することができる。
【0016】
図3は、電磁誘導方式の回転位置検出センサを具備するワイヤ巻取り機能付きの車高検出装置の一例を示すもので、(A)は本例に係る車高検出装置の概略構成を示す断面図、(B)は回転位置検出センサのコイルと磁気応答部材との物理的配置関係の一例を示す正面略図である。
【0017】
図3(A)に示される車高検出装置Sでは、巻き上げ部1において、固定軸13は、一端が一方の軸保持部材12Aに固定保持され、他端が他方の軸保持部材12Bに軸受B1を介して保持されてなる。巻取りばね15が巻取りリール14に時計方向CWにn回転させるようなテンションを付与することは前述の装置と同様である。
回転位置検出センサ3は、例えば本出願人に係る特開2001−235307号公報に示された技術を用いて構成したものであり、ケース11内において、軸保持部材12Bと巻取りリール14の側板14Cとの間に、ロータ部31と、ステータ部32などを具備する。ロータ部31において、第1の減速ギア31Aが巻き上げローラ13の側板14Cに固定され、該減速ギア31Aと噛み合う第2の減速ギア31Bが回転軸31Cに固定保持されている。回転軸31Cは、軸保持部材12Bに軸受B4を介して回転自在に保持されている。減速ギア31A及び31Bのギアピッチは、巻取りリール14がn回転する回転数を1回転に減速するように設定される。回転軸31Cには、所定形状の、例えば偏心円板状の磁気応答部材31Dが取り付けられる。磁気応答部材31Dの材質は前述の磁性体コア22と同様な材質であってよい。ロータ部31に対してスラスト方向に向き合うような形でステータ部32が配置される。
ステータ部32は、図3(B)に示されるように、4つのコイル32A,32B,32C,32Dを含む。各コイル32A,…32Dは、同図(A)に示すステータ基板32P上において所定間隔で離隔して配置されており、この間隔は例えば回転軸31Bに関して90度をなすような間隔である。各コイル32A,…32Dにおいて、コイル32A及び該コイル32Aと180度反対側の角度位置に配置されたコイル32Cは、サイン関数出力用のコイルであり、コイル32B及び該コイル32Bと180度反対側の角度位置に配置されたコイル32Dは、コサイン関数出力用のコイルである。各コイル32A,…32Dは、それぞれ鉄心(磁性体コア)33A,33B,33C,33Dに巻回されており、コイル内を通る磁束が回転軸31Cの軸方向を指向する。各コイル32A,…32Dの鉄心33A,…33Dの端面と、ロータ部31の磁気応答部材31Dの表面との間に空隙が形成され、磁気応答部材31Dはステータ部32に対して非接触で回転する。この空隙の距離は、一定に保たれるように、ロータ部31とステータ部32の相対的配置が定められる。
【0018】
本例に示される車高検出装置Sでは、一例として、巻取りリール14が図3に示す位置で時計方向CWにフルに3回転してワイヤ他端W2を巻取り環14Aに巻き取ったものとすると、該巻取りリール14の回転数(=3回転)がロータ部31の減速ギア31A及び31Bによって1回転に減速される。これによって、回転軸31Cと共に磁気応答部材31Dがステータ部32に対して非接触で1回転する。このときの回転軸31Cの回転角度は車体Bと前輪車軸SF1との相対的高さの変化量に対応している。
【0019】
回転位置検出センサ3において、各コイル32A,…32Dは、交流発生源から発生される所定の1相の交流信号(例えば、sinωt)によって定電圧または定電流で励磁される。磁気応答部材31Dがステータ部32に対して非接触で1回転するとき、ロータ部31の磁気応答部材31Dの所定の形状、例えば偏心円板形状、の故に、空隙を介して磁気応答部材31Dと向き合うコイル鉄心33A,…33Dの端面の面積が、回転位置に応じて、変化する。磁気応答部材31Dが1回転するときのコイル鉄心33A,…33Dの端面との対向空隙面積の変化によって、該鉄心33A,…33Dを通ってコイル32A,…32Dを貫く磁束量が変化し、もって、コイル32A,…32Dの自己インダクタンスが変化する。このインダクタンスの変化は、各コイル32A,…32Dのインピーダンス変化でもある。よって、各コイル32A,…32Dの端子間電圧は、回転軸31Cの回転角度θに対応するそれぞれのインピーダンスに応じた大きさを示す。これにより、1つのコイル対における各コイルのインピーダンスが差動的に変化し、よって各コイルの端子間電圧の増減変化が差動的な特性を示すものとなる。そこで、各コイル対毎に各コイルの端子間電圧の差をそれぞれ取り出し、アナログ演算回路でサイン及びコサイン関数特性を示す振幅をそれぞれ持つ2つの交流出力信号sinθcosωt及びcosθsinωtを各コイル対毎に生成する。そして、アナログ演算回路から出力されたサイン及びコサイン関数特性の交流出力信号sinθcosωt及びcosθsinωtにおける振幅関数sinθ及びcosθの位相成分θを、位相検出回路(若しくは振幅位相変換手段)で計測することで、回転軸31Cの回転位置をアブソリュートで検出することができる。
【0020】
なお、ステータ基板32Pには、交流発生源、演算回路及び位相検出回路などを適宜搭載してよい。交流発生源と位相検出回路をディジタル回路で構成する場合、LSI化できるので、小型となり、これらの回路をステータ基板32Pに一体的に搭載することができる。この場合、ステータ基板32Pに接続された配線Cは、軸保持部材12Bを介して外部に引き出され、車軸調整装置の制御部に接続される。
【0021】
図3では、回転軸31Cの1回転の回転範囲内における回転角度を電磁誘導型の回転位置検出センサ3で検出する車高検出装置Sを示したが、この回転位置検出センサ3に代えて、巻取りリール14の回転数を多回転センサで検出するようにしてもよい。図4は、多回転センサ4を備えるワイヤ巻き上げ機能付きの車高検出装置の概略構成の一例を示す。
【0022】
図4に示される車高検出装置Sでは、巻き上げ部1において、固定軸13は、一端が一方の軸保持部材12Aに固定保持され、他端が他方の軸保持部材12Bに軸受B1を介して保持されてなる。巻取りばね15が巻取りリール14に時計方向CWにn回転させるようなテンションを付与することは前述の装置と同様である。巻取りリール14の側板14Cには、回転伝達部材5が固定されている。回転伝達部材5は、巻取り部1の軸保持部材14Bに軸受B5を介して回転自在に保持されており、該軸保持部材14Bを貫通して外部に延出する端部に多回転センサ4のセンサ軸4Aが連結される。多回転センサ4としては、例えば光学式若しくは磁気式ロータリエンコーダなどを適宜採用することができる。
【0023】
本例に示される車高検出装置Sでは、一例として、巻取りリール14が図4に示す位置で時計方向CWにフルに3回転して巻取り環14Aにワイヤ他端W2を巻き取ったものとすると、該巻取りリール14と共に回転する回転伝達部材5の回転数(=3回転)を多回転センサ4で検出する。このときの巻取りリール14の回転数は車体Bと前輪車軸SF1との相対的高さの変化量に対応している。
【0024】
本実施の形態では、巻取り部1とこれに関連する直線位置検出器2及び回転位置検出センサ3,4を車体Bに配置した車高検出装置を示したが、これに限られるものでなく、該巻取り部1とこれに関連する直線位置検出器2及び回転位置検出センサ3,4を車体B及び各車軸SF1,SF2に配置してもよい。また、巻取りばね15に代えて、任意のモータなどを適宜用いることにより、巻取りリール14の巻取り環14Aに対してワイヤWを巻取る方向にテンションを付与するようにしてよい。また、巻取りリール14の回転量に基づき該巻取りリール14の巻取り環14Aに出入りするワイヤWの変位を検出しているが、これに限られるものではなく、例えば本出願人に係る特開平10−153402号公報に示される技術を用いてワイヤの変位を検出するようにしてよい。一例として、巻取り部1の外部において、ワイヤに磁気応答特性を持つ磁気応答部材を所定間隔で配設し、該磁気応答部材を含むワイヤ部分の周囲に巻線部(コイル部)を配置して、該巻線部に対するワイヤ部分の相対的な変位を検出することによって、車体と車軸との相対的高さの変化を検出することができる。また、車高検出装置を車両の前輪車軸又は後輪車軸の両端にそれぞれ設け、該車軸の一端側で当該車軸と車体との相対的高さを検出すると共に、該車軸の他端側で当該車軸と車体との相対的高さを検出し、検出した両相対的高さの差に基づき車両の路面に対する左右方向の傾きを検出するようにしてもよい。
【0025】
【発明の効果】
以上説明したように、本発明に係る車高検出装置によれば、小型かつシンプルな構造でありながら、車両に対する取付け位置の自由度を向上できる、という優れた効果を奏する。
【図面の簡単な説明】
【図1】 本発明に係る車高検出装置の一実施例を示すもので、電磁誘導型の直線位置検出器を備えるワイヤ巻き上げ機能付きの車高検出装置の一例を示す概略構成図。
【図2】 電磁誘導型の直線位置検出器を備えるワイヤ巻き上げ機能付きの車高検出装置の他の例を示す概略構成図。
【図3】 (A)は電磁誘導型の回転位置検出センサを備えるワイヤ巻き上げ機能付きの車高検出装置の一例を示す概略構成断面図、(B)は回転位置検出センサのコイルと磁気応答部材との物理的配置関係の一例を示す正面略図。
【図4】 多回転検出センサを備えるワイヤ巻き上げ機能付きの車高検出装置の一例を示す概略構成図、
【図5】 本発明に係る車高検出装置を自動車の車体に配置した配置例を示す斜視図。
【符号の説明】
1 巻取り部
2 直線位置検出器
3 回転位置検出センサ
4 多回転センサ
14 巻取りリール
15 巻取りばね
B 車体
SF1 前輪車軸
SF2 後輪車軸
W ワイヤ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle height detection device that is disposed in a vehicle such as an automobile and detects a relative height between a vehicle body and an axle.
[0002]
[Prior art]
In vehicles such as automobiles, when the rear part of the vehicle body sinks with respect to the rear wheel axle due to luggage mounted on the rear loading platform or trunk of the vehicle body, the front part of the vehicle body rises with respect to the front wheel axle, and the irradiation direction of the headlamps May turn upward and give glare to oncoming vehicles. In order to solve such a problem, conventionally, various optical axis adjusting devices for correcting the irradiation direction of the headlamp according to the change in the posture of the vehicle body have been proposed. In this type of device, generally, a change in the height of the vehicle body relative to each axle is detected by vehicle height sensors arranged on the rear wheel axle and the front wheel axle of the vehicle, and a change in the tilt angle of the front and rear of the vehicle body is detected based on the detection signal. It is determined and configured to control the irradiation direction of the headlamp according to this change.
[0003]
[Problems to be solved by the invention]
In vehicles such as automobiles, suspensions are arranged between the vehicle body and the front and rear axles, so when installing a vehicle height sensor on each axle, the sensor installation space and location There was a problem that was limited.
[0004]
The present invention has been made in view of the above points, and intends to provide a vehicle height detection device with a wire winding function that has a small and simple structure and can improve the degree of freedom of the mounting position with respect to the vehicle. Is.
[0005]
[Means for Solving the Problems]
  A vehicle height detection device according to the present invention includes a wire having one end coupled to one of a vehicle axle and a vehicle body and the other of the axle or vehicle body, and the other end of the wire is coupled to a winding shaft. Winding means capable of winding the wire around the winding shaft, and tension is applied in the winding direction to the winding shaft of the winding means, whereby the axle and the vehicle body And a tension applying means for allowing the wire to be wound on or taken out of the winding shaft in accordance with a change in relative height of the wire, and displacement of the wire entering and exiting the winding shaftA magnetically responsive displacement member that is displaced in conjunction with the coil member, and coil means that generates an inductance change according to the displacement of the displacement member.Detecting means, and the detecting meansAn output signal corresponding to the inductance change is generated from the coil means, and the output signalThe relative height between the axle and the vehicle body is detected based on the above. According to this, in accordance with a change in the relative height between the axle and the vehicle body, the displacement of the wire that is wound on or taken out from the winding shaft of the winding means and moves in and out of the winding shaft is By detecting by the detection means, the relative height between the axle and the vehicle body can be detected. Further, when detecting the relative height between the axle and the vehicle body, the winding means can be arranged on the other side of the axle or the vehicle body, so that the degree of freedom of the mounting position with respect to the vehicle can be improved. In addition, since the wire, the winding means, the tension applying means, and the detecting means can be used, a small and simple structure can be achieved.Further, the detection means includes a magnetically responsive displacement member that is displaced in conjunction with the displacement of the wire entering and exiting the winding shaft, and a coil means that generates an inductance change according to the displacement of the displacement member, Since it is the structure which produces the output signal according to the said inductance change from a coil means, it can be set as the structure suitable for absolute position detection although it is simple.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present embodiment will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an embodiment of a vehicle height detection device according to the present invention, and shows a schematic configuration of a vehicle height detection device S having a wire winding function provided with an electromagnetic induction type linear position detector.
In FIG. 1, the vehicle height detection device S includes a wire W, a winding unit 1 for winding a wire, a linear position detector 2, and the like. The wire W is, for example, a stainless steel wire, and a piano wire or a flexible SUS-based wire is used as appropriate. One end of the wire W is coupled to the axle of the vehicle as will be described later.
[0007]
The winding unit 1 has a fixed shaft 13 at substantially the center of shaft holding members 12A and 12B fixed to one end and the other end of a cylindrical case 11. One end of the fixed shaft 13 is fixedly held by one shaft holding member 12A, and the other end is held by the other shaft holding member 12B via a bearing B1. In the case 11, a take-up reel 14 for taking up the other end (hereinafter referred to as the other end of the wire) W2 of the wire W and a take-up spring 15 made of a spring-type plate spring are arranged. The take-up reel 14 includes a take-up ring 14A and a pair of side plates 14B and 14C fixed to both ends of the take-up ring 14A. The side plates 14B and 14C respectively have bearings B2 and B3 on a fixed shaft 13. It can be rotatably mounted via. A spiral winding groove 14A1 is formed on one end side (in the illustrated example, the right end side) of the outer circumferential surface of the winding ring 14A. A part of the winding groove 14A1 is provided in the case 11. The other end W2 of the wire drawn from the introduction port 11A is wound. The other end W2 of the wire passes through the winding ring 14A and is locked to the inner surface of the winding ring 14A. The winding spring 15 is disposed between the pair of side plates 14B and 14C in the winding ring 14A, and one end 15A is attached to the fixed shaft 13 and the other end 15B is attached to the winding ring 14A. As a result, for example, the winding reel 14 is rotated n times clockwise CW, and a tension (winding force) for winding the wire other end W2 around the winding ring 14A is applied to the winding reel 14.
[0008]
The linear position detector 2 is configured using, for example, a technique disclosed in Japanese Patent Application Laid-Open No. 2001-141410 related to the present applicant, and is disposed on the shaft holding member 12B side of the winding unit 1. For example, the linear position detector 2 includes a screw shaft 21 fixedly attached to one side plate 14C of the take-up reel 14, a ring-shaped magnetic core 22 screwed into the screw shaft 21, and the magnetic core. And a coil portion 23 that is magnetically coupled to 22. The screw shaft 21 is rotatably held by a shaft holding member 12B on the other end side of the case 11 via a bearing B1, and extends in the axial direction of the fixed shaft 13. The magnetic core 22 is made of a material that changes the magnetic coupling coefficient, such as a magnetic material such as iron, a conductive material such as copper, or a combination of a magnetic material and a conductive material. The magnetic core 22 has, on the inner peripheral surface of the coil portion 23, a ridge 22 </ b> A provided on the outer peripheral surface so as to move linearly relative to the screw shaft 21 when the screw shaft 21 rotates together with the take-up reel 14. The groove is engaged with a concave linear guide groove 23A. The coil unit 23 is configured so that a plurality of coil sections (four coil sections LA, LB, LC, and LD in the illustrated example) excited by a predetermined one-phase AC signal are connected to the screw shaft 21 within the moving range of the magnetic core 22. It is arranged sequentially. For example, it is assumed that the coil sections LA, LB, LC, and LD have the same properties such as the number of turns and the coil length.
[0009]
When the vehicle height detection device S is used as, for example, a vehicle height sensor of an optical axis adjustment device, as shown in FIG. As an example, the two vehicle height detection devices S may be disposed close to a control unit of an optical axis adjustment device (not shown) provided on the vehicle body. Thereby, the wiring between the linear position detector 2 of each vehicle height detection device S and the control unit can be shortened. Of the two vehicle height detection devices S, one vehicle height detection device S is for detecting the displacement of the relative height position between the vehicle body B and the front wheel axle SF1, and one end W1 of the wire W is It is coupled to the axle SF1. The other remaining vehicle height detection device S is for detecting the displacement of the relative height position between the vehicle body B and the rear wheel axle SF2, and one end W1 of the wire W is connected via a roller R, for example. Are coupled to the axle SF2.
[0010]
In the vehicle height detection device S having such a configuration, since the tension is always applied to the take-up reel 14 by the take-up spring 15, the rear part of the vehicle body B sinks with respect to the rear wheel axle SF2 in FIG. When the front portion of the vehicle body B is lifted with respect to the front wheel axle SF1, the take-up reel 14 rotates in the clockwise direction CW, and the other end W2 of the wire is taken up by the take-up groove 14A1 of the take-up ring 14A. When the front portion of the vehicle body B sinks with respect to the front wheel axle SF1, the take-up reel 14 rotates counterclockwise CCW against the tension of the take-up spring 15 and the take-up groove 14A1 of the take-up ring 14A. The other end W2 of the wire that has been wound up is fed out. Thus, the amount of rotation that the winding reel 14 rotates when winding or unwinding the wire other end W2 corresponds to the amount of change (displacement) in the relative height between the vehicle body B and the front wheel axle SF1. . As an example, when the take-up reel 14 is rotated three times at the position shown in FIG. 1 and the other wire W2 is wound around the take-up ring 14A, the magnetic core 22 is a predetermined line indicated by a solid line in FIG. Is moved linearly from the reference position toward the tip side of the screw shaft 21. As a result, the magnetic core 22 first enters the coil section LA, then enters the coil sections LB and LC in this order, and finally enters the coil section LD. The amount of penetration (movement amount) of the magnetic core 22 into the coil portion 23 at this time corresponds to the amount of rotation of the take-up reel 14. Reference numeral 22 ′ indicates a position when the magnetic core 22 enters the coil section LD.
[0011]
In the linear position detector 2, each coil section LA, LB, LC, LD (hereinafter, each coil section LA, LB, LC, LD is simply referred to as “coil”) is a predetermined 1 generated from an AC generation source. It is excited with a constant voltage or a constant current by a phase AC signal (for example, sin ωt). As the degree of proximity or penetration of the magnetic core 22 with respect to each coil increases, the self-inductance of each coil increases, and the end of the magnetic core 22 is displaced from one end to the other end of one coil. The voltage generated in the coil (that is, the voltage between both terminals or the voltage between terminals) gradually increases. The plurality of coils are sequentially arranged along the moving direction (displacement direction) of the screw shaft 21, that is, the magnetic core 22, so that the position of the magnetic core 22 with respect to each of these coils is displaced, so that the voltage of each coil is changed. Increasing (or decreasing) changes occur sequentially. As an example, a gradual change in the voltage of the coil that occurs while the end of the magnetic core 22 is displaced from one end of the coil to the other end is a function value change in the range of 90 degrees in the sine or cosine function. Can be compared. In the case of this example, the rotation angle when the take-up reel 14 makes three full rotations is 1080 degrees, so the rotation angle range (270) is obtained by dividing the total rotation angle (= 1080 degrees) of the take-up reel 14 into four equal parts. Function value change in degrees) can correspond to a function value change in the range of 90 degrees in the sine or cosine function of one coil.
Therefore, the sine and cosine function characteristics corresponding to the amount of change in the relative height between the vehicle body B and the front wheel axle SF1 are obtained by appropriately combining the output voltages of the coils and adding and / or subtracting them with an analog arithmetic circuit. Two AC output signals sin θ sin ωt and cos θ sin ωt each having the indicated amplitude can be generated. By measuring the phase component θ of the amplitude functions sin θ and cos θ in the AC output signal of the sine and cosine function characteristics generated in this way by a phase detection circuit (or amplitude phase conversion means), the displacement amount is detected in absolute. Can do. That is, the phase angle θ in the range of 90 degrees in the sine and cosine functions, which are the amplitude components of each AC output signal, corresponds to the length K of one coil. Therefore, the effective detection range having a length of 4K corresponds to a range from 0 degree to 360 degrees of the phase angle θ. Therefore, by detecting this phase angle θ, the displacement amount in the 4K length range can be detected in absolute. For example, the phase detection circuit may be configured using the technique disclosed in Japanese Patent Laid-Open No. 9-126809 related to the present applicant.
[0012]
Thus, the vehicle height detection device S is provided corresponding to the front wheel axle SF1 and the rear wheel axle SF2 of the vehicle, respectively, and detects the relative height between the front wheel axle SF1 and the vehicle body B, and the rear wheel axle SF2 and the vehicle body. The relative height with respect to B can be detected, and the inclination in the front-rear direction with respect to the road surface of the vehicle can be detected based on the difference between the detected relative heights.
[0013]
In the vehicle height detection device S shown in FIG. 1, in the linear position detector 2, a magnetic core 22 is screwed into a screw shaft 21 as a conversion mechanism that converts rotational displacement of the take-up reel 14 into linear displacement. Although a screw mechanism is employed, a rack and pinion mechanism may be employed as appropriate. FIG. 2 shows a schematic configuration of a vehicle height detection device with a wire winding function that includes a linear position detector 2 using such a rack and pinion mechanism.
In addition, in the vehicle height detection apparatus S shown in FIG. 2, the same code | symbol is attached | subjected to the member which is common in the member of the vehicle height detection apparatus S shown in FIG. 1, and the description is used. The same applies to the vehicle height detection apparatus shown in FIGS.
[0014]
In the vehicle height detection device S shown in FIG. 2, both ends of the fixed shaft 13 are fixed and held at substantially the center of the shaft holding members 12 </ b> A and 12 </ b> B of the case 11 in the winding unit 1. The tension is applied to the take-up reel 14 so that the take-up reel 15 is rotated n times in the clockwise direction CW as in the above-described apparatus. The linear position detector 2 includes a slide plate 16 that is movably disposed in a linear guide groove 11B provided on the inner peripheral surface of the case 11, and a rod-like magnetic member provided at the rear end of the slide plate 16. A body core 26 and a coil portion 23 that is magnetically coupled via the magnetic core 26. In the slide plate 16, a plurality of protrusions (two protrusions in the illustrated example) 16A projecting from the lower surface of the front end are engaged with a spiral groove 14A2 provided on the other end side of the winding ring 14A. Therefore, the slide plate 16 corresponds to the rack of the rack and pinion mechanism, and the winding ring 14A corresponds to the pinion of the mechanism. The coil unit 23 is formed by sequentially arranging a plurality of coil sections (four coil sections LA, LB, LC, and LD in the illustrated example) excited by a predetermined one-phase AC signal along the magnetic core 26.
[0015]
In the vehicle height detection device S shown in this example, as an example, if the take-up reel 14 is rotated three times at the position shown in FIG. 2 and the other wire W2 is wound around the take-up ring 14A, The body core 26 linearly moves from the predetermined reference position shown by the solid line in FIG. 2 toward the coil portion 23 side along the guide groove 11B of the winding ring 14A. As a result, the magnetic core 26 first enters the coil section LA, then enters the coil sections LB and LC in this order, and finally enters the coil section LD. Reference numeral 26 ′ indicates a position when the magnetic core 26 enters the coil section LD.
In the linear position detector 2, the self-inductance of each coil increases as the degree of proximity or penetration of the magnetic core 26 with respect to each coil increases, and the core is displaced while the core is displaced from one end to the other end. The voltage across the coil gradually increases. Two AC output signals each having an amplitude indicating a sine and cosine function characteristic according to the amount of displacement described above by adding and / or subtracting the output voltages of the coils at this time in an appropriate combination with an analog arithmetic circuit. sin θ sin ωt and cos θ sin ωt can be generated. By measuring the phase component θ of the amplitude functions sin θ and cos θ in the AC output signal of the sine and cosine function characteristics with the phase detection circuit, the displacement amount can be detected in absolute.
[0016]
FIG. 3 shows an example of a vehicle height detection device with a wire winding function equipped with an electromagnetic induction type rotational position detection sensor. FIG. 3A is a cross-sectional view showing a schematic configuration of the vehicle height detection device according to this example. FIG. 4B is a schematic front view showing an example of a physical arrangement relationship between the coil of the rotational position detection sensor and the magnetic response member.
[0017]
In the vehicle height detection device S shown in FIG. 3A, in the winding unit 1, the fixed shaft 13 is fixedly held at one end by one shaft holding member 12A, and the other end at the other shaft holding member 12B by a bearing B1. It is held through. It is the same as the above-described device that the take-up spring 15 applies tension to the take-up reel 14 so as to rotate n in the clockwise direction CW.
The rotational position detection sensor 3 is configured by using, for example, a technique disclosed in Japanese Patent Application Laid-Open No. 2001-235307 related to the present applicant, and in the case 11, the side plate of the shaft holding member 12 </ b> B and the take-up reel 14. The rotor part 31, the stator part 32, etc. are comprised between 14C. In the rotor portion 31, the first reduction gear 31A is fixed to the side plate 14C of the winding roller 13, and the second reduction gear 31B that meshes with the reduction gear 31A is fixedly held on the rotating shaft 31C. The rotating shaft 31C is rotatably held by the shaft holding member 12B via a bearing B4. The gear pitches of the reduction gears 31A and 31B are set so as to reduce the number of rotations of the take-up reel 14 n times to one rotation. A magnetic response member 31D having a predetermined shape, for example, an eccentric disk shape, is attached to the rotation shaft 31C. The material of the magnetic response member 31D may be the same material as that of the magnetic core 22 described above. The stator portion 32 is arranged in such a manner as to face the rotor portion 31 in the thrust direction.
As shown in FIG. 3B, the stator portion 32 includes four coils 32A, 32B, 32C, and 32D. The coils 32A,... 32D are spaced apart from each other at a predetermined interval on the stator substrate 32P shown in FIG. (A), and this interval is, for example, an interval of 90 degrees with respect to the rotating shaft 31B. In each of the coils 32A,... 32D, the coil 32A and the coil 32C arranged at an angular position opposite to the coil 32A by 180 degrees are coils for sine function output, and are 180 degrees opposite to the coil 32B and the coil 32B. The coil 32D disposed at the angular position is a coil for outputting a cosine function. Each of the coils 32A,... 32D is wound around iron cores (magnetic cores) 33A, 33B, 33C, 33D, and the magnetic flux passing through the coils is directed in the axial direction of the rotating shaft 31C. A gap is formed between the end surfaces of the iron cores 33A, ... 33D of the coils 32A, ... 32D and the surface of the magnetic response member 31D of the rotor part 31, and the magnetic response member 31D rotates without contact with the stator part 32. To do. The relative arrangement of the rotor portion 31 and the stator portion 32 is determined so that the gap distance is kept constant.
[0018]
In the vehicle height detection device S shown in this example, as an example, the take-up reel 14 is rotated three times in the clockwise direction CW at the position shown in FIG. 3 and the other end W2 is wound around the take-up ring 14A. Then, the rotation speed (= 3 rotations) of the take-up reel 14 is reduced to one rotation by the reduction gears 31A and 31B of the rotor portion 31. As a result, the magnetic response member 31D rotates together with the rotating shaft 31C one rotation without contact with the stator portion 32. The rotation angle of the rotation shaft 31C at this time corresponds to the amount of change in the relative height between the vehicle body B and the front wheel axle SF1.
[0019]
In the rotational position detection sensor 3, each of the coils 32A,... 32D is excited with a constant voltage or a constant current by a predetermined one-phase AC signal (for example, sin ωt) generated from an AC generation source. When the magnetic response member 31D makes one rotation without contact with the stator portion 32, because of a predetermined shape of the magnetic response member 31D of the rotor portion 31, for example, an eccentric disk shape, The areas of the end faces of the facing coil cores 33A,... 33D vary depending on the rotational position. The amount of magnetic flux passing through the coils 32A,... 32D through the iron cores 33A,... 33D is changed by the change in the facing gap area with the end surfaces of the coil cores 33A,. The self-inductance of the coils 32A, ... 32D changes. This change in inductance is also a change in impedance of each coil 32A,... 32D. Therefore, the voltage between the terminals of each of the coils 32A,... 32D shows a magnitude corresponding to each impedance corresponding to the rotation angle θ of the rotating shaft 31C. As a result, the impedance of each coil in one coil pair changes differentially, so that the increase / decrease change in the voltage between terminals of each coil exhibits differential characteristics. Therefore, the difference in voltage between terminals of each coil is extracted for each coil pair, and two AC output signals sin θ cos ωt and cos θ sin ωt having amplitudes indicating sine and cosine function characteristics are generated by the analog arithmetic circuit for each coil pair. . Then, the phase components θ of the amplitude functions sin θ and cos θ in the AC output signals sin θ cos ωt and cos θ sin ωt output from the analog arithmetic circuit are measured by the phase detection circuit (or amplitude phase conversion means). The rotational position of the shaft 31C can be detected by absolute.
[0020]
Note that an AC source, an arithmetic circuit, a phase detection circuit, and the like may be appropriately mounted on the stator substrate 32P. When the AC generation source and the phase detection circuit are constituted by digital circuits, they can be made into LSIs, so that the size can be reduced, and these circuits can be integrally mounted on the stator substrate 32P. In this case, the wiring C connected to the stator substrate 32P is drawn to the outside via the shaft holding member 12B and connected to the control unit of the axle adjusting device.
[0021]
In FIG. 3, the vehicle height detection device S that detects the rotation angle within the rotation range of the rotation shaft 31 </ b> C by the electromagnetic induction type rotation position detection sensor 3 is shown, but instead of this rotation position detection sensor 3, The number of rotations of the take-up reel 14 may be detected by a multi-rotation sensor. FIG. 4 shows an example of a schematic configuration of a vehicle height detection device with a wire winding function that includes the multi-rotation sensor 4.
[0022]
In the vehicle height detection device S shown in FIG. 4, in the winding unit 1, one end of the fixed shaft 13 is fixedly held by one shaft holding member 12 </ b> A and the other end is fixed to the other shaft holding member 12 </ b> B via a bearing B <b> 1. It will be held. It is the same as the above-described device that the take-up spring 15 applies tension to the take-up reel 14 so as to rotate n in the clockwise direction CW. The rotation transmission member 5 is fixed to the side plate 14 </ b> C of the take-up reel 14. The rotation transmitting member 5 is rotatably held by a shaft holding member 14B of the winding unit 1 via a bearing B5, and the multi-rotation sensor 4 is provided at an end portion that extends through the shaft holding member 14B to the outside. The sensor shaft 4A is connected. As the multi-rotation sensor 4, for example, an optical or magnetic rotary encoder can be appropriately employed.
[0023]
In the vehicle height detection device S shown in this example, as an example, the take-up reel 14 is rotated three times in the clockwise direction CW at the position shown in FIG. 4 and the other end W2 is taken up on the take-up ring 14A. Then, the number of rotations (= 3 rotations) of the rotation transmitting member 5 that rotates together with the take-up reel 14 is detected by the multi-rotation sensor 4. The rotational speed of the take-up reel 14 at this time corresponds to the amount of change in the relative height between the vehicle body B and the front wheel axle SF1.
[0024]
In the present embodiment, the vehicle height detection device in which the winding unit 1 and the linear position detector 2 and the rotational position detection sensors 3 and 4 related to the winding unit 1 are arranged in the vehicle body B is shown, but the present invention is not limited to this. The winding unit 1, the linear position detector 2 and the rotational position detection sensors 3 and 4 associated therewith may be arranged on the vehicle body B and the axles SF1 and SF2. Further, instead of the take-up spring 15, an arbitrary motor or the like may be used as appropriate so that tension is applied to the take-up ring 14A of the take-up reel 14 in the direction in which the wire W is taken up. Further, the displacement of the wire W entering and exiting the take-up ring 14A of the take-up reel 14 is detected based on the amount of rotation of the take-up reel 14. However, the present invention is not limited to this. You may make it detect the displacement of a wire using the technique shown by Kaihei 10-153402. As an example, on the outside of the winding unit 1, magnetic response members having magnetic response characteristics are arranged at predetermined intervals on the wire, and a winding part (coil part) is arranged around the wire part including the magnetic response member. By detecting the relative displacement of the wire portion with respect to the winding portion, it is possible to detect a change in the relative height between the vehicle body and the axle. Further, vehicle height detection devices are provided at both ends of the front wheel axle or the rear wheel axle of the vehicle, respectively, and the relative height between the axle and the vehicle body is detected on one end side of the axle, and the other end side of the axle is The relative height between the axle and the vehicle body may be detected, and the left-right inclination with respect to the road surface of the vehicle may be detected based on the difference between the detected relative heights.
[0025]
【The invention's effect】
As described above, according to the vehicle height detection device of the present invention, there is an excellent effect that the degree of freedom of the mounting position with respect to the vehicle can be improved while having a small and simple structure.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a vehicle height detection device according to the present invention, showing an example of a vehicle height detection device with a wire hoisting function equipped with an electromagnetic induction type linear position detector.
FIG. 2 is a schematic configuration diagram showing another example of a vehicle height detection device with a wire winding function that includes an electromagnetic induction type linear position detector.
3A is a schematic cross-sectional view showing an example of a vehicle height detection device with a wire winding function that includes an electromagnetic induction type rotational position detection sensor, and FIG. 3B is a coil and a magnetic response member of the rotational position detection sensor; The front schematic diagram which shows an example of physical arrangement | positioning relationship.
FIG. 4 is a schematic configuration diagram showing an example of a vehicle height detection device with a wire winding function provided with a multi-rotation detection sensor;
FIG. 5 is a perspective view showing an arrangement example in which the vehicle height detection device according to the present invention is arranged on the body of an automobile.
[Explanation of symbols]
1 Winding part
2 Linear position detector
3 Rotation position detection sensor
4 Multi-rotation sensor
14 Take-up reel
15 Winding spring
B body
SF1 Front wheel axle
SF2 Rear axle
W wire

Claims (4)

車両の車軸又は車体の一方に一端が結合されたワイヤと、
前記車軸又は車体の他方に配置されてなり、前記ワイヤの他端を巻取り軸に結合して該ワイヤを該巻取り軸の回りに巻くことができる巻取り手段と、
前記巻取り手段の前記巻取り軸に対して前記ワイヤを巻取る方向にテンションを付与し、これにより前記車軸と車体との相対的高さの変化に応じて前記ワイヤが前記巻取り軸に巻取られる又はそこから繰り出されるようにするテンション付与手段と、
前記巻取り軸に出入りする前記ワイヤの変位に連動して変位する磁気応答性の変位部材、該変位部材の変位に応じたインダクタンス変化を生じるコイル手段を含んで構成される検出手段と
を具備し、前記検出手段のコイル手段から前記インダクタンス変化に応じた出力信号を生じ、該出力信号に基づき前記車軸と車体との相対的高さを検出することを特徴とする車高検出装置。
A wire having one end coupled to one of the vehicle axle or the vehicle body;
Winding means arranged on the other side of the axle or the vehicle body, the other end of the wire being coupled to a winding shaft and winding the wire around the winding shaft;
A tension is applied to the winding shaft of the winding means in the winding direction so that the wire is wound around the winding shaft in accordance with a change in the relative height between the axle and the vehicle body. Tensioning means to be taken out or unwound from there;
A magnetic responsive displacement member that displaces in conjunction with the displacement of the wire that enters and exits the winding shaft, and a detection means that includes coil means that generates an inductance change in accordance with the displacement of the displacement member. An output signal corresponding to the inductance change is generated from the coil means of the detection means , and a relative height between the axle and the vehicle body is detected based on the output signal .
前記検出手段は、前記巻取り軸の回転変位に応じて前記変位部材を回転変位させる回転位置検出手段であることを特徴とする請求項1に記載の車高検出装置。The detecting device, vehicle height detection device according to claim 1, characterized in that the displacement member in response to rotational displacement of the take-up shaft as the rotational position detecting means for rotational displacement. 前記検出手段は、前記巻取り軸の回転変位を前記変位部材の直線変位に変換する機構と、該機構によって変換された前記変位部材の直線変位を検出する直線位置検出手段であることを特徴とする請求項1に記載の車高検出装置。It said detecting means includes a mechanism for converting the rotational displacement of the take-up shaft to the linear displacement of the displacement member, and characterized by a linear position detecting means for detecting a linear displacement of the displacement member which has been converted by the mechanism The vehicle height detection device according to claim 1. 請求項1に記載の車高検出装置を前記車両の前輪車軸と後輪車軸に対応してそれぞれ設け、前輪車軸と車体との相対的高さを検出すると共に、後輪車軸と車体との相対的高さを検出し、検出した両相対的高さの差に基づき前記車両の路面に対する前後方向の傾きを検出することを特徴とする車両傾き検出装置。  The vehicle height detection device according to claim 1 is provided corresponding to the front wheel axle and the rear wheel axle of the vehicle, respectively, and detects the relative height between the front wheel axle and the vehicle body, and the relative between the rear wheel axle and the vehicle body. A vehicle inclination detection device that detects a target height and detects an inclination in a front-rear direction with respect to a road surface of the vehicle based on a difference between the detected relative heights.
JP2002136072A 2002-05-10 2002-05-10 Vehicle height detection device Expired - Lifetime JP3959303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002136072A JP3959303B2 (en) 2002-05-10 2002-05-10 Vehicle height detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002136072A JP3959303B2 (en) 2002-05-10 2002-05-10 Vehicle height detection device

Publications (2)

Publication Number Publication Date
JP2003329403A JP2003329403A (en) 2003-11-19
JP3959303B2 true JP3959303B2 (en) 2007-08-15

Family

ID=29698227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002136072A Expired - Lifetime JP3959303B2 (en) 2002-05-10 2002-05-10 Vehicle height detection device

Country Status (1)

Country Link
JP (1) JP3959303B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6668140B2 (en) * 2016-03-29 2020-03-18 株式会社小野測器 Tire measuring system
CN107340141B (en) * 2016-11-24 2019-04-16 安徽江淮汽车集团股份有限公司 A kind of automobile attitude measuring mechanism

Also Published As

Publication number Publication date
JP2003329403A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
US7053602B2 (en) Rotation sensor and method for detecting a rotation angle of a rotating member
JP4907770B2 (en) Position encoder using fluxgate sensor
KR101721087B1 (en) Multi-periodic absolute position sensor
JP4886141B2 (en) Device for measuring the angle and / or angular velocity of a rotating body and / or torque acting on this rotating body
JP5863799B2 (en) Magnetic multi-rotation absolute position detector
JP4052798B2 (en) Relative position measuring instrument
JP4809829B2 (en) Inductive position sensor
KR100844521B1 (en) An apparatus for providing an output signal correlated with a part position having a positional range for a moveable part and a method of determining the position of moveable part
AU769556B2 (en) Sensor system for detecting an angle of rotation and/or a torque
US6400142B1 (en) Steering wheel position sensor
JPH02284004A (en) Angle sensor for measuring rotation of shaft
JP2002502961A (en) Torque sensor and steering column having the same
KR20070091659A (en) Current-loop position sensor and antifriction bearing equipped with same
JP6550098B2 (en) Rotation angle detection device, attitude control device, automatic steering device and throttle device
US6528990B1 (en) Magnetostrictive linear displacement transducer for a vehicle steering system
JP3959303B2 (en) Vehicle height detection device
KR20220043212A (en) Sensor assembly for capturing torque and angular position of a rotating shaft
US6501263B1 (en) Rotary position sensor
JP5170457B2 (en) Angle detector
JP5151958B2 (en) POSITION DETECTION DEVICE AND ROTARY LINEAR MOTOR HAVING THE SAME
JP5242122B2 (en) Drive shaft axial torque measuring device and measuring method
WO2002027266A1 (en) Linear position sensor
JP2004205370A (en) Rotation angle detection device
JP2001510575A (en) Measuring device that captures rotation angle without contact
JP2007085890A (en) Bearing with roller rotation detector for office equipment, and roller driving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

R150 Certificate of patent or registration of utility model

Ref document number: 3959303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term