JP3958630B2 - Safety device for work vehicle - Google Patents

Safety device for work vehicle Download PDF

Info

Publication number
JP3958630B2
JP3958630B2 JP2002168056A JP2002168056A JP3958630B2 JP 3958630 B2 JP3958630 B2 JP 3958630B2 JP 2002168056 A JP2002168056 A JP 2002168056A JP 2002168056 A JP2002168056 A JP 2002168056A JP 3958630 B2 JP3958630 B2 JP 3958630B2
Authority
JP
Japan
Prior art keywords
wheel load
vehicle
reaction force
vehicle body
load value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002168056A
Other languages
Japanese (ja)
Other versions
JP2004010292A (en
Inventor
浩史 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Corp
Original Assignee
Aichi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Corp filed Critical Aichi Corp
Priority to JP2002168056A priority Critical patent/JP3958630B2/en
Publication of JP2004010292A publication Critical patent/JP2004010292A/en
Application granted granted Critical
Publication of JP3958630B2 publication Critical patent/JP3958630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Forklifts And Lifting Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は作業用車両の安全装置に関し、更に詳細には、下端部に回転自在な回転ローラを有して車体を支持する車体支持手段を有し、この回転ローラを接地させ、且つ車輪を接地させた作業走行状態で作業を行なう作業用車両の安全装置に関する。
【0002】
【従来の技術】
このような作業用車両は、車体の前後に回転自在に取り付けられて道路走行が可能な前輪及び後輪を有して走行可能なトラック車両をベースに構成され、車体の前後の左右両側部に回転ローラを有して車体を支持する前側車体支持手段及び後側車体支持手段(以下、これらをまとめて「車体支持手段」と記す。)を配設し、車体上に作業装置を搭載し、前輪を操舵可能に構成し、後輪を駆動輪として構成されるのが一般的である。かかる作業用車両は、前輪及び後輪を接地させ、且つ回転ローラを接地させた作業走行状態で走行しながら作業を行なうことができるように構成されている。ここで、この作業用車両が作業走行状態になると、車両重量の一部は車体支持手段により支持されるので、接地状態の前輪及び後輪に作用する前輪荷重及び後輪荷重は回転ローラが非接地状態にあるときよりも減少することになる。
【0003】
この前輪荷重及び後輪荷重の減少は、車両を走行させるために必要な駆動力、走行車両を停止させるために必要な制動力及び車両の進行方向を変えるための操舵力を低下させる。そこで、作業走行状態において、駆動力、制動力及び操舵力が確保されるように、車体支持手段が伸長動して車両を支持したときの車体支持手段の伸長量は所定値に設定されている。
【0004】
【発明が解決しようとする課題】
しかしながら、この車体支持手段の伸長量の設定は、車両の載置場所が水平な堅土上で行なわれるので、車両が実際に作業走行状態にあるときに路面に凹凸があると、前輪及び後輪に作用する荷重が変動してしまう。また、前輪、後輪及び回転ローラが摩耗等によりこれらの直径が変化した場合も、前輪及び後輪に作用する荷重が変動する。さらに、前輪及び後輪が設定時の車輪の径と異なる径の車輪(例えば、スタッドレスタイヤ)に交換された場合も、前輪及び後輪に作用する荷重が変動する。このように前輪及び後輪に作用する荷重が変動し、特にこの荷重が減少方向に変動すると、車両の駆動、制動及び操舵性能が低下することになる。このような場合、従来の車両ではこのような状態を作業者に認識させる安全装置はなかった。このため、かかる安全装置の提供が要望されている。
【0005】
本発明は、このような問題に鑑みてなされたものであり、前輪及び後輪に作用する荷重の変動を作業者に認識させることができる安全装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記課題を解決するために本発明の作業用車両の安全装置は、車体と、車体の前後に回転自在に取り付けられて道路走行が可能な前輪及び後輪と、車体の前後の左右両側部に配設され、下端部に回転自在に取り付けられた回転ローラを有して上下に伸縮動可能であり、回転ローラを接地させた状態で車体を支持可能な前側車体支持手段(例えば、実施形態における前ジャッキ20、21)及び後側車体支持手段(例えば、実施形態における後ジャッキ23、24)とを有し、前輪及び後輪を接地させ、且つ回転ローラを接地させる作業走行状態で作業走行可能な、前輪及び後輪に作用する荷重の変動を認識させるための作業用車両(例えば、実施形態における高所作業車1)の安全装置であって、前側車体支持手段及び後側車体支持手段に作用する接地反力を検出する前側反力検出手段(例えば、実施形態における第1反力検出センサ61,第2反力検出センサ62)及び後側反力検出手段(例えば、実施形態における第3反力検出センサ63,第4反力検出センサ64)と、作業走行状態において、前側反力検出手段及び後側反力検出手段により検出された検出値から作業用車両の重心位置を算出し、算出された前記重心位置に応じて、接地状態の前輪及び後輪に作用する前輪荷重及び後輪荷重を算出する車輪荷重算出手段(例えば、実施形態における車輪荷重算出回路69)と、車輪荷重算出手段により算出された前輪荷重値及び後輪荷重値が予め設定された車輪荷重値よりも小さいか否かを判定する車輪荷重判定手段(例えば、実施形態における車輪荷重判定回路71)と、車輪荷重判定手段により前輪荷重値及び後輪荷重値の少なくともいずれかが車輪荷重値よりも小さいと判定されたときに警報作動する警報手段(例えば、実施形態における警報ブザー79)とを有して構成される。
【0007】
上記構成の安全装置によれば、前側車体支持手段及び後側車体支持手段に前側反力検出手段及び後側反力検出手段を設け、これらの反力検出手から検出された検出値に応じて前輪及び後輪に作用する前輪荷重値及び後輪荷重値を算出し、これらの前輪荷重値及び後輪荷重値の少なくともいずれかが予め設定された車輪荷重値よりも小さいと判定されると警報手段が警報作動するので、作業者は警報手段が警報作動することで、前輪及び後輪に作用する荷重が減少していることを確実に認識することができる。なお、本明細書において、警報作動とは、警報ブザー、警報ランプ等を用いて警報を行なう作動や、走行車両を停止させる作動や、車体に搭載される作業装置の作動を規制する作動を含めた作動を意味する。
【0008】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図1から図4に基づいて説明する。本実施の形態は、車体上に旋回且つ起伏動自在に設けられ伸縮動可能に構成されたブームと、ブームの先端に上下に揺動可能に取り付けられた作業台とを有してなる高所作業車の態様を示す。最初に本発明に係わる安全装置を説明する前に、この安全装置を搭載した高所作業車について説明する。
【0009】
高所作業車1は、図1に示すように、前後に延びる車体3の前側の左右両側部に回転自在に配設された一対の前輪5と車体後側の左右両側部に配設されて図示しないエンジンの駆動力を受けて回転駆動する一対の後輪7とを有して道路走行可能であり、前部に運転キャビン9を有したトラック車両11をベースに構成されている。一対の前輪5及び後輪7は、車体3の前後の左右両側部に配設されたサスペンション機構13に保持されている。車両後側の左右一対のサスペンション機構13間には、図2に示すように、車両左右方向に延びた車軸管14が取り付けられ、車軸管14の左右両端部に後輪7が回転自在に取り付けられている。サスペンション機構13は車体3の下部に車両前後に延びた状態で上下に弾性変形可能に配設された重ね板ばね15を有してなり、車軸管14の両端部には後輪7の車軸8が回転自在に挿着されている。車軸管14の両端部は重ね板ばね15の中間上部にUボルト16を介して取り付けられている。このため、後輪7はサスペンション機構13を介して車体3に対して懸架された状態になっている。図1に示す一対の前輪5も後輪7と同様に車体3の前側に配設された一対のサスペンション機構13を介して車体3に対して懸架されている。
【0010】
図1に示すように、一対の前輪5よりも車両後方側へ延びる車体前側の左右両側部及び一対の後輪7よりも車両後方側へ延びる車体後部の左右両側部には、上下及び車両左右方向に張出動自在に構成された一対の前ジャッキ20、21及び後ジャッキ23、24が配設されている。これら前ジャッキ20、21及び後ジャッキ23、24は下部に回転自在な回転ローラ22、25が取り付けられている。このように構成された高所作業車1は、前輪5及び後輪7を接地させ、且つ回転ローラ22、25を接地させた状態の作業走行状態で作業走行が可能に構成されている。車体3の後部には前ジャッキ20、21及び後ジャッキ23、24の駆動を操作するジャッキ操作装置30が配設され、ジャッキ操作装置30は前ジャッキ20、21及び後ジャッキ23、24の駆動を操作する複数の操作レバー31を有している。ジャッキ操作装置30は操作レバー31が操作されると、操作された操作レバー31に対応する前ジャッキ20、21及び後ジャッキ23、24のいずれかを伸縮作動させるように構成されている。さらに詳細には、ジャッキ操作装置30は、操作レバー31が操作されると、これに対応する前ジャッキ20、21及び後ジャッキ23、24の伸長量が所定値になるように前ジャッキ20、21及び後ジャッキ23、24を伸長動させる。このジャッキ伸長量の所定値は後述する。
【0011】
トラック車両11の車体後部には旋回モータ(図示せず)により駆動されて水平旋回可能に構成された旋回台35が取り付けられている。この旋回台35には基部を枢結したブーム37が上下に揺動自在に取り付けられ、ブーム37は基端ブーム37a、中間ブーム37b及び先端ブーム37cを入れ子式に組み合わせて内蔵された図示しない伸縮シリンダにより伸縮動可能に構成されている。ブーム37は起伏シリンダ39により起伏動される。
【0012】
ブーム37の先端部には上下に揺動自在に支持部材41が取り付けられ、この支持部材41の上に首振り装置43を介して作業台45が水平旋回動(首振り動)自在に取り付けられている。なお、先端ブーム37cと支持部材41との間には図示しないレベリング装置が配設されており、このレベリング装置によりブーム37の起伏角度に拘わらず作業台45が常に水平状態に保持されている。作業台45にはブーム37の起伏動、旋回動、伸縮動及び作業台45の首振り動を操作する操作装置47が配設されている。
【0013】
このように構成された高所作業車1には、車両が作業走行状態にあるときに、接地状態にある前輪5及び後輪7に作用する荷重が所定値よりも低くなると、警報ブザーを鳴らす安全装置が搭載されている。この安全装置60は、図3に示すように、図1に示す一対の前ジャッキ20、21のうち車両左側に配設された前ジャッキ20に作用する接地反力を検出する第1反力検出センサ61、一対の前ジャッキ20,21のうち車両右側に配設された前ジャッキ21に作用する接地反力を検出する第2反力検出センサ62、図1に示す一対の後ジャッキ23,24のうち車両左側に配設された後ジャッキ23に作用する接地反力を検出する第3反力検出センサ63、後ジャッキ23、24のうち車両右側に配設された後ジャッキ24に作用する接地反力を検出する第4反力検出センサ64と、これらのセンサからの検出値に応じて作動するコントローラ67と、警報ブザー79とを有して構成されている。
【0014】
コントローラ67は、車輪荷重算出回路69、車輪荷重判定回路71及び警報駆動回路73とを有して構成されている。なお、コントローラ67は、図1に示す操作装置47が操作されてもブーム37が駆動しないようにするときに操作される図示しない走行作業スイッチが操作されてブーム37の駆動が規制状態にされると、図示しない電源から電力供給されて作動可能な状態になる。車輪荷重算出回路69は、第1反力検出センサ61、第2反力検出センサ62、第3反力検出センサ63及び第4反力検出センサ64により検出された検出値に応じて車両の重心位置を算出し、算出された重心位置に応じて予め設定された車両重量から一対の前輪5及び一対の後輪7に作用する前輪荷重値及び後輪荷重値を算出する機能を有する。
【0015】
さらに詳細には、車輪荷重算出回路69は、下記に示す数1及び数3に基づいて前輪荷重値及び後輪荷重値を算出する。なお、数1は力の釣り合いを示す式であり、数2及び数3は図4に示す車両の前後方向のモーメントの釣り合いを示す式である。
【0016】
【数1】
Wf+Wr+Ff+Fr=W
但し、Wfは、図1に示すように、一対の前輪5に作用する前輪荷重値の反力を示し、
Wrは一対の後輪7に作用する後輪荷重値の反力を示し、
Ffは図3に示す第1反力検出センサ61及び第2反力検出センサ62により検出された検出値の合算値を示し、
Frは図3に示す第3反力検出センサ63及び第4反力検出センサ64により検出された検出値の合算値を示し、
Wは車両重量を示す。
【0017】
【数2】
(Wf1×Xwf1)+(Wf2×Xwf2)+(Wr1×Xwr1)
+(Wr2×Xwr2)+(Ff1×Xf1)+(Ff2×Xf2)
+(Fr1×Xr1)+(Fr2×Xr2)=W×Xw
但し、Wf1は、図4に示すように、車両左側の前輪5に作用する荷重の反力を示し、
Wf2は車両右側の前輪5に作用する荷重の反力を示し、
Wr1は車両左側の後輪7に作用する荷重の反力を示し、
Wr2は車両右側の後輪7に作用する荷重の反力を示し、
Xwf1は任意の基準位置とWf1の作用位置との車両前後方向の距離を示し、
Xwf2は任意の基準位置とWf2の作用位置との車両前後方向の距離を示し、
Xwr1は任意の基準位置とWr1の作用位置との車両前後方向の距離を示し、
Xwr2は任意の基準位置とWr2の作用位置との車両前後方向の距離を示し、
Xf1は任意の基準位置とFf1の作用位置との車両前後方向の距離を示し、
Xf2は任意の基準位置とFf2の作用位置との車両前後方向の距離を示し、
Xr1は任意の基準位置とFr1の作用位置との車両前後方向の距離を示し、
Xr2は任意の基準位置とFr2の作用位置との車両前後方向の距離を示す。
【0018】
ここで、数2において、Xwf1=Xwf2とし、Wf1+Wf2=Wfとし、Xwr1=Xwr2とし、Wr1+Wr2=Wrとし、Xf1=Xf2とし、Ff1+Ff2=Ffとし、Xr1=Xr2とし、Fr1+Fr2=Frとすれば、数2は数3に変換される。
【0019】
【数3】
(Wf×Xwf)+(Wr×Xwr)+(Ff×XFf)+(Fr×XFr)=W×Xw
【0020】
ここで、数1及び数3において、W、Xwは既知の値であり、Ff、Frは検出値であり、Xwf、Xwr、XFf及びXFrは既知の値である。このため、図3に示す車輪荷重算出回路69は、数1及び数3の2つの連立方程式を解くことで、Wf及びWrを算出することができる。
【0021】
さて、このように算出される前輪荷重値及び後輪荷重値は、図3に示すように、車輪荷重判定回路71に送られる。車輪荷重判定回路71は算出された前輪荷重値及び後輪荷重値が予め設定された車輪荷重値よりも小さいか否かを判定する。ここで、車輪荷重値は前輪荷重に対応した前輪側荷重値と後輪荷重値に対応した後輪側荷重値の2種類あり、前輪側荷重値は図1に示す前輪5により走行車両を停止状態にするために必要な制動力や車両の進行方向を変えることができる操舵力を考慮した値に設定され、後輪側荷重値は車両が走行に必要な駆動力や走行車両を停止状態にするために必要な制動力を考慮した値に設定されている。なお、これら前輪側荷重値及び後輪側荷重値は制動力、操舵力及び駆動力を確保するに必要な一つの値に設定してもよい。
【0022】
ここで、図1に示す前ジャッキ20,21及び後ジャッキ23、24により車体3が支持されているときの前ジャッキ20,21及び後ジャッキ23、24の伸長量について考慮する。前述したように前ジャッキ20,21及び後ジャッキ23、24は伸長量が所定値になった状態で車体3を支持するが、これらにより車体3が支持されると、接地状態にある一対の前輪5に作用する荷重は前輪側荷重値と略同じ大きさとなり、接地状態にある一対の後輪7に作用する荷重は後輪側荷重値と略同じ大きさとなるように前ジャッキ20,21及び後ジャッキ23、24の伸長量が設定されている。
【0023】
図3に示すように、警報駆動回路73は警報ブザー79に電気的に接続され、車輪荷重判定回路71により前輪荷重値及び後輪荷重値の少なくともいずれかが車輪荷重値よりも小さいと判定されると、警報作ブザー79を鳴らすように構成されている。警報ブザー79はスピーカであり、図1に示す運転キャビン9内に設置されている。
【0024】
次に、このように構成された安全装置60の作動について説明する。先ず、図1に示すように、前ジャッキ20、21及び後ジャッキ23、24が車両に格納された状態で後輪7を回転駆動させて車両を作業現場に移動させた後に、ジャッキ操作装置30の操作レバー31が操作されて前輪5及び後輪7が接地した状態で前ジャッキ20、21及び後ジャッキ23、24を接地させる。続いて、作業台45に搭乗した図示しない作業者が操作装置47を操作してブーム37を駆動させ、作業台45を所望の作業位置に移動させる。続いて、前述した走行作業スイッチが操作されてブーム37の駆動を規制状態にする。このため、作業台45に搭乗している作業者が誤って操作装置47を操作してもブーム37及び作業台45が駆動(旋回、伸縮、起伏、首振り動)することはない。
【0025】
走行作業スイッチがブーム駆動を規制するように操作されると、図3に示すコントローラ67に図示しない電源から電力が供給されて作動する。即ち、コントローラ67は、図3に示すように、第1反力検出センサ61、第2反力検出センサ62、第3反力検出センサ63及び第4反力検出センサ64からの検出値に基づいて、車輪荷重算出回路69が前述した数1及び数3を用いて一対の前輪5に作用する前輪荷重値及び一対の後輪7に作用する後輪荷重値を算出する。続いて、これら前輪荷重値及び後輪荷重値に基づいて、車輪荷重判定回路71は前輪荷重値が前輪側荷重値よりも小さいか否か、及び後輪荷重値が後輪側荷重値よりも小さいか否かの判定を行なう。
【0026】
ここで、前輪荷重値及び後輪荷重値の少なくともいずれかが小さいと判定されたときには、警報駆動回路73が警報ブザー79を鳴らす。その結果、図1に示す運転キャビン9に搭乗している運転手は前輪5及び後輪7に作用する荷重が小さいことを認識することができ、車両が走行する前に前輪5、後輪7及び回転ローラ22、25の点検を確実に行なうことができる。
【0027】
また、車両が作業走行状態で走行しているときに警報ブザー79がなれば、前輪5及び後輪7に作用する荷重が小さくなっていることを運転手は認識することができる。このため、運転手は、車両走行中における車両の駆動、制動及び操舵性能が低下した状態にあることを認識することができる。
【0028】
なお、前述した実施の形態では、安全装置60は警報ブザー79により警報作動を行なう例を示したが、走行している車両を停止させるように構成されてもよい。
【0029】
【発明の効果】
以上説明したように、本発明における安全装置によれば、前側車体支持手段及び後側車体支持手段に前側反力検出手段及び後側反力検出手段を設け、これらの反力検出手段から検出された検出値から作業用車両の重心位置を算出し、算出された重心位置に応じて前輪及び後輪に作用する前輪荷重値及び後輪荷重値を算出し、これらの前輪荷重値及び後輪荷重値の少なくともいずれかが予め設定された車輪荷重値よりも小さいと判定されると警報手段が警報作動するので、作業者は警報手段が警報作動することで、前輪及び後輪に作用する荷重が減少していることを確実に認識することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態における安全装置を搭載した高所作業車の左側側面図を示す。
【図2】本発明の一実施の形態における後輪を保持するサスペンション機構の正面図を示す。
【図3】本発明の一実施の形態における安全装置のブロック図を示す。
【図4】本発明の一実施の形態における安全装置の作動を説明するための高所作業車の概略平面図を示す。
【符号の説明】
1 高所作業車(作業用車両)
3 車体
5 前輪
7 後輪
20、21 前ジャッキ(前側車体支持手段)
22、25 回転ローラ
23、24 後ジャッキ(後側車体支持手段)
60 安全装置
61 第1反力検出センサ(前側反力検出手段)
62 第2反力検出センサ(前側反力検出手段)
63 第3反力検出センサ(後側反力検出手段)
64 第4反力検出センサ(後側反力検出手段)
69 車輪荷重算出回路(車輪荷重算出手段)
71 車輪荷重判定回路(車輪荷重判定手段)
79 警報ブザー(警報手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a safety device for a working vehicle, and more specifically, has a vehicle body support means for supporting a vehicle body having a rotatable roller at a lower end, and grounding the wheel and grounding a wheel. The present invention relates to a safety device for a working vehicle that performs work in a work running state.
[0002]
[Prior art]
Such a working vehicle is constructed based on a truck vehicle that has a front wheel and a rear wheel that are rotatably mounted on the front and rear of the vehicle body and can travel on the road. A front body support means and a rear body support means (hereinafter collectively referred to as “vehicle support means”) that support the vehicle body with a rotating roller are disposed, and a work device is mounted on the vehicle body, Generally, the front wheels are configured to be steerable, and the rear wheels are configured as drive wheels. Such a working vehicle is configured to be able to work while traveling in a working traveling state in which the front wheels and the rear wheels are grounded and the rotating roller is grounded. Here, when this working vehicle is in a working state, a part of the vehicle weight is supported by the vehicle body support means, so the front roller load and the rear wheel load acting on the grounded front and rear wheels are not subjected to rotation by the rotating roller. It will be less than when it is in the grounded state.
[0003]
This decrease in the front wheel load and the rear wheel load lowers the driving force necessary for traveling the vehicle, the braking force necessary for stopping the traveling vehicle, and the steering force for changing the traveling direction of the vehicle. Therefore, the extension amount of the vehicle body support means when the vehicle body support means extends and supports the vehicle is set to a predetermined value so that the driving force, the braking force, and the steering force are ensured in the work traveling state. .
[0004]
[Problems to be solved by the invention]
However, since the setting of the extension amount of the vehicle body support means is performed on a solid soil where the vehicle is placed, if the road surface is uneven when the vehicle is actually in a running state, the front wheel and the rear The load acting on the wheel will fluctuate. Also, when the diameters of the front wheels, the rear wheels, and the rotating rollers change due to wear or the like, the load acting on the front wheels and the rear wheels varies. Further, when the front wheels and the rear wheels are replaced with wheels having a diameter different from the diameter of the wheels at the time of setting (for example, studless tires), the load acting on the front wheels and the rear wheels varies. As described above, the load acting on the front wheels and the rear wheels fluctuates. In particular, when the load fluctuates in the decreasing direction, the driving, braking and steering performance of the vehicle deteriorates. In such a case, the conventional vehicle has no safety device that allows the operator to recognize such a state. For this reason, provision of such a safety device is desired.
[0005]
This invention is made in view of such a problem, and it aims at providing the safety device which can make an operator recognize the fluctuation | variation of the load which acts on a front wheel and a rear wheel.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, a safety device for a working vehicle according to the present invention includes a vehicle body, front and rear wheels that are rotatably attached to the front and rear of the vehicle body and capable of traveling on a road, and left and right sides of the vehicle body. A front body support means (for example, in the embodiment) that has a rotation roller that is disposed and is rotatably attached to the lower end portion, can be vertically expanded and contracted, and can support the vehicle body with the rotation roller grounded. It has front jacks 20, 21) and rear body support means (for example, rear jacks 23, 24 in the embodiment), and can work in a working state where the front wheels and rear wheels are grounded and the rotating roller is grounded. A safety device for a working vehicle (for example, an aerial work vehicle 1 in the embodiment) for recognizing fluctuations in loads acting on the front wheels and the rear wheels , the front vehicle body support means and the rear vehicle body support means. Product Front reaction force detection means (for example, the first reaction force detection sensor 61 and the second reaction force detection sensor 62 in the embodiment) and rear reaction force detection means (for example, the third reaction force detection in the embodiment). The center of gravity position of the work vehicle is calculated from the detection values detected by the force detection sensor 63, the fourth reaction force detection sensor 64) and the front reaction force detection means and the rear reaction force detection means in the working travel state. Wheel load calculation means (for example, wheel load calculation circuit 69 in the embodiment) for calculating the front wheel load and the rear wheel load acting on the front and rear wheels in contact with the ground according to the position of the center of gravity , and wheel load calculation means Wheel load determination means (for example, wheel load determination circuit 71 in the embodiment) for determining whether or not the front wheel load value and the rear wheel load value calculated by the above are smaller than a preset wheel load value; Alarm means (for example, an alarm buzzer 79 in the embodiment) that operates when the wheel load determination means determines that at least one of the front wheel load value and the rear wheel load value is smaller than the wheel load value. Composed.
[0007]
According to the safety device having the above configuration, the front side vehicle support means and the rear side vehicle support means are provided with the front reaction force detection means and the rear reaction force detection means, and according to the detection values detected from these reaction force detection hands. A front wheel load value and a rear wheel load value acting on the front wheel and the rear wheel are calculated, and if it is determined that at least one of the front wheel load value and the rear wheel load value is smaller than a preset wheel load value, an alarm is issued. Since the means operates as an alarm, the operator can surely recognize that the load acting on the front wheel and the rear wheel is reduced as the alarm means operates as an alarm. In this specification, the alarm operation includes an operation that performs an alarm using an alarm buzzer, an alarm lamp, etc., an operation that stops the traveling vehicle, and an operation that regulates the operation of the work device mounted on the vehicle body. Operation.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to FIGS. The present embodiment is a high place having a boom that is provided on a vehicle body so as to be swivelable and movable up and down, and that can be expanded and contracted, and a workbench that is attached to the tip of the boom so as to be swingable up and down. The aspect of a work vehicle is shown. Before describing a safety device according to the present invention, an aerial work vehicle equipped with this safety device will be described.
[0009]
As shown in FIG. 1, the aerial work vehicle 1 is disposed on a pair of front wheels 5 rotatably disposed on the left and right side portions on the front side of the vehicle body 3 extending in the front-rear direction and on the left and right side portions on the rear side of the vehicle body. The vehicle has a pair of rear wheels 7 that rotate by receiving a driving force of an engine (not shown). The vehicle can travel on the road, and is based on a truck vehicle 11 having a driving cabin 9 at the front. The pair of front wheels 5 and rear wheels 7 are held by suspension mechanisms 13 disposed on the left and right sides of the vehicle body 3. As shown in FIG. 2, an axle tube 14 extending in the left-right direction of the vehicle is attached between the pair of left and right suspension mechanisms 13 on the rear side of the vehicle, and the rear wheel 7 is rotatably attached to both left and right ends of the axle tube 14. It has been. The suspension mechanism 13 includes a laminated leaf spring 15 disposed in a lower portion of the vehicle body 3 so as to be elastically deformable up and down in a state of extending in the longitudinal direction of the vehicle, and the axle 8 of the rear wheel 7 is provided at both ends of the axle tube 14. Is rotatably inserted. Both end portions of the axle tube 14 are attached to the middle upper portion of the laminated leaf spring 15 via U bolts 16. For this reason, the rear wheel 7 is suspended from the vehicle body 3 via the suspension mechanism 13. A pair of front wheels 5 shown in FIG. 1 is also suspended from the vehicle body 3 via a pair of suspension mechanisms 13 disposed on the front side of the vehicle body 3, as with the rear wheel 7.
[0010]
As shown in FIG. 1, the left and right side portions on the front side of the vehicle body extending to the rear side of the vehicle from the pair of front wheels 5 and the left and right side portions of the rear portion of the vehicle body extending to the rear side of the vehicle from the pair of rear wheels 7 A pair of front jacks 20, 21 and rear jacks 23, 24 configured to be freely projecting in the direction are provided. The front jacks 20 and 21 and the rear jacks 23 and 24 are provided with rotatable rollers 22 and 25 at the bottom. The aerial work vehicle 1 configured as described above is configured to be able to travel in a working state in which the front wheels 5 and the rear wheels 7 are grounded and the rotary rollers 22 and 25 are grounded. A jack operating device 30 for operating the front jacks 20 and 21 and the rear jacks 23 and 24 is disposed at the rear of the vehicle body 3. The jack operating device 30 drives the front jacks 20 and 21 and the rear jacks 23 and 24. A plurality of operation levers 31 to be operated are provided. When the operation lever 31 is operated, the jack operation device 30 is configured to extend / contract one of the front jacks 20 and 21 and the rear jacks 23 and 24 corresponding to the operated operation lever 31. More specifically, when the operation lever 31 is operated, the jack operating device 30 has the front jacks 20 and 21 so that the extension amounts of the front jacks 20 and 21 and the rear jacks 23 and 24 corresponding to the operation lever 31 become a predetermined value. And the rear jacks 23 and 24 are extended. The predetermined value of the jack extension amount will be described later.
[0011]
A swivel base 35 that is driven by a turning motor (not shown) and configured to be horizontally turnable is attached to the rear of the vehicle body of the truck vehicle 11. A boom 37 pivotally connected to the base is attached to the swivel base 35 so that the boom 37 can swing up and down. The boom 37 includes a base end boom 37a, an intermediate boom 37b, and a front end boom 37c which are combined in a telescopic manner and are not shown. The cylinder is configured to be extendable and retractable. The boom 37 is raised and lowered by a raising and lowering cylinder 39.
[0012]
A support member 41 is attached to the tip of the boom 37 so as to be swingable up and down, and a work table 45 is attached to the support member 41 via a swing device 43 so as to be able to swing horizontally (swing). ing. A leveling device (not shown) is disposed between the tip boom 37c and the support member 41, and the work table 45 is always held in a horizontal state by the leveling device regardless of the raising / lowering angle of the boom 37. The work table 45 is provided with an operation device 47 for operating the raising / lowering motion, turning motion, telescopic motion of the boom 37 and the swinging motion of the work table 45.
[0013]
The aerial work vehicle 1 configured in this way sounds an alarm buzzer when the load acting on the front wheels 5 and the rear wheels 7 in the grounded state is lower than a predetermined value when the vehicle is in a working running state. Safety devices are installed. As shown in FIG. 3, the safety device 60 includes a first reaction force detection that detects a ground reaction force acting on the front jack 20 disposed on the left side of the vehicle among the pair of front jacks 20, 21 shown in FIG. 1. The sensor 61, the second reaction force detection sensor 62 for detecting the ground reaction force acting on the front jack 21 disposed on the right side of the pair of front jacks 20, 21, and the pair of rear jacks 23, 24 shown in FIG. Among them, a third reaction force detection sensor 63 for detecting a grounding reaction force acting on the rear jack 23 disposed on the left side of the vehicle, and a grounding acting on the rear jack 24 disposed on the right side of the rear jacks 23, 24. A fourth reaction force detection sensor 64 that detects the reaction force, a controller 67 that operates according to detection values from these sensors, and an alarm buzzer 79 are provided.
[0014]
The controller 67 includes a wheel load calculation circuit 69, a wheel load determination circuit 71, and an alarm drive circuit 73. The controller 67 operates a travel work switch (not shown) that is operated when the operation of the operation device 47 shown in FIG. Then, power is supplied from a power source (not shown) to enable operation. The wheel load calculation circuit 69 determines the center of gravity of the vehicle according to the detection values detected by the first reaction force detection sensor 61, the second reaction force detection sensor 62, the third reaction force detection sensor 63, and the fourth reaction force detection sensor 64. The position is calculated, and the front wheel load value and the rear wheel load value acting on the pair of front wheels 5 and the pair of rear wheels 7 are calculated from the vehicle weight set in advance according to the calculated center of gravity position.
[0015]
More specifically, the wheel load calculation circuit 69 calculates the front wheel load value and the rear wheel load value based on the following equations 1 and 3. In addition, Formula 1 is a formula which shows the balance of force, Formula 2 and Formula 3 are formulas which show the balance of the moment of the vehicle front-back direction shown in FIG.
[0016]
[Expression 1]
Wf + Wr + Ff + Fr = W
However, Wf shows the reaction force of the front wheel load value which acts on a pair of front wheels 5 as shown in FIG.
Wr represents the reaction force of the rear wheel load value acting on the pair of rear wheels 7,
Ff represents the sum of the detection values detected by the first reaction force detection sensor 61 and the second reaction force detection sensor 62 shown in FIG.
Fr represents the sum of the detection values detected by the third reaction force detection sensor 63 and the fourth reaction force detection sensor 64 shown in FIG.
W represents the vehicle weight.
[0017]
[Expression 2]
(Wf1 × Xwf1) + (Wf2 × Xwf2) + (Wr1 × Xwr1)
+ (Wr2 × Xwr2) + (Ff1 × Xf1) + (Ff2 × Xf2)
+ (Fr1 × Xr1) + (Fr2 × Xr2) = W × Xw
However, Wf1 shows the reaction force of the load which acts on the front wheel 5 on the left side of the vehicle, as shown in FIG.
Wf2 indicates the reaction force of the load acting on the front wheel 5 on the right side of the vehicle,
Wr1 represents the reaction force of the load acting on the rear wheel 7 on the left side of the vehicle,
Wr2 represents the reaction force of the load acting on the rear wheel 7 on the right side of the vehicle,
Xwf1 indicates the distance in the vehicle front-rear direction between an arbitrary reference position and the operating position of Wf1,
Xwf2 indicates the distance in the vehicle front-rear direction between an arbitrary reference position and the operating position of Wf2,
Xwr1 indicates the distance in the vehicle front-rear direction between an arbitrary reference position and the action position of Wr1,
Xwr2 indicates the distance in the vehicle front-rear direction between an arbitrary reference position and the action position of Wr2,
Xf1 indicates the distance in the vehicle front-rear direction between an arbitrary reference position and the action position of Ff1,
Xf2 indicates the distance in the vehicle front-rear direction between an arbitrary reference position and the operating position of Ff2,
Xr1 indicates the distance in the vehicle front-rear direction between an arbitrary reference position and the action position of Fr1,
Xr2 indicates the distance in the vehicle front-rear direction between an arbitrary reference position and the action position of Fr2.
[0018]
Here, in Equation 2, Xwf1 = Xwf2, Wf1 + Wf2 = Wf, Xwr1 = Xwr2, Wr1 + Wr2 = Wr, Xf1 = Xf2, Ff1 + Ff2 = Ff, Xr1 = Xr2, and Fr1 + Fr2 = Fr. 2 is converted into Equation 3.
[0019]
[Equation 3]
(Wf × Xwf) + (Wr × Xwr) + (Ff × XFf) + (Fr × XFr) = W × Xw
[0020]
Here, in Equations 1 and 3, W and Xw are known values, Ff and Fr are detected values, and Xwf, Xwr, XFf, and XFr are known values. Therefore, the wheel load calculation circuit 69 shown in FIG. 3 can calculate Wf and Wr by solving the two simultaneous equations of Equations 1 and 3.
[0021]
Now, the front wheel load value and the rear wheel load value calculated in this way are sent to the wheel load determination circuit 71 as shown in FIG. The wheel load determination circuit 71 determines whether or not the calculated front wheel load value and rear wheel load value are smaller than preset wheel load values. Here, there are two types of wheel load values, a front wheel side load value corresponding to the front wheel load and a rear wheel side load value corresponding to the rear wheel load value. The front wheel side load value stops the traveling vehicle by the front wheel 5 shown in FIG. The rear wheel side load value is set to a value that takes into account the braking force required to change the vehicle's state and the steering force that can change the traveling direction of the vehicle. It is set to a value that takes into account the braking force required to achieve this. The front wheel side load value and the rear wheel side load value may be set to one value necessary for securing the braking force, the steering force, and the driving force.
[0022]
Here, the extension amounts of the front jacks 20 and 21 and the rear jacks 23 and 24 when the vehicle body 3 is supported by the front jacks 20 and 21 and the rear jacks 23 and 24 shown in FIG. As described above, the front jacks 20 and 21 and the rear jacks 23 and 24 support the vehicle body 3 in a state where the extension amount reaches a predetermined value. When the vehicle body 3 is supported by these, the pair of front wheels in a grounded state is supported. 5 and the front jacks 20 and 21 so that the load acting on the pair of rear wheels 7 in contact with the ground is approximately the same as the load value on the rear wheel side. The extension amount of the rear jacks 23 and 24 is set.
[0023]
As shown in FIG. 3, the alarm driving circuit 73 is electrically connected to the alarm buzzer 79, and the wheel load determination circuit 71 determines that at least one of the front wheel load value and the rear wheel load value is smaller than the wheel load value. Then, the alarm buzzer 79 is sounded. The alarm buzzer 79 is a speaker and is installed in the driving cabin 9 shown in FIG.
[0024]
Next, the operation of the safety device 60 configured as described above will be described. First, as shown in FIG. 1, after the front jacks 20, 21 and the rear jacks 23, 24 are stored in the vehicle, the rear wheel 7 is rotationally driven to move the vehicle to the work site, and then the jack operating device 30. The front jacks 20, 21 and the rear jacks 23, 24 are grounded in a state where the operation lever 31 is operated and the front wheels 5 and the rear wheels 7 are grounded. Subsequently, an operator (not shown) who has boarded the work table 45 operates the operation device 47 to drive the boom 37 to move the work table 45 to a desired work position. Subsequently, the driving switch described above is operated to drive the boom 37 in a restricted state. For this reason, the boom 37 and the work table 45 will not be driven (turning, extending / contracting, raising / lowering, swinging) even if an operator on the work table 45 operates the operating device 47 by mistake.
[0025]
When the traveling work switch is operated so as to restrict the boom drive, electric power is supplied to the controller 67 shown in FIG. That is, the controller 67 is based on detection values from the first reaction force detection sensor 61, the second reaction force detection sensor 62, the third reaction force detection sensor 63, and the fourth reaction force detection sensor 64, as shown in FIG. Then, the wheel load calculation circuit 69 calculates the front wheel load value acting on the pair of front wheels 5 and the rear wheel load value acting on the pair of rear wheels 7 using the above-described equations 1 and 3. Subsequently, based on the front wheel load value and the rear wheel load value, the wheel load determination circuit 71 determines whether the front wheel load value is smaller than the front wheel side load value, and the rear wheel load value is smaller than the rear wheel side load value. It is determined whether or not it is small.
[0026]
Here, when it is determined that at least one of the front wheel load value and the rear wheel load value is small, the alarm driving circuit 73 sounds the alarm buzzer 79. As a result, the driver riding in the driving cabin 9 shown in FIG. 1 can recognize that the load acting on the front wheels 5 and the rear wheels 7 is small, and the front wheels 5 and the rear wheels 7 before the vehicle travels. In addition, the rotating rollers 22 and 25 can be reliably inspected.
[0027]
Further, if the alarm buzzer 79 is generated when the vehicle is traveling in a working state, the driver can recognize that the load acting on the front wheels 5 and the rear wheels 7 is small. For this reason, the driver can recognize that the driving, braking, and steering performance of the vehicle while the vehicle is running are in a state of being lowered.
[0028]
In the above-described embodiment, the safety device 60 performs an alarm operation using the alarm buzzer 79. However, the safety device 60 may be configured to stop a traveling vehicle.
[0029]
【The invention's effect】
As described above, according to the safety device of the present invention, the front vehicle body support means and the rear vehicle body support means are provided with the front reaction force detection means and the rear reaction force detection means, and are detected from these reaction force detection means. The center of gravity position of the work vehicle is calculated from the detected values, the front wheel load value and the rear wheel load value acting on the front wheels and the rear wheels are calculated according to the calculated center of gravity position, and these front wheel load value and rear wheel load value are calculated. When it is determined that at least one of the values is smaller than the preset wheel load value, the alarm means is activated, so that the operator operates the alarm means to activate the load acting on the front wheels and the rear wheels. It can be recognized with certainty that it is decreasing.
[Brief description of the drawings]
FIG. 1 is a left side view of an aerial work vehicle equipped with a safety device according to an embodiment of the present invention.
FIG. 2 is a front view of a suspension mechanism that holds a rear wheel in an embodiment of the present invention.
FIG. 3 is a block diagram of a safety device according to an embodiment of the present invention.
FIG. 4 is a schematic plan view of an aerial work vehicle for explaining the operation of the safety device according to the embodiment of the present invention.
[Explanation of symbols]
1 Aerial work vehicle (work vehicle)
3 body 5 front wheel 7 rear wheels 20 and 21 front jack (front body support means)
22, 25 Rotating rollers 23, 24 Rear jacks (rear body support means)
60 safety device 61 first reaction force detection sensor (front reaction force detection means)
62 Second reaction force detection sensor (front reaction force detection means)
63 Third reaction force detection sensor (rear reaction force detection means)
64 Fourth reaction force detection sensor (rear reaction force detection means)
69 Wheel load calculation circuit (wheel load calculation means)
71 Wheel load judgment circuit (wheel load judgment means)
79 Alarm buzzer (alarm means)

Claims (1)

車体と、
前記車体の前後に回転自在に取り付けられて道路走行が可能な前輪及び後輪と、
前記車体の前後の左右両側部に配設され、下端部に回転自在に取り付けられた回転ローラを有して上下に伸縮動可能であり、前記回転ローラを接地させた状態で前記車体を支持可能な前側車体支持手段及び後側車体支持手段とを有し、
前記前輪及び前記後輪を接地させ、且つ前記回転ローラを接地させる作業走行状態で、作業走行可能な、前記前輪及び後輪に作用する荷重の変動を認識させるための作業用車両の安全装置であって、
前記前側車体支持手段及び前記後側車体支持手段に作用する接地反力を検出する前側反力検出手段及び後側反力検出手段と、
前記作業走行状態において、前記前側反力検出手段及び前記後側反力検出手段により検出された検出値から前記作業用車両の重心位置を算出し、算出された前記重心位置に応じて、接地状態の前記前輪及び前記後輪に作用する前輪荷重及び後輪荷重を算出する車輪荷重算出手段と、
前記車輪荷重算出手段により算出された前輪荷重値及び後輪荷重値が予め設定された車輪荷重値よりも小さいか否かを判定する車輪荷重判定手段と、
前記車輪荷重判定手段により前記前輪荷重値及び前記後輪荷重値の少なくともいずれかが前記車輪荷重値よりも小さいと判定されたときに警報作動する警報手段と
を有して構成されていることを特徴とする作業用車両の安全装置。
The car body,
Front and rear wheels that are rotatably attached to the front and rear of the vehicle body and capable of traveling on roads;
It is arranged on both the left and right sides of the front and rear of the vehicle body, and has a rotation roller that is rotatably attached to the lower end portion, and can be expanded and contracted up and down, and can support the vehicle body with the rotation roller grounded Front vehicle body support means and rear vehicle body support means,
A working vehicle safety device for recognizing fluctuations in load acting on the front wheels and the rear wheels , which can be operated in a working state in which the front wheels and the rear wheels are grounded and the rotating roller is grounded. There,
Front reaction force detection means and rear reaction force detection means for detecting a ground reaction force acting on the front vehicle body support means and the rear vehicle body support means;
In the work travel state, the center of gravity position of the working vehicle is calculated from the detection values detected by the front reaction force detection unit and the rear reaction force detection unit , and the ground state is determined according to the calculated center of gravity position. Wheel load calculating means for calculating a front wheel load and a rear wheel load acting on the front wheel and the rear wheel,
Wheel load determination means for determining whether the front wheel load value and the rear wheel load value calculated by the wheel load calculation means are smaller than a preset wheel load value;
Alarm means that operates when the wheel load determination means determines that at least one of the front wheel load value and the rear wheel load value is smaller than the wheel load value. A working vehicle safety device.
JP2002168056A 2002-06-10 2002-06-10 Safety device for work vehicle Expired - Fee Related JP3958630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168056A JP3958630B2 (en) 2002-06-10 2002-06-10 Safety device for work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002168056A JP3958630B2 (en) 2002-06-10 2002-06-10 Safety device for work vehicle

Publications (2)

Publication Number Publication Date
JP2004010292A JP2004010292A (en) 2004-01-15
JP3958630B2 true JP3958630B2 (en) 2007-08-15

Family

ID=30435065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168056A Expired - Fee Related JP3958630B2 (en) 2002-06-10 2002-06-10 Safety device for work vehicle

Country Status (1)

Country Link
JP (1) JP3958630B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592255B2 (en) * 2015-03-03 2019-10-16 株式会社アイチコーポレーション Work vehicle
DE102016112511A1 (en) * 2016-07-07 2018-01-11 Blickle Räder + Rollen GmbH u. Co. KG Support roller, vehicle with support roller and method for stabilizing a vehicle
CN115108512B (en) * 2022-06-08 2023-04-28 湖南中联重科智能高空作业机械有限公司 Chassis detection device, system and overhead working truck
CN115180564B (en) * 2022-06-08 2023-04-14 湖南中联重科智能高空作业机械有限公司 Wheel support reaction force detection device, system and aerial work platform

Also Published As

Publication number Publication date
JP2004010292A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
KR101778195B1 (en) Bike with automatic control device of landing wheel
CN100431906C (en) Coaxial two-wheel vehicle
US9758133B2 (en) Vehicle lifting and parallel parking aid
JP5390007B2 (en) Traveling vehicle
US20140265283A1 (en) Service Vehicle Operation Training System and Method
US20200238958A1 (en) Self-Lifting Vehicle with Flood Protection, U-Turn, Parallel Parking, and Bog-Down Escape Capabilities
JP3958630B2 (en) Safety device for work vehicle
JP5868107B2 (en) Reach forklift
JP5622497B2 (en) Transport cart
JP6592255B2 (en) Work vehicle
JP2004001907A (en) Falling down prevention device for high position working vehicle
CN108045481B (en) Automatic balancing device of electric balance car
KR101500699B1 (en) electrical scooter having rear wheel steering unit
JP2012076670A (en) Riding vehicle
JP5791468B2 (en) Reach-type forklift fall prevention device
JP5502317B2 (en) Track control device for track vehicle
JP2015147553A (en) Crawler type irregular ground/off-load work vehicle
JP4354440B2 (en) Crawler work vehicle
JP3886114B2 (en) Engine control device for work vehicle
JP3787097B2 (en) Work vehicle operation control device
JP2003116929A (en) Front wheel steering safety device for motor-driven vehicle
KR101677413B1 (en) Multi-Purpose Forklift Truck having Steering Device for Working
JPH08188027A (en) Tread adjusting device
JP5856459B2 (en) Railroad car
JP2016137873A (en) Work vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees