JP3958547B2 - Pump equipment - Google Patents

Pump equipment Download PDF

Info

Publication number
JP3958547B2
JP3958547B2 JP2001305189A JP2001305189A JP3958547B2 JP 3958547 B2 JP3958547 B2 JP 3958547B2 JP 2001305189 A JP2001305189 A JP 2001305189A JP 2001305189 A JP2001305189 A JP 2001305189A JP 3958547 B2 JP3958547 B2 JP 3958547B2
Authority
JP
Japan
Prior art keywords
pump
suction port
vortex
buoyancy structure
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001305189A
Other languages
Japanese (ja)
Other versions
JP2003106288A (en
Inventor
豪 遠藤
雅樹 宮本
善彦 小野寺
克司 伊関
敏次 佐瀬
昭 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001305189A priority Critical patent/JP3958547B2/en
Publication of JP2003106288A publication Critical patent/JP2003106288A/en
Application granted granted Critical
Publication of JP3958547B2 publication Critical patent/JP3958547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、緊急排水用等に用いて好適なポンプ設備に関するものである。
【0002】
【従来の技術】
従来、例えば河川や用水路の水位が大雨等で上昇して洪水の危険が生じたとき或いは実際に洪水が生じたときは、緊急に排水を行なう必要がある。そして排水作業は、フロートを備えた水中ポンプをトラック等によって前記排水しようとする河川や用水路等の近傍まで搬送して投入することによって行なう。
【0003】
図14はフロート81を備えた水中ポンプ80をクレーン車85によって河川等90に投入する方法の一例を示す図である。同図に示すようにフロート81を取り付けた水中ポンプ80が人力運搬不可能な重量の場合は、これをクレーン83によって吊り上げて河川等90の所望の浸水場所へ投入する。特に河川等90が遠浅の場合、水中ポンプ80の必要水深を確保するため、遠くへ水中ポンプ80を投入する必要があり、その分大型のクレーン83が必要になる。
【0004】
一方フロート81を取り付けた水中ポンプ80が人力運搬可能な重量の場合は、人力にて河川等90内の必要水深を確保できる地点まで運搬して投入する。特に河川等90が遠浅の場合、水中ポンプ80の必要水深を確保するため、河川等90の中央付近まで運搬することとなる。
【0005】
なおこの種の水中ポンプ80のポンプ吸込口87は羽根車近傍にあり、水中ポンプ80と一体になっている。
【0006】
しかしながら上記従来のポンプ設備には以下のような問題点があった。
▲1▼水中ポンプ80を人力運搬する場合、上述のように遠浅な河川等90では水深の深い河川中央付近まで運搬して投入することとなるので、危険を伴ってしまう。
【0007】
▲2▼水中ポンプ80をクレーン83によって運搬する場合、上述のように遠浅な河川等90では水深の深い河川中央付近まで吊り上げて投入するので、これに見合う大型のクレーン車を用意する必要がある。
【0008】
▲3▼クレーン車の吊り荷重容量によってポンプ投入位置が制限される場合、排水する必要のある水深まで排水することが困難になる。
【0009】
▲4▼より低水位まで排水する必要があり、その際排水場所の底に堆積している砂・小石等の堆積物を水中ポンプ80が吸い込まないようにする場合、水中ポンプ80の没水深さを浅くして、ポンプ吸込口87より水面までの高さを低くすることとなるが、そうするとこんどは水面に空気吸込渦が発生して空気を吸い込み易くなり、振動・騒音を発生してしまう恐れがある。
【0010】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたものでありその目的は、岸から遠い場所やより水深の深い位置(例えば河川中央)での表面取水が容易に行なえ、高水位から低水位まで容易に安全な排水が可能になるポンプ設備を提供することにある。
【0011】
【課題を解決するための手段】
上記問題点を解決するため本発明にかかるポンプ設備は、搬送自在で水中に没して使用される水中ポンプの吸込側に可撓性吸込管を接続すると共に、液面に投入して浮かべる浮力構造体に設けたポンプ吸込口を前記可撓性吸込管に接続し、さらに前記浮力構造体は液中で開口する前記ポンプ吸込口の上部を覆う渦防止部を具備することを特徴とする。
【0012】
また本発明は、前記浮力構造体にポンプ吸込口を有する吸込管を取り付け、この吸込管に前記可撓性吸込管を接続したことを特徴とする。
また本発明は、前記浮力構造体は縦断面T字状又は縦断面逆T字状とすることで外方に張り出す前記渦防止部を設けたことを特徴とする。
また本発明は、前記吸込管は前記浮力構造体に吊下げ手段によって吊下げられていることを特徴とする。
【0013】
また本発明は、前記浮力構造体自体をポンプ吸込口を有する形状に形成したことを特徴とする。
【0014】
また本発明は、前記浮力構造体が、その下面に設けた開口自体をポンプ吸込口とするとともに、その外方に向けて前記渦防止部を張り出して構成されていることを特徴とする。
また本発明は、前記浮力構造体が、横向きに前記ポンプ吸込口を設け、このポンプ吸込口の吸込側前方上部を覆うように前記渦防止部を形成したことを特徴とする。
【0015】
また本発明は、前記渦防止部に、上下に貫通して渦防止部の外周から回り込む空気吸込渦を乱してこの空気吸込渦のポンプ吸込口への吸込を防止する穴を設けたことを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は本発明にかかるポンプ設備の一実施形態を示す図である。同図に示すポンプ設備は、水中ポンプ10の吸込側に可撓性吸込管20を接続すると共に、水面に投入して浮かべる浮力構造体30に設けたポンプ吸込口41に前記可撓性吸込管20を接続し、一方水中ポンプ10の吐出側に排水ホース50を接続して構成されている。
【0017】
即ちこのポンプ設備においては、水中ポンプ10とポンプ吸込口41を分離させ、水中ポンプ10とポンプ吸込口41をつなぐ吸込管20をホースと可撓管を組み合わせた可撓性吸込管20とし、ポンプ吸込口41部分を浮力構造体30に取り付けることでこの浮力構造体30及びポンプ吸込口41部分のみをクレーン車84のクレーン83によって河川等60の液面に浮かべるように構成している。従って水中ポンプ10自体には浮力構造体を取り付ける必要はなく、水中に没するようにしている。
【0018】
また水中ポンプ10の吐出側に取り付けた排水ホース50は、所望の排水場所(例えば他の河川65)まで引き伸ばされている。
【0019】
そして水中ポンプ10を駆動すれば、ポンプ吸込口41から増水した河川等60の水が吸い込まれ排水ホース50によって所望の排水場所に排水されていく。
【0020】
本実施形態によれば、重い水中ポンプ10を取水位置まで運搬・設置する必要がなく、軽い浮力構造体30を運搬するだけでポンプ吸込口41の取水位置を自由に選択することができる。このため岸から遠い場所やより水深の深い位置(例えば河川中央)での表面取水が容易に行なえ、高水位から低水位まで容易に排水可能になる。またたとえ水中ポンプ10が重かったり、河川等60が遠浅で遠くまでポンプ吸込口41を吊り上げていく必要があっても、それほど大型のクレーン83を使用しなくてもよくなる。またクレーン83を用いず人力によってポンプ吸込口41の部分を運搬する場合も、その運搬が容易になる。
【0021】
図2はポンプ設備の参考例を示す図である。同図に示すポンプ設備において、前記実施形態にかかるポンプ設備と同一又は相当部分には同一符号を付してその詳細な説明は省略する。この参考例にかかるポンプ設備において前記ポンプ設備と相違する点は、水中ポンプ10の代わりに陸上用のポンプ10´を用いた点のみである。この参考例ではポンプ10´は移動を容易にするため車両17に載せられている。
【0022】
図3〜図13はそれぞれ浮力構造体30を取り付けたポンプ吸込口41の部分を示す要部拡大概略断面図である。先ず図3に示すものは、縦断面T字状の浮力構造体30−1の下部にポンプ吸込口41を有する吸込管40を取り付け、ポンプ吸込口41を真下に向けると共にこの吸込管40を屈曲することで浮力構造体30−1の側部から外部に突出してその端部を前記可撓性吸込管20に接続している。
【0023】
ここで浮力構造体30−1はその上部に、ポンプ吸込口41の上部を覆って、少なくともポンプ吸込口41の吸込口径Dに対して同心円で二倍の直径2Dに張り出す円形の渦防止部31を具備している。浮力構造体30−1はこれを投入する液体よりも比重の小さい構造のものであればよく、例えば中空のチューブ状のものでも、発泡樹脂製のものでも、それ以外のどのような材質・構造のものであってもよい(以下の各実施形態においても同様)。またポンプ吸込口41の水深は、0.7D以上となるように構成されている。
【0024】
実験によれば、ポンプ吸込口41での水の吸込流速が1.6m/sの場合、吸込口径Dに対して渦防止部31の直径を2Dとすれば、ポンプ吸込口41の水深が0.7Dでも水面に生じる吸込渦がポンプ吸込口41に吸い込まれないことが確認できた。従って上記条件は、ポンプ吸込口41での水の吸込流速が1.6m/s以下であれば適用できる。なお渦防止部31の直径を2D以上にすれば、さらに速い吸込流速や浅い水深でも空気吸込渦がポンプ吸込口41に吸い込まれなくなる。またポンプ吸込口41の水深を0.7D以上にすれば、さらに速い吸込流速や2D以下の直径の渦防止部31でも空気吸込渦がポンプ吸込口41に吸い込まれなくなる。
【0025】
図4に示すものは、縦断面T字状であって上部に渦防止部31を設けた浮力構造体30−2の中央に真下を向くポンプ吸込口41を有する吸込管40を取り付け、この吸込管40を浮力構造体30−2の上面から突出して折り曲げてその先端に前記可撓性吸込管20を接続して構成されている。ポンプ吸込口41の吸込口径及び水深と渦防止部31の直径との寸法関係は上記実施形態と同様である。このように構成しても水面に生じる吸込渦の生成が渦防止部31によって確実に防止できる。
【0026】
図5に示すものは、縦断面逆T字状であって下部に渦防止部31を設けた浮力構造体30−3の中央にポンプ吸込口41を有する吸込管40を取り付け、この吸込管40の上部を折り曲げて浮力構造体30−3の側部から外部に突出し、その先端を前記可撓性吸込管20に接続して構成されている。ポンプ吸込口41の吸込口径及び水深と渦防止部31の直径との寸法関係は上記実施形態と同様である。またこの実施形態の場合は渦防止部31の部分に上下貫通する穴33が設けられている。この穴33は、矢印aで示すように渦防止部31の外周から回り込むようにしてポンプ吸込口41内に吸い込まれようとする空気吸込渦を、矢印bで示すように穴33を介して侵入してくる水の流れが乱し、これによってポンプ吸込口41への前記空気吸込渦の吸い込みを防止するものである。このように構成すれば水面に生じる空気吸込渦のポンプ吸込口41への吸い込みがより確実に防止できる。
【0027】
図6に示すものも、縦断面逆T字状であって下部に渦防止部31を設けた浮力構造体30−4の中央にポンプ吸込口41を有する吸込管40を取り付け、この吸込管40を浮力構造体30−4の上面から突出させた後に折り曲げて、その先端を前記可撓性吸込管20に接続して構成されている。ポンプ吸込口41の吸込口径及び水深と渦防止部31の直径との寸法関係は上記実施形態と同様である。またこの実施形態の場合も渦防止部31の部分に穴33を設けてより効果的に空気吸込渦のポンプ吸込口41への吸い込みを防止している。
【0028】
図7に示すものは、コップを伏せた形状であってその下面外周から外方に向けて渦防止部31を張り出した形状の浮力構造体30−5を具備し、その側面に可撓性吸込管20を接続して構成されている。この実施形態の場合、浮力構造体30−5の下面に設けた開口自体をポンプ吸込口41としている。ポンプ吸込口41の吸込口径及び水深と渦防止部31の直径との寸法関係は上記実施形態と同様である。またこの実施形態の場合も渦防止部31の部分に穴33を設けてより効果的に空気吸込渦のポンプ吸込口41への吸い込みを防止している。
【0029】
図8に示すものは、浮力構造体30−6自体にポンプ吸込口41を設け、その側面に可撓性吸込管20を接続して構成される点では図7に示すものと同様であるが、この実施形態の場合、ポンプ吸込口41を浮力構造体30−6の下面中央に水平方向を向くように形成し、また浮力構造体30−6に設ける渦防止部31はポンプ吸込口41の吸込側前方上部を覆うように半径1Dの半円弧状に形成して構成されている。実験によればこのようにポンプ吸込口41を横向きに設置しても、その上部に半径1D以上の半円弧状の渦防止部31を設ければ、ポンプ吸込口41の中心軸までの水深が1D以上であれば、ポンプ吸込口41での水の吸込流速が1.6m/sの場合、空気吸込渦がポンプ吸込口41に吸い込まれる恐れがなかった。もちろん上記条件は、ポンプ吸込口41での水の吸込流速が1.6m/s以下であれば適用できる。また渦防止部31の直径を1D以上にすれば、さらに速い吸込流速や浅い水深でも空気吸込渦がポンプ吸込口41に吸い込まれることはない。またポンプ吸込口41の水深を1.0D以上にすれば、さらに速い吸込流速や1D以下の直径の渦防止部31でも空気吸込渦がポンプ吸込口41に吸い込まれることはない。
【0030】
図9に示すものは、平板状(円板状)の浮力構造体30−7の中央に吸込管40をそのポンプ吸込口41が真下を向くように固定し、吸込管40の浮力構造体30−7の上部から突出する部分を横方向を向くように屈曲させてその端部を前記可撓性吸込管20に接続して構成されている。この実施形態においても、ポンプ吸込口41の吸込口径及び水深と渦防止部31の直径との寸法関係は前記図3や図4等に示す実施形態と同様である。この実施形態の場合、浮力構造体30−7全体が渦防止部31となる。
【0031】
図10に示すものは、平板状の浮力構造体30−8に対して吸込管40をそのポンプ吸込口41が垂直下方向から少し斜め前方を向くように固定し、吸込管40の浮力構造体30−8の上部から突出する部分を横方向を向くように屈曲させてその端部に前記可撓性吸込管20を接続して構成されている。この場合も浮力構造体30−8全体が渦防止部31を構成している。この実施形態のようにポンプ吸込口41を斜め下方向きに設置しても、その上部に設置してこれを覆う渦防止部31の形状を、ポンプ吸込口41の吸込口径Dの二倍の直径2Dの円形とすれば、ポンプ吸込口41の中心軸までの水深が1D以上であれば、ポンプ吸込口41での水の吸込流速が1.6m/sの場合、空気吸込渦がポンプ吸込口41に吸い込まれる恐れはないことを実験で確認した。もちろん上記条件は、ポンプ吸込口41での水の吸込流速が1.6m/s以下であれば適用できる。また渦防止部31の直径を大きくすれば、さらに速い吸込流速や浅い水深でも空気吸込渦がポンプ吸込口41に吸い込まれることはない。またポンプ吸込口41の水深を1D以上にすれば、さらに速い吸込流速や外形の小さい渦防止部31でも空気吸込渦がポンプ吸込口41に吸い込まれることはない。
【0032】
次に図11,図12,図13に示す実施形態においては、何れも平板状の浮力構造体30−9,10,11から吊下げ手段37によって吸込管40をその下方に吊り下げている。吊下げ手段37としてはロープ、ワイヤ、鎖等、種々のものが考えられる。ここで図11に示す実施形態においては、ポンプ吸込口41を真下に向けており、図12,図13に示す実施形態においては、ポンプ吸込口41を斜め下方に向けている。そして図11に示す実施形態の場合は浮力構造体30−9は円形で、前記図3,4,9と同様のポンプ吸込口41の吸込口径と水深と渦防止部31の直径の寸法関係及びポンプ吸込口41への水の吸込流速を1.6m/s以下にすることで、空気吸込渦がポンプ吸込口41に吸い込まれることを防止している。また図12,図13に示す実施形態の場合は、図10に示す浮力構造体30−8と同じ形状の浮力構造体30−10,11で、前記図10と同様のポンプ吸込口41の吸込口径と水深と渦防止部31の寸法関係及びポンプ吸込口41への水の吸込流速を1.6m/s以下にすることで、水面に生じる空気吸込渦がポンプ吸込口41に吸い込まれることを防止している。
【0033】
なお上記各実施形態において、浮力構造体30−1〜11の可撓性吸込管20を接続している側は、可撓性吸込管20とその内部を通過する水の重量がかかり、浮力構造体30−1〜11が傾き、渦を吸い込み易くなる傾向にあるため、例えば浮力構造体30−1〜11の可撓性吸込管20を接続した側の部分の厚みや外形寸法を大きくしたり、または別途浮力を生じるものを取り付けたりするなどの傾き防止手段を設けることで、浮力構造体30−1〜11が傾かないようにするのが好ましい。
【0034】
以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの形状や構造や材質であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば浮力構造体の形状は縦断面T字状や平板状のものに限定されるものではなく、種々の変形が可能である。また上記実施形態ではポンプ吸込口41が下方向又は斜め下方向又は水平方向を向いている例を示したが、上方向等、他のどの方向を向いていてもよい。
【0035】
また上記実施形態では渦防止装置として、ポンプ吸込口の上部を覆う渦防止部を具備して構成したが、ポンプ吸込口に水面から空気吸込渦が吸い込まれるのを防止する手段であれば、他のどのような構造の渦防止装置であってもよい。
【0036】
【発明の効果】
以上詳細に説明したように本発明によれば以下のような優れた効果を有する。▲1▼重い水中ポンプを取水位置に運搬・設置する必要がなく、軽い浮力構造体を運搬するだけでポンプ吸込口の取水位置を自由に選択することができ、このため岸から遠い場所やより水深の深い位置(例えば河川中央)での表面取水が容易に行なえ、高水位から低水位まで容易に安全な排水が可能になる。
【0037】
▲2▼またたとえ水中ポンプが重かったり、取水しようとする河川等が遠浅で遠くまでポンプ吸込口を吊り上げていく必要があっても、ポンプ吸込口を取り付けた浮力構造体はこれに水中ポンプを取り付けた場合に比べてはるかに軽いので、大型のクレーンを使用しなくてもよくなり、またクレーンを用いず人力によってポンプ吸込口の部分を取水位置まで運搬する場合もその運搬がはるかに安全・容易になり、機動性の向上や労力の軽減が図れ、設置用具も簡便にできる。
【0038】
▲3▼浮力構造体に渦防止装置を設けたので、より低水位まで排水することが可能になる。本発明の場合、軽い浮力構造体にポンプ吸込口を取り付けるだけの構造なので軽く、容易にポンプ吸込口を水面近傍の水深の浅い位置に設置できるので、渦防止装置を設ける意義は大きい。
【図面の簡単な説明】
【図1】本発明にかかるポンプ設備の一実施形態を示す図である。
【図2】 ポンプ設備の参考例を示す図である。
【図3】浮力構造体30−1を取り付けたポンプ吸込口41の部分を示す要部拡大概略断面図である。
【図4】浮力構造体30−2を取り付けたポンプ吸込口41の部分を示す要部拡大概略断面図である。
【図5】浮力構造体30−3を取り付けたポンプ吸込口41の部分を示す要部拡大概略断面図である。
【図6】浮力構造体30−4を取り付けたポンプ吸込口41の部分を示す要部拡大概略断面図である。
【図7】浮力構造体30−5を取り付けたポンプ吸込口41の部分を示す要部拡大概略断面図である。
【図8】浮力構造体30−6を取り付けたポンプ吸込口41の部分を示す図であり、図8(a)は要部拡大概略断面図、図8(b)は平面図である。
【図9】浮力構造体30−7を取り付けたポンプ吸込口41の部分を示す要部拡大概略断面図である。
【図10】浮力構造体30−8を取り付けたポンプ吸込口41の部分を示す図であり、図10(a)は要部拡大概略断面図、図10(b)は平面図である。
【図11】浮力構造体30−9を取り付けたポンプ吸込口41の部分を示す要部拡大概略断面図である。
【図12】浮力構造体30−10を取り付けたポンプ吸込口41の部分を示す要部拡大概略断面図である。
【図13】浮力構造体30−11を取り付けたポンプ吸込口41の部分を示す要部拡大概略断面図である。
【図14】従来のポンプ設備の一例を示す図である。
【符号の説明】
10 水中ポンプ
10´ 陸上用のポンプ
17 車両
20 可撓性吸込管
30(30−1〜11) 浮力構造体
31 渦防止部(渦防止装置)
33 穴
37 吊下げ手段
40 吸込管
41 ポンプ吸込口
50 排水ホース
60 河川等
65 他の河川等
83 クレーン
84 クレーン車
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pump facility suitable for use in emergency drainage or the like.
[0002]
[Prior art]
Conventionally, for example, when the water level of a river or an irrigation channel rises due to heavy rain and a danger of flooding occurs or when flooding actually occurs, drainage must be performed urgently. The drainage work is carried out by transporting a submersible pump equipped with a float to the vicinity of the river or irrigation channel to be drained by a truck or the like.
[0003]
FIG. 14 is a view showing an example of a method for feeding the submersible pump 80 provided with the float 81 into the river etc. 90 by the crane truck 85. As shown in the figure, when the submersible pump 80 to which the float 81 is attached has a weight that cannot be transported by manpower, the submersible pump 80 is lifted by the crane 83 and put into a desired flooded place such as a river 90. In particular, when the river 90 or the like is shallow, in order to secure the necessary water depth of the submersible pump 80, it is necessary to put the submersible pump 80 in the distance, and a large crane 83 is required accordingly.
[0004]
On the other hand, when the submersible pump 80 to which the float 81 is attached has a weight that can be transported manually, it is transported to a point where the necessary water depth in the river 90 can be secured by human power. In particular, when the river etc. 90 is shallow, it is transported to the vicinity of the center of the river etc. 90 in order to secure the necessary water depth of the submersible pump 80.
[0005]
The pump suction port 87 of this type of submersible pump 80 is in the vicinity of the impeller and is integrated with the submersible pump 80.
[0006]
However, the conventional pump equipment has the following problems.
{Circle around (1)} When the submersible pump 80 is manually transported, the shallow river 90 or the like 90 is transported to the vicinity of the center of the river where the water depth is deep, and is therefore dangerous.
[0007]
(2) When the submersible pump 80 is transported by the crane 83, the shallow river etc. 90 is lifted up to near the center of the river where the water depth is deep as described above, so it is necessary to prepare a large crane car corresponding to this. .
[0008]
(3) When the pump input position is limited by the suspension load capacity of the crane vehicle, it becomes difficult to drain to a depth that requires drainage.
[0009]
(4) It is necessary to drain to a lower water level, and when the submersible pump 80 does not suck in sediments such as sand and pebbles accumulated at the bottom of the drainage site, the submerged depth of the submersible pump 80 However, if you do so, air suction vortices will be generated on the water surface, making it easier to inhale air, possibly causing vibration and noise. There is.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and its purpose is to easily perform surface water intake at a location far from the shore or at a deeper position (for example, the center of a river) and easily from a high water level to a low water level. It is to provide a pump facility that enables safe drainage.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the pump equipment according to the present invention is connected to a suction side of a submersible pump which is transportable and submerged in water, and has a buoyancy floated by being put on the liquid surface. A pump suction port provided in the structure is connected to the flexible suction pipe , and the buoyancy structure further includes a vortex prevention portion that covers an upper portion of the pump suction port that opens in the liquid .
[0012]
Further, the present invention is characterized in that a suction pipe having a pump suction port is attached to the buoyancy structure, and the flexible suction pipe is connected to the suction pipe.
Further, the present invention is characterized in that the buoyancy structure is provided with the vortex preventing portion that protrudes outward by having a T-shaped longitudinal section or an inverted T-shaped longitudinal section.
Further, the present invention is characterized in that the suction pipe is suspended from the buoyancy structure by a suspension means.
[0013]
Further, the present invention is characterized in that the buoyancy structure itself is formed in a shape having a pump suction port.
[0014]
Further, the present invention is characterized in that the buoyancy structure is configured such that an opening itself provided on a lower surface thereof serves as a pump suction port, and the vortex preventing portion projects outwardly.
Further, the present invention is characterized in that the buoyancy structure is provided with the pump suction port sideways, and the vortex prevention portion is formed so as to cover a suction side front upper portion of the pump suction port.
[0015]
According to the present invention, the vortex prevention portion is provided with a hole that vertically penetrates the air suction vortex that circulates from the outer periphery of the vortex prevention portion and prevents the air suction vortex from being sucked into the pump suction port. Features.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an embodiment of a pump facility according to the present invention. The pump facility shown in the figure has a flexible suction pipe 20 connected to the suction side of the submersible pump 10 and the flexible suction pipe provided in a pump suction port 41 provided in a buoyancy structure 30 that floats on the water surface. 20, while a drainage hose 50 is connected to the discharge side of the submersible pump 10.
[0017]
That is, in this pump facility, the submersible pump 10 and the pump suction port 41 are separated, and the suction pipe 20 that connects the submersible pump 10 and the pump suction port 41 is a flexible suction pipe 20 that combines a hose and a flexible pipe. By attaching the suction port 41 to the buoyancy structure 30, only the buoyancy structure 30 and the pump suction port 41 are floated on the liquid level of the river etc. 60 by the crane 83 of the crane vehicle 84. Therefore, it is not necessary to attach a buoyancy structure to the submersible pump 10 itself, so that it is immersed in the water.
[0018]
Further, the drainage hose 50 attached to the discharge side of the submersible pump 10 is extended to a desired drainage place (for example, another river 65).
[0019]
When the submersible pump 10 is driven, the water in the river 60 and the like increased from the pump suction port 41 is sucked and drained to a desired drainage place by the drainage hose 50.
[0020]
According to this embodiment, it is not necessary to carry and install the heavy submersible pump 10 to the water position, and the water intake position of the pump suction port 41 can be freely selected only by carrying the light buoyancy structure 30. For this reason, surface water intake can be easily performed at a location far from the shore or at a deeper position (for example, in the middle of a river), and can be easily drained from a high water level to a low water level. Even if the submersible pump 10 is heavy or the river etc. 60 is shallow and needs to lift the pump suction port 41 far away, it is not necessary to use the large crane 83. Further, when the portion of the pump suction port 41 is transported by human power without using the crane 83, the transportation becomes easy.
[0021]
FIG. 2 is a diagram showing a reference example of pump equipment . In the pump facility shown in the figure, the same or corresponding parts as those of the pump facility according to the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The pump facility according to this reference example is different from the pump facility only in that a land pump 10 ′ is used instead of the submersible pump 10. In this reference example , the pump 10 'is mounted on the vehicle 17 to facilitate movement.
[0022]
3 to 13 are enlarged schematic cross-sectional views showing the main part of the pump suction port 41 to which the buoyancy structure 30 is attached. First, as shown in FIG. 3, a suction pipe 40 having a pump suction port 41 is attached to the lower part of a buoyancy structure 30-1 having a T-shaped longitudinal section, and the suction pipe 40 is bent while directing the pump suction port 41 downward. By doing so, the buoyancy structure 30-1 protrudes to the outside from the side, and the end thereof is connected to the flexible suction pipe 20.
[0023]
Here, the buoyancy structure 30-1 covers the upper part of the pump suction port 41 at the upper part, and is a circular vortex prevention part that projects at least to a diameter 2D that is concentric with the suction port diameter D of the pump suction port 41. 31 is provided. The buoyancy structure 30-1 only needs to have a structure having a specific gravity smaller than that of the liquid into which the buoyancy structure 30-1 is charged. For example, any material / structure other than a hollow tube or foamed resin may be used. (The same applies to the following embodiments). Moreover, the water depth of the pump suction inlet 41 is comprised so that it may become 0.7D or more.
[0024]
According to the experiment, when the water suction flow rate at the pump suction port 41 is 1.6 m / s, the water depth of the pump suction port 41 is 0 if the diameter of the vortex preventing portion 31 is 2D with respect to the suction port diameter D. It was confirmed that the suction vortex generated on the water surface was not sucked into the pump suction port 41 even at 7D. Therefore, the above conditions can be applied if the water suction flow rate at the pump suction port 41 is 1.6 m / s or less. If the diameter of the vortex preventing portion 31 is set to 2D or more, the air suction vortex is not sucked into the pump suction port 41 even at a higher suction flow velocity or shallow water depth. Further, if the water depth of the pump suction port 41 is set to 0.7D or more, the air suction vortex is not sucked into the pump suction port 41 even by the vortex prevention portion 31 having a higher suction flow velocity or a diameter of 2D or less.
[0025]
In FIG. 4, a suction pipe 40 having a pump suction port 41 facing directly downward is attached to the center of a buoyancy structure 30-2 having a T-shaped longitudinal section and provided with a vortex prevention portion 31 at the upper portion. The tube 40 is configured to protrude from the upper surface of the buoyancy structure 30-2, bend, and connect the flexible suction tube 20 to the tip thereof. The dimensional relationship between the suction port diameter of the pump suction port 41 and the water depth and the diameter of the vortex prevention unit 31 is the same as in the above embodiment. Even if configured in this manner, the generation of suction vortices generated on the water surface can be reliably prevented by the vortex prevention unit 31.
[0026]
In FIG. 5, a suction pipe 40 having a pump suction port 41 is attached to the center of a buoyancy structure 30-3 having an inverted T-shaped longitudinal section and provided with a vortex prevention portion 31 at the lower portion. The upper part of the buoyancy structure 30-3 is bent and protrudes to the outside, and the tip is connected to the flexible suction pipe 20. The dimensional relationship between the suction port diameter of the pump suction port 41 and the water depth and the diameter of the vortex prevention unit 31 is the same as in the above embodiment. In the case of this embodiment, a hole 33 penetrating vertically is provided in the vortex preventing portion 31. This hole 33 penetrates the air suction vortex which is going to be sucked into the pump suction port 41 so as to go around from the outer periphery of the vortex prevention part 31 as shown by the arrow a through the hole 33 as shown by the arrow b. The incoming water flow is disturbed, thereby preventing the air suction vortex from being sucked into the pump suction port 41. If comprised in this way, the suction | inhalation to the pump suction inlet 41 of the air suction vortex produced on the water surface can be prevented more reliably.
[0027]
6 also has a suction pipe 40 having a pump suction port 41 attached to the center of a buoyancy structure 30-4 having a reverse T-shaped longitudinal section and provided with a vortex prevention portion 31 at the lower portion. Is protruded from the upper surface of the buoyancy structure 30-4 and then bent, and its tip is connected to the flexible suction pipe 20. The dimensional relationship between the suction port diameter of the pump suction port 41 and the water depth and the diameter of the vortex prevention unit 31 is the same as in the above embodiment. Also in this embodiment, a hole 33 is provided in the vortex preventing portion 31 to more effectively prevent the air suction vortex from being sucked into the pump suction port 41.
[0028]
FIG. 7 shows a buoyancy structure 30-5 having a cup-faced shape and a shape in which a vortex-preventing portion 31 is projected outward from the outer periphery of the lower surface, and flexible suction is provided on the side surface. The tube 20 is connected. In the case of this embodiment, the opening itself provided on the lower surface of the buoyancy structure 30-5 is used as the pump suction port 41. The dimensional relationship between the suction port diameter of the pump suction port 41 and the water depth and the diameter of the vortex prevention unit 31 is the same as in the above embodiment. Also in this embodiment, a hole 33 is provided in the vortex preventing portion 31 to more effectively prevent the air suction vortex from being sucked into the pump suction port 41.
[0029]
8 is the same as that shown in FIG. 7 in that the buoyancy structure 30-6 itself is provided with a pump suction port 41 and a flexible suction pipe 20 is connected to its side surface. In the case of this embodiment, the pump suction port 41 is formed in the center of the lower surface of the buoyancy structure 30-6 so as to face the horizontal direction, and the vortex prevention portion 31 provided in the buoyancy structure 30-6 is provided on the pump suction port 41. A semicircular arc having a radius of 1D is formed so as to cover the upper front side of the suction side. According to the experiment, even if the pump suction port 41 is installed sideways in this manner, the water depth to the central axis of the pump suction port 41 can be increased by providing the semicircular vortex preventing portion 31 having a radius of 1D or more on the upper part. If it was 1D or more, there was no fear that the air suction vortex was sucked into the pump suction port 41 when the water suction flow rate at the pump suction port 41 was 1.6 m / s. Of course, the above conditions can be applied if the suction flow rate of water at the pump suction port 41 is 1.6 m / s or less. Further, if the diameter of the vortex preventing portion 31 is set to 1D or more, the air suction vortex is not sucked into the pump suction port 41 even at a higher suction flow velocity or shallow water depth. Further, if the water depth of the pump suction port 41 is set to 1.0 D or more, the air suction vortex is not sucked into the pump suction port 41 even in the vortex prevention portion 31 having a higher suction flow velocity or a diameter of 1 D or less.
[0030]
In the structure shown in FIG. 9, the suction pipe 40 is fixed to the center of a plate-like (disc-like) buoyancy structure 30-7 so that the pump suction port 41 faces directly below, and the buoyancy structure 30 of the suction pipe 40 is shown. A portion protruding from the top of −7 is bent so as to face in the lateral direction, and an end thereof is connected to the flexible suction pipe 20. Also in this embodiment, the dimensional relationship between the suction port diameter and water depth of the pump suction port 41 and the diameter of the vortex preventing portion 31 is the same as that of the embodiment shown in FIG. 3 and FIG. In the case of this embodiment, the entire buoyancy structure 30-7 becomes the vortex prevention unit 31.
[0031]
10 shows that the suction pipe 40 is fixed to the flat buoyancy structure 30-8 so that the pump suction port 41 faces slightly obliquely forward from the vertically downward direction, and the buoyancy structure of the suction pipe 40 is shown. A portion protruding from the upper part of 30-8 is bent so as to face in the lateral direction, and the flexible suction pipe 20 is connected to the end thereof. Also in this case, the entire buoyancy structure 30-8 constitutes the vortex prevention unit 31. Even if the pump suction port 41 is installed obliquely downward as in this embodiment, the shape of the vortex preventing portion 31 that is installed at the top and covers this is twice the diameter of the suction port diameter D of the pump suction port 41. If the water depth to the central axis of the pump suction port 41 is 1D or more if the circular shape is 2D, then the air suction vortex is the pump suction port when the water suction flow rate at the pump suction port 41 is 1.6 m / s. It was confirmed by experiment that there is no fear of being sucked into 41. Of course, the above conditions can be applied if the suction flow rate of water at the pump suction port 41 is 1.6 m / s or less. Further, if the diameter of the vortex preventing portion 31 is increased, the air suction vortex is not sucked into the pump suction port 41 even at a higher suction flow velocity or shallower water depth. Further, if the water depth of the pump suction port 41 is set to 1D or more, the air suction vortex is not sucked into the pump suction port 41 even in the vortex prevention unit 31 having a faster suction flow velocity and a small outer shape.
[0032]
Next, in the embodiments shown in FIGS. 11, 12, and 13, the suction pipe 40 is suspended below the flat buoyancy structures 30-9, 10, and 11 by the suspension means 37. As the suspending means 37, various things such as a rope, a wire, and a chain can be considered. Here, in the embodiment shown in FIG. 11, the pump suction port 41 is directed downward, and in the embodiments shown in FIGS. 12 and 13, the pump suction port 41 is directed obliquely downward. In the case of the embodiment shown in FIG. 11, the buoyancy structure 30-9 is circular, and the dimensional relationship between the suction inlet diameter of the pump inlet 41, the water depth, and the diameter of the vortex prevention unit 31 is the same as in FIGS. By making the suction flow rate of water into the pump suction port 41 1.6 m / s or less, the air suction vortex is prevented from being sucked into the pump suction port 41. In the case of the embodiment shown in FIGS. 12 and 13, buoyancy structures 30-10, 11 having the same shape as the buoyancy structure 30-8 shown in FIG. The air suction vortex generated on the water surface is sucked into the pump suction port 41 by setting the dimensional relationship between the diameter, the water depth, and the vortex prevention portion 31 and the water suction flow rate to the pump suction port 41 to 1.6 m / s or less. It is preventing.
[0033]
In each of the above embodiments, the side of the buoyancy structures 30-1 to 11 to which the flexible suction pipe 20 is connected is subjected to the weight of the flexible suction pipe 20 and the water passing therethrough, and the buoyancy structure. Since the bodies 30-1 to 11-11 are inclined and tend to suck vortices, for example, the thickness and outer dimensions of the portion of the buoyancy structures 30-1 to 11 to which the flexible suction pipe 20 is connected are increased. Alternatively, it is preferable to prevent the buoyancy structures 30-1 to 11 from being tilted by providing a tilt prevention means such as attaching an element that generates buoyancy separately.
[0034]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. Note that any shape, structure, or material not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the effects and advantages of the present invention are exhibited. For example, the shape of the buoyancy structure is not limited to a vertical cross-sectional T shape or a flat plate shape, and various modifications are possible. Moreover, although the pump inlet 41 showed the example which has faced the downward direction, the diagonally downward direction, or the horizontal direction in the said embodiment, you may face any other directions, such as an upward direction.
[0035]
In the above embodiment, the vortex prevention device is configured to include a vortex prevention portion that covers the upper part of the pump suction port. However, any other means can be used as long as it prevents the air suction vortex from being sucked into the pump suction port from the water surface. The vortex prevention device having any structure may be used.
[0036]
【The invention's effect】
As described in detail above, the present invention has the following excellent effects. (1) There is no need to transport and install a heavy submersible pump to the water position, and the water intake position of the pump suction port can be freely selected simply by transporting a light buoyancy structure. Surface water intake at a deep water depth (for example, the center of a river) can be easily performed, and safe drainage can be easily performed from a high water level to a low water level.
[0037]
(2) In addition, even if the submersible pump is heavy or the river to be taken in is shallow, it is necessary to lift the pump suction port far away, the buoyancy structure with the pump suction port attached to the submersible pump Because it is much lighter than when installed, it is not necessary to use a large crane, and it is much safer to transport the pump suction port to the water position by hand without using a crane. It becomes easy, the mobility can be improved and the labor can be reduced, and the installation tool can be simplified.
[0038]
(3) Since the vortex preventing device is provided in the buoyancy structure, it becomes possible to drain to a lower water level. In the case of the present invention, since it is a structure that simply attaches the pump suction port to a light buoyancy structure, the pump suction port can be easily installed at a shallow depth near the water surface, and thus it is significant to provide a vortex prevention device.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a pump facility according to the present invention.
FIG. 2 is a diagram showing a reference example of pump equipment .
FIG. 3 is an enlarged schematic cross-sectional view showing a main part of a pump suction port 41 to which a buoyancy structure 30-1 is attached.
4 is an enlarged schematic cross-sectional view of a main part showing a portion of a pump suction port 41 to which a buoyancy structure 30-2 is attached. FIG.
FIG. 5 is an enlarged schematic cross-sectional view showing a main part of a pump suction port 41 to which a buoyancy structure 30-3 is attached.
FIG. 6 is an enlarged schematic cross-sectional view showing a main part of a pump suction port 41 to which a buoyancy structure 30-4 is attached.
FIG. 7 is an enlarged schematic cross-sectional view showing a main part of a pump suction port 41 to which a buoyancy structure 30-5 is attached.
8A and 8B are diagrams showing a portion of a pump suction port 41 to which a buoyancy structure 30-6 is attached, FIG. 8A is an enlarged schematic cross-sectional view of a main part, and FIG. 8B is a plan view.
FIG. 9 is an enlarged schematic cross-sectional view of a main part showing a portion of a pump suction port 41 to which a buoyancy structure 30-7 is attached.
10A and 10B are diagrams showing a portion of the pump suction port 41 to which the buoyancy structure 30-8 is attached, FIG. 10A is an enlarged schematic cross-sectional view of the main part, and FIG. 10B is a plan view.
FIG. 11 is an enlarged schematic cross-sectional view showing a main part of a pump suction port 41 to which a buoyancy structure 30-9 is attached.
12 is an enlarged schematic cross-sectional view of a main part showing a portion of a pump suction port 41 to which a buoyancy structure 30-10 is attached. FIG.
13 is an enlarged schematic cross-sectional view of a main part showing a portion of a pump suction port 41 to which a buoyancy structure 30-11 is attached. FIG.
FIG. 14 is a diagram showing an example of conventional pump equipment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Submersible pump 10 'Land pump 17 Vehicle 20 Flexible suction pipe 30 (30-1 to 11) Buoyancy structure 31 Swirl prevention part (vortex prevention device)
33 Hole 37 Suspension means 40 Suction pipe 41 Pump suction port 50 Drain hose 60 River etc. 65 Other river etc. 83 Crane 84 Crane vehicle

Claims (8)

搬送自在で水中に没して使用される水中ポンプの吸込側に可撓性吸込管を接続すると共に、液面に投入して浮かべる浮力構造体に設けたポンプ吸込口を前記可撓性吸込管に接続し、さらに前記浮力構造体は液中で開口する前記ポンプ吸込口の上部を覆う渦防止部を具備することを特徴とするポンプ設備。 A flexible suction pipe is connected to the suction side of a submersible pump that can be transported and immersed in water, and the pump suction port provided in the buoyancy structure floating on the liquid surface is provided with the flexible suction pipe. Further, the buoyancy structure includes a vortex prevention portion that covers an upper portion of the pump suction port that opens in the liquid . 前記浮力構造体にポンプ吸込口を有する吸込管を取り付け、この吸込管に前記可撓性吸込管を接続したことを特徴とする請求項1記載のポンプ設備。  2. The pump equipment according to claim 1, wherein a suction pipe having a pump suction port is attached to the buoyancy structure, and the flexible suction pipe is connected to the suction pipe. 前記浮力構造体は縦断面T字状又は縦断面逆T字状とすることで外方に張り出す前記渦防止部を設けたことを特徴とする請求項2に記載のポンプ設備。3. The pump equipment according to claim 2, wherein the buoyancy structure is provided with the vortex preventing portion projecting outward by having a longitudinal section T shape or a longitudinal section inverted T shape. 前記吸込管は前記浮力構造体に吊下げ手段によって吊下げられていることを特徴とする請求項2に記載のポンプ設備。The pump equipment according to claim 2, wherein the suction pipe is suspended from the buoyancy structure by a suspension means. 前記浮力構造体自体をポンプ吸込口を有する形状に形成したことを特徴とする請求項1記載のポンプ設備。  2. The pump equipment according to claim 1, wherein the buoyancy structure itself is formed in a shape having a pump suction port. 前記浮力構造体は、その下面に設けた開口自体をポンプ吸込口とするとともに、その外方に向けて前記渦防止部を張り出して構成されていることを特徴とする請求項5記載のポンプ設備。6. The pump equipment according to claim 5, wherein the buoyancy structure is configured such that an opening provided on a lower surface thereof serves as a pump suction port, and the vortex preventing portion projects outwardly. . 前記浮力構造体は、横向きに前記ポンプ吸込口を設け、このポンプ吸込口の吸込側前方上部を覆うように前記渦防止部を形成したことを特徴とする請求項5記載のポンプ設備。6. The pump equipment according to claim 5, wherein the buoyancy structure is provided with the pump suction port in a lateral direction, and the vortex prevention portion is formed so as to cover a suction side front upper portion of the pump suction port. 前記渦防止部に、上下に貫通して渦防止部の外周から回り込む空気吸込渦を乱してこの空気吸込渦のポンプ吸込口への吸込を防止する穴を設けたことを特徴とする請求項1又は2又は5に記載のポンプ設備。The vortex prevention part is provided with a hole that disturbs an air suction vortex penetrating up and down from the outer periphery of the vortex prevention part to prevent the air suction vortex from being sucked into a pump suction port. Pump equipment according to 1 or 2 or 5.
JP2001305189A 2001-10-01 2001-10-01 Pump equipment Expired - Fee Related JP3958547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001305189A JP3958547B2 (en) 2001-10-01 2001-10-01 Pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001305189A JP3958547B2 (en) 2001-10-01 2001-10-01 Pump equipment

Publications (2)

Publication Number Publication Date
JP2003106288A JP2003106288A (en) 2003-04-09
JP3958547B2 true JP3958547B2 (en) 2007-08-15

Family

ID=19125015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001305189A Expired - Fee Related JP3958547B2 (en) 2001-10-01 2001-10-01 Pump equipment

Country Status (1)

Country Link
JP (1) JP3958547B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162675A (en) * 2017-03-24 2018-10-18 株式会社荏原製作所 Vortex flow prevention device

Also Published As

Publication number Publication date
JP2003106288A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
TWI804548B (en) Floating liquid intake
EP1236832A1 (en) System and method for discharging deposit
JP6609811B2 (en) Mud-mouth device with float
JP3958547B2 (en) Pump equipment
EP0091264A1 (en) Submersible pumping equipment
JP2001214879A (en) Bottom sampling strainer for submergible pump having excavating function
JP4892259B2 (en) Drainage pump
JPH11287194A (en) Pumping device
CN207500218U (en) For the hydraulic oil container of grab bucket dredger
CN205475074U (en) Build air supporting of many storehouses of single -bucket component for breakwater and sink to concentrating operating means
JPS5920454Y2 (en) dredging equipment
JP3043767U (en) Pond water purification equipment
JP3979514B2 (en) Pumping equipment
CN2299896Y (en) Movable silt sucker for reservoir and river channel
JP3475006B2 (en) Underground plastic tank
CN216108549U (en) Side slope drainage device
JP2003328978A (en) Vertical shaft type pump
CN214738666U (en) Anti base that floats of integration pump station
AU2018100309A4 (en) Floating liquid intake
KR200472852Y1 (en) River sand extraction apparatus's cage
CN210195987U (en) Suspension type water pumping device
JP3809345B2 (en) Sludge recovery equipment
JP3122733B2 (en) Oil recovery device
JP3043849U (en) Manhole drainage equipment
JPH01322030A (en) Raft type mud recovering device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070416

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3958547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees