JP3957418B2 - Flame retardant resin composition - Google Patents

Flame retardant resin composition Download PDF

Info

Publication number
JP3957418B2
JP3957418B2 JP33299498A JP33299498A JP3957418B2 JP 3957418 B2 JP3957418 B2 JP 3957418B2 JP 33299498 A JP33299498 A JP 33299498A JP 33299498 A JP33299498 A JP 33299498A JP 3957418 B2 JP3957418 B2 JP 3957418B2
Authority
JP
Japan
Prior art keywords
resin
ethylene
copolymer
flame retardant
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33299498A
Other languages
Japanese (ja)
Other versions
JP2000154277A (en
Inventor
武 増田
進 森下
肇子 川田
直喜 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Original Assignee
Shikoku Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp filed Critical Shikoku Chemicals Corp
Priority to JP33299498A priority Critical patent/JP3957418B2/en
Publication of JP2000154277A publication Critical patent/JP2000154277A/en
Application granted granted Critical
Publication of JP3957418B2 publication Critical patent/JP3957418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ポリフェニレンエーテル系樹脂、変性ポリカーボネート樹脂など各種の合成樹脂に、非ハロゲン系のリン酸アミド系化合物を配合した難燃性樹脂組成物を提供するものである。
【0002】
【従来の技術】
難燃性樹脂組成物は、電気部品、自動車部品などの用途分野において広く使用されているが、従来知られているハロゲン含有化合物と酸化アンチモンを配合したものは、燃焼時に腐食性、有害性のハロゲン系ガスの発生を伴うので、近時特に非ハロゲン系の難燃剤を用いて難燃特性を改善することが求められている。
【0003】
非ハロゲン系難燃剤としては、特開昭53−73248号公報にトリフェニルホスフェートなどのリン酸エステル、特開昭60-106853号公報に縮合リン酸アミド(リン酸アンモニウムの縮合体)、特開昭63-235363号公報にフェニルリン酸エステルモノアミド、フェニルリン酸エステルモノアミドを配合したものが、それぞれ開示されている。
【0004】
しかしながら、これらの化合物は樹脂の耐加水分解性を低下させる傾向があり、しかも樹脂との加熱混練時に分解が起こり、作業環境を悪化するホスフィンガスを発生し易いという問題点があるため、必ずしも満足しうるものとは言えない。
【0005】
【発明が解決しようとする課題】
本発明は、このような事情に鑑みポリフェニレンエーテル系樹脂、変性ポリカーボネート樹脂など各種の合成樹脂に対する相溶性が良好であり、且つこれらの樹脂に対する耐加水分解性に優れ、また樹脂との加熱混練時に毒性の強いホスフィンガスの発生を低減しうる非ハロゲン系の難燃剤を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者等は、非ハロゲン系難燃剤を使用することを前提として数多くの試験研究を行った結果、ポリフェニレンエーテル系樹脂、変性ポリカーボネート樹脂など種々の合成樹脂に対し、特定のリン酸アミド類を配合させることによって、所期の目的を達成しうることを見い出し、本発明を完成するに至ったものである。
【0007】
すなわち、本発明の難燃性樹脂組成物は、難燃性を示す有効成分として、下記の化1として示されるリン酸アミド化合物を少なくとも1種を配合させたものである。
【0008】
【化

Figure 0003957418
但し式中、 は水素原子、アルキル基、シクロヘキシル基、アリル基、フェニル基、アラルキル基を表わす。
【0009】
前記構造式で示される代表的な化合物としては、ジフェニルアミドホスフェート、ジフェニル(メチルアミド)ホスフェート、ジフェニル(エチルアミド)ホスフェート、ジフェニル(プロピルアミド)ホスフェート、ジフェニル(オクチルアミド)ホスフェート、ジフェニル(ウンデシルアミド)ホスフェート、ジフェニル(シクロヘキシルアミド)ホスフェート、ジフェニル(アリルアミド)ホスフェート、ジフェニル(アニリド)ホスフェート、ジフェニル(ベンジルアミド)ホスフェート、等が挙げられる。
【0010】
【0011】
【0012】
【発明の実施の形態】
本発明の実施に適する合成樹脂としては、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン−酢酸ビニル共重合体、エチレン−プロピレン共重合体、エチレン−α−オレフィン共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸共重合体などのポリオレフィン樹脂等が挙げられる。
【0013】
その他の適用可能な樹脂としては、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキッド樹脂、エポキシ樹脂等の熱硬化性樹脂、ポリスチレン、発泡ポリスチレン、アクリルニトリル−スチレン共重合体、アクリルニトリル−スチレン−ブタジエン共重合体、石油樹脂、ポリメチルメタクリレート、ポリアミド樹脂、ポリカーボネート樹脂、ポリカーボネート・ABS混合樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート、ポリフェニレンエーテル等の熱可塑性樹脂が挙げられる。
【0014】
本発明の実施において使用されるリン酸アミド類の配合量は、前記合成樹脂100重量部に対して通常1〜40重量部、好ましくは5〜30重量部の割合で添加すべきである。
合成樹脂に対するリン酸アミド類の配合量が、前記の範囲を下回る場合は所期の難燃効果が得られず、またこれを超えて配合しても構わないが、それ以上の難燃性の向上は認められないので、徒らに添加してもコスト高を招来するに過ぎない。
【0015】
本発明の難燃性樹脂組成物には、通常これらの樹脂に添加される各種添加剤、例えば紫外線吸収剤、光安定剤、帯電防止剤、銅害防止剤、滑剤、中和剤、無機充填剤、顔料、過酸化物等を併用することができる。
【0016】
本発明樹脂組成物の製造方法は、特に限定されないが前述した各成分の所定量を撹拌混合装置、例えばヘンシェルミキサー、スーパーミキサーまたはタンブラーミキサー等に投入し、1〜10分撹拌混合したのち、得られた混合物をロール混練機または押出機等を用いて溶融混練し、ペレット化することによって得ることができる。
【0017】
【実施例】
以下、本発明を実施例、比較例及び参考例によって具体的に説明するが、本発明はこれら実施例に限定されるものではない。
なお実施例、比較例における難燃性の評価法は、ULサブジェクト94(アンダーライター・ラボラトリーズインコーポレーテッド)の「機器の部品用プラスチック材料の燃焼試験」に規定された垂直燃焼試験に準拠して実施したものである。
【0018】
本発明において難燃剤として使用する主なリン酸アミド類の合成方法について説明する。
[参考例1]
ジフェニル(シクロヘキシルアミド)ホスフェートの合成
攪拌機、温度計、還流冷却器、滴下漏斗を備えたフラスコに、ジフェニルホスホロクロリデート32.24g及びジクロロエタン120mlを仕込み、内温50℃以下に保つよう冷却しながら、シクロヘキシルアミン23.80gを10分間かけて滴下し、さらに内温85℃の温度に1時間保持した。この反応物を減圧下で濃縮したのち、150mlの水を注ぎ30分攪拌してから沈殿を濾取し、さらに100mlの水でケーキを洗浄し、取り出した白色粉末状固体を減圧乾燥した。本品の融点は102℃であり、NMR及びIRの結果からジフェニル(シクロヘキシルアミド)ホスフェート[収量38.86g(収率97.7%)]であることが確認された。
【0019】
【0020】
【0021】
[参考例
ジフェニル(オクチルアミド)ホスフェートの合成
攪拌機、温度計、還流冷却器、滴下漏斗を備えたフラスコに、ジフェニルホスホロクロリデート5.37g及びジクロロエタン20mlを仕込み、内温50℃以下に保つよう冷却しながら、n−オクチルアミン5.17gを10分間かけて滴下し、さらに内温85℃の温度に1時間保持した。この反応物を減圧下で濃縮したのち、150mlの水を注ぎ30分攪拌してから沈殿を濾取し、さらに100mlの水でケーキを洗浄し、取り出した白色粉末状固体を減圧乾燥した。本品の融点は54℃であり、NMR及びIRの結果からジフェニル(オクチルアミド)ホスフェート[収量5.61g(収率77.6%)]であることが確認された。
【0022】
[参考例
ジフェニル(ベンジルアミド)ホスフェートの合成
攪拌機、温度計、還流冷却器、滴下漏斗を備えたフラスコに、ジフェニルホスホロクロリデート5.37g及びジクロロエタン20mlを仕込み、内温50℃以下に保つよう冷却しながら、ベンジルアミン4.29gを10分間かけて滴下し、さらに内温85℃の温度に1時間保持した。この反応物を減圧下で濃縮したのち、150mlの水を注ぎ30分攪拌してから沈殿を濾取し、さらに100mlの水でケーキを洗浄し、取り出した白色粉末状固体を減圧乾燥した。本品の融点は104℃であり、NMR及びIRの結果からジフェニル(ベンジルアミド)ホスフェート[収量2.62g(収率98.6%)]であることが確認された。
【0023】
[参考例
ジフェニル(アリルアミド)ホスフェートの合成
攪拌機、温度計、還流冷却器、滴下漏斗を備えたフラスコに、ジフェニルホスホロクロリデート5.37g及びジクロロエタン20mlを仕込み、内温50℃以下に保つよう冷却しながら、ジアリルアミン3.89gを10分間かけて滴下し、さらに内温85℃の温度に2時間保持した。この反応物にジクロロエタン20mlと水50mlを加え、分液ロートで振とうしたのちジクロロエタン層を抽出し、減圧濃縮して橙色油状物を得た。本品はNMR及びIRの結果から、ジフェニル(アリルアミド)ホスフェート[収量6.43g(収率97.6%)]であることが確認された。
【0024】
【0025】
[参考例
ジフェニル(アニリド)ホスフェートの合成
攪拌機、温度計、還流冷却器、滴下漏斗を備えたフラスコに、ジフェニルホスホロクロリデート6.80g及びジクロロエタン25mlgを仕込み、内温50℃以下に保つよう冷却しながら、アニリン5.0gを10分間かけて滴下し、さらに内温80℃の温度に2時間保持した。この反応物にジクロロエタン20mlと水50mlを加え、分液ロートで振とうしたのちジクロロエタン層を抽出し、減圧濃縮して淡橙色油状物を得た。本品はNMR及びIRの結果から、ジフェニル(アニリド)ホスフェート[収量7.41g(収率91.2%)]であることが確認された。
【0026】
[実施例1ないし及び比較例1]
ポリカーボネート樹脂[商品名:ユーピロンS−200F、三菱エンプラ社製]100重量部に対して、参考例1ないしにおいて合成した難燃剤及び比較のために市販の難燃剤[トリフェニルホスフェート]をそれぞれ15重量%の割合で加え、タンブラーブレンダーを用いて混合したのち、280℃の温度で溶融混練し、口径30mmの押出機から押し出してペレット状樹脂組成物とし、これを射出成形機[シリンダー温度260℃、金型温度60℃]で処理して、厚さ1/16インチの試験片を作製し、その難燃性を調べたところ、これらの試験結果は表1に示したとおりであった。
【0027】
【表1】
Figure 0003957418
【0028】
[実施例ないし1及び比較例2]
ポリカーボネート樹脂[商品名:ユーピロンS−200F、三菱エンプラ社製]70重量部とABS樹脂[商品名:K3272、住友ダウ社製]30重量部に対して、参考例1ないしにおいて合成した難燃剤、及び比較のために市販の難燃剤[トリフェニルホスフェート]をそれぞれ15重量%の割合で加え、タンブラーブレンダーを用いて混合したのち、280℃の温度で溶融混練し、口径30mmの押出機から押し出してペレット状樹脂組成物とし、これを射出成形機[シリンダー温度260℃、金型温度60℃]で処理して、厚さ1/16インチの試験片を作製し、その難燃性を調べたところ、これらの試験結果は表2に示したとおりであった。
【0029】
【表2】
Figure 0003957418
【0030】
[実施例1ないし15及び比較例3]
変性ポリフェニレンエーテル樹脂[商品名:ノリル115−7001、日本GE社製]100重量部に対して、参考例1ないしにおいて合成した難燃剤及び比較のために市販の難燃剤[トリフェニルホスフェート]をそれぞれ15重量%の割合で加え、タンブラーブレンダーを用いて混合したのち、280℃の温度で溶融混練し、口径30mmの押出機から押し出してペレット状樹脂組成物とし、これを射出成形機[シリンダー温度260℃、金型温度60℃]で処理して、厚さ1/16インチの試験片を作製し、その難燃性を調べたところ、これらの試験結果は表3に示したとおりであった。
【0031】
【表3】
Figure 0003957418
【0032】
[実施例16
ハイインパクトポリスチレン樹脂[商品名:ディックスチレンGH−6300−1、大日本インキ(株)製]100重量部に対して、参考例1において合成したジフェニル(シクロヘキシルアミド)ホスフェートを30重量%の割合で加え、タンブラーブレンダーを用いて混合したのち、230℃の温度で溶融混練し、口径30mmの押出機から押し出してペレット状樹脂組成物とし、これを射出成形機[シリンダー温度230℃]で処理して、厚さ1/16インチの試験片を作製し、その難燃性を調べたところ、燃焼性の試験結果はV−2を示した。
【0033】
[実施例17
ポリブチレンテレフタレート樹脂[商品名:プラナックBT−1000、大日本インキ(株)製]100重量部に対して、参考例1において合成したジフェニル(シクロヘキシルアミド)ホスフェートを30重量%の割合で加え、タンブラーブレンダーを用いて混合したのち、250℃の温度で溶融混練し、口径30mmの押出機から押し出してペレット状樹脂組成物とし、これを射出成形機[シリンダー温度250℃]で処理して、厚さ1/16インチの試験片を作製し、その難燃性を調べたところ、燃焼性の試験結果はV−2であった。
【0034】
[実施例18
アクリロニトリルブタジエンスチレン樹脂[商品名:クララスチックS-3716、住化A&L社製]100重量部に対して、参考例1において合成したジフェニル(シクロヘキシルアミド)ホスフェートを30重量%の割合で加え、タンブラーブレンダーを用いて混合したのち、240℃の温度で溶融混練し、口径30mmの押出機から押し出してペレット状樹脂組成物とし、これを射出成形機[シリンダー温度240℃]で処理して、厚さ1/16インチの試験片を作製し、その難燃性を調べたところ、燃焼性の試験結果はV−2を示した。
【0035】
[実施例19ないし23及び比較例4]
参考例1ないし参考例において合成したリン酸アミド類並びに市販難燃剤[トリフェニルホスフェート]について、これらの耐加水分解性を調べるために、前記各難燃剤2.5ミリモルをメタノール水溶液(メタノール/水=100/5、V/V)5mlに溶解し、リン酸化合物に対して1/10モルの水酸化ナトリウムを加えて一晩放置し、高速クロマトグラフィによって、それぞれの耐加水分解率(%)を測定した結果は、表4に示したとおりであった。
これらの試験結果によれば、本発明のリン酸アミド類はトリフェニルホスフェートに比べて、明らかに耐加水分解性に優れているものと認められた。
【0036】
【表4】
Figure 0003957418
【0037】
[実施例24ないし25及び比較例5]
参考例1及び4において合成したリン酸アミド並びに市販難燃剤「トリフェニルホスフェート」について、樹脂との混練時の加熱分解によるホスフィンガスの発生量を調べた。
すなわち、変性ポリフェニレンエーテル樹脂[商品名:ノリル115−7001、日本GE社製]に対して、前記難燃剤をそれぞれ15重量部を配合し、タンブラーブレンダーを用いて混合したのち、250℃の温度で溶融混練した状態における、容器雰囲気中のホスフィンガス濃度を、ガス検知管により測定したところ、これらの試験結果は表5に示したとおりであった。
これらの結果から、本発明のリン酸アミド類を樹脂と加熱混合した際には、ホスフィンガスの発生量を低減しうることが認められた。
【0038】
【表5】
Figure 0003957418
【0039】
【発明の効果】
本発明の難燃性樹脂組成物は、難燃剤として非ハロゲン系の特定のリン酸アミド類を配合しているため、合成樹脂に優れた難燃性を付与することができ、しかも樹脂に対する難燃剤の耐加水分解性、並びに樹脂と難燃剤の混練時における作業性が改善されるなど、実施上の効果は顕著である。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a flame retardant resin composition in which a non-halogen phosphate amide compound is blended with various synthetic resins such as polyphenylene ether resin and modified polycarbonate resin.
[0002]
[Prior art]
Flame retardant resin compositions are widely used in fields of application such as electrical parts and automobile parts, but those containing a conventionally known halogen-containing compound and antimony oxide are corrosive and harmful during combustion. Since it is accompanied by the generation of halogen-based gas, it has recently been demanded to improve the flame-retardant characteristics by using a non-halogen flame retardant.
[0003]
As non-halogen flame retardants, JP-A-53-73248 discloses phosphate esters such as triphenyl phosphate, JP-A-60-106853 discloses condensed phosphate amides (condensates of ammonium phosphate), JP Japanese Unexamined Patent Publication No. 63-235363 discloses a mixture of phenyl phosphate monoamide and phenyl phosphate monoamide.
[0004]
However, these compounds tend to decrease the hydrolysis resistance of the resin, and further, there is a problem that decomposition occurs during heating and kneading with the resin, and phosphine gas that deteriorates the working environment tends to be generated, so that it is not always satisfactory. It's not possible.
[0005]
[Problems to be solved by the invention]
In view of such circumstances, the present invention has good compatibility with various synthetic resins such as polyphenylene ether resins and modified polycarbonate resins, has excellent hydrolysis resistance to these resins, and is heated and kneaded with the resins. An object of the present invention is to provide a non-halogen flame retardant that can reduce generation of highly toxic phosphine gas.
[0006]
[Means for Solving the Problems]
As a result of numerous test studies on the premise that non-halogen flame retardants are used, the present inventors have found that specific phosphoric acid amides have been added to various synthetic resins such as polyphenylene ether resins and modified polycarbonate resins. It has been found that the intended purpose can be achieved by blending, and the present invention has been completed.
[0007]
That is, the flame-retardant resin composition of the present invention, as an active ingredient shows a flame retardancy is obtained by blending at least one phosphoric acid amide compound represented by the chemical formula 1 below.
[0008]
[Chemical 1 ]
Figure 0003957418
(However Shikichu, R 1 represents water atom, an alkyl group, a cyclohexyl group, an allyl group, a phenyl group, an aralkyl group.)
[0009]
Typical examples of the compound represented by the structural formula, diphenyl luer Midohosufeto, diphenyl (methylamide) phosphate, di-phenyl (ethylamide) phosphate, di-phenyl (propyl amide) phosphate, di-phenyl (octylamide) phosphate, diphenyl (Un decyl amide) phosphate, diphenyl (cyclohexylamido) phosphate, di-phenyl (allyl amide) phosphate, diphenyl (anilide) phosphate, di-phenyl (benzylamide) phosphate, and the like.
[0010]
[0011]
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Synthetic resins suitable for the practice of the present invention include polyphenylene ether resins, modified polyphenylene ether resins, polyethylene resins, polypropylene resins, ethylene-vinyl acetate copolymers, ethylene-propylene copolymers, ethylene-α-olefin copolymers, Examples thereof include polyolefin resins such as ethylene-acrylic acid copolymer and ethylene-acrylic acid copolymer.
[0013]
Other applicable resins include thermosetting resins such as phenol resin, urea resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, polystyrene, expanded polystyrene, acrylonitrile-styrene copolymer, acrylonitrile. -Styrene-butadiene copolymer, petroleum resin, polymethyl methacrylate, polyamide resin, polycarbonate resin, polycarbonate / ABS mixed resin, polyacetal resin, polyethylene terephthalate, polyphenylene ether, and other thermoplastic resins.
[0014]
The blending amount of phosphoric amides used in the practice of the present invention should be usually 1 to 40 parts by weight, preferably 5 to 30 parts by weight with respect to 100 parts by weight of the synthetic resin.
If the blending amount of phosphoric acid amides with respect to the synthetic resin is less than the above range, the desired flame retardant effect is not obtained, and it may be blended in excess of this range. Since no improvement is observed, adding it to them will only incur a high cost.
[0015]
In the flame-retardant resin composition of the present invention, various additives usually added to these resins, for example, ultraviolet absorbers, light stabilizers, antistatic agents, copper damage inhibitors, lubricants, neutralizing agents, inorganic fillers Agents, pigments, peroxides and the like can be used in combination.
[0016]
The method for producing the resin composition of the present invention is not particularly limited, but the predetermined amount of each component described above is added to a stirring and mixing apparatus such as a Henschel mixer, a super mixer, or a tumbler mixer, and mixed for 1 to 10 minutes. The obtained mixture can be obtained by melt-kneading using a roll kneader or an extruder and pelletizing.
[0017]
【Example】
EXAMPLES Hereinafter, although an Example, a comparative example, and a reference example demonstrate this invention concretely, this invention is not limited to these Examples.
In addition, the evaluation method of the flame retardance in an Example and a comparative example is implemented based on the vertical combustion test prescribed | regulated by UL subject 94 (Underwriter Laboratories Inc.) "flammability test of the plastic material for components of equipment". It is a thing.
[0018]
A method for synthesizing main phosphoric acid amides used as a flame retardant in the present invention will be described.
[Reference Example 1]
Synthesis of diphenyl (cyclohexylamide) phosphate A flask equipped with a stirrer, thermometer, reflux condenser, and dropping funnel was charged with 32.24 g of diphenyl phosphorochloridate and 120 ml of dichloroethane, and cooled to keep the internal temperature at 50 ° C. or lower. 23.80 g of cyclohexylamine was added dropwise over 10 minutes, and the internal temperature was maintained at 85 ° C. for 1 hour. After the reaction product was concentrated under reduced pressure, 150 ml of water was poured and stirred for 30 minutes, and then the precipitate was collected by filtration. The cake was washed with 100 ml of water, and the taken out white powdered solid was dried under reduced pressure. The melting point of this product was 102 ° C., and NMR and IR results confirmed that it was diphenyl (cyclohexylamide) phosphate [yield 38.86 g (yield 97.7%)].
[0019]
[0020]
[0021]
[Reference Example 2 ]
Synthesis of diphenyl (octylamide) phosphate A flask equipped with a stirrer, thermometer, reflux condenser, and dropping funnel was charged with 5.37 g of diphenyl phosphorochloridate and 20 ml of dichloroethane, and cooled while maintaining the internal temperature at 50 ° C or lower. 5.17 g of n-octylamine was added dropwise over 10 minutes, and the internal temperature was kept at 85 ° C. for 1 hour. After the reaction product was concentrated under reduced pressure, 150 ml of water was poured and stirred for 30 minutes, and then the precipitate was collected by filtration. The cake was washed with 100 ml of water, and the taken out white powdered solid was dried under reduced pressure. The melting point of this product was 54 ° C., and NMR and IR results confirmed that it was diphenyl (octylamide) phosphate [yield 5.61 g (yield 77.6%)].
[0022]
[Reference Example 3 ]
Synthesis of diphenyl (benzylamide) phosphate A flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel was charged with 5.37 g of diphenyl phosphorochloridate and 20 ml of dichloroethane, and cooled while maintaining the internal temperature at 50 ° C. or lower. 4.29 g of benzylamine was added dropwise over 10 minutes, and the internal temperature was maintained at 85 ° C. for 1 hour. After the reaction product was concentrated under reduced pressure, 150 ml of water was poured and stirred for 30 minutes, and then the precipitate was collected by filtration. The cake was washed with 100 ml of water, and the taken out white powdered solid was dried under reduced pressure. The melting point of this product was 104 ° C., and NMR and IR results confirmed that it was diphenyl (benzylamide) phosphate [yield 2.62 g (yield 98.6%)].
[0023]
[Reference Example 4 ]
Synthesis of diphenyl (allylamide) phosphate A flask equipped with a stirrer, thermometer, reflux condenser, and dropping funnel was charged with 5.37 g of diphenyl phosphorochloridate and 20 ml of dichloroethane, and cooled while maintaining the internal temperature at 50 ° C. or lower. 3.89 g was added dropwise over 10 minutes, and the internal temperature was maintained at 85 ° C. for 2 hours. To this reaction product, 20 ml of dichloroethane and 50 ml of water were added, and after shaking with a separatory funnel, the dichloroethane layer was extracted and concentrated under reduced pressure to give an orange oil. From the NMR and IR results, this product was confirmed to be diphenyl (allylamide) phosphate [yield 6.43 g (yield 97.6%)].
[0024]
[0025]
[Reference Example 5 ]
Synthesis of diphenyl (anilide) phosphate A flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel was charged with 6.80 g of diphenyl phosphorochloridate and 25 ml of dichloroethane, and cooled while maintaining the internal temperature at 50 ° C. or lower. 5.0 g was added dropwise over 10 minutes, and the internal temperature was maintained at 80 ° C. for 2 hours. To this reaction product, 20 ml of dichloroethane and 50 ml of water were added, and after shaking with a separatory funnel, the dichloroethane layer was extracted and concentrated under reduced pressure to give a pale orange oil. This product was confirmed to be diphenyl (anilide) phosphate [yield 7.41 g (yield 91.2%)] from NMR and IR results.
[0026]
[Examples 1 to 5 and Comparative Example 1]
15 parts each of the flame retardant synthesized in Reference Examples 1 to 5 and a commercially available flame retardant [triphenyl phosphate] for comparison with 100 parts by weight of polycarbonate resin [trade name: Iupilon S-200F, manufactured by Mitsubishi Engineering Plastics Co., Ltd.] Add in weight percentage, mix using tumbler blender, melt knead at 280 ° C, extrude from 30mm diameter extruder to form pellet resin composition, injection molding machine [cylinder temperature 260 ° C Then, a test piece having a thickness of 1/16 inch was manufactured and its flame retardancy was examined. The test results were as shown in Table 1.
[0027]
[Table 1]
Figure 0003957418
[0028]
[Example 6 to 1 0 and Comparative Example 2]
Flame retardant synthesized in Reference Examples 1 to 5 with respect to 70 parts by weight of polycarbonate resin [trade name: Iupilon S-200F, manufactured by Mitsubishi Engineering Plastics Co., Ltd.] and 30 parts by weight of ABS resin [trade name: K3272, manufactured by Sumitomo Dow Co., Ltd.] For comparison, a commercially available flame retardant [triphenyl phosphate] was added at a ratio of 15% by weight, mixed using a tumbler blender, melted and kneaded at a temperature of 280 ° C., and extruded from an extruder having a diameter of 30 mm. A pellet-shaped resin composition was processed with an injection molding machine [cylinder temperature 260 ° C., mold temperature 60 ° C.] to produce a 1/16 inch thick test piece, and its flame retardancy was examined. However, these test results were as shown in Table 2.
[0029]
[Table 2]
Figure 0003957418
[0030]
Example 1 1 to 15 and Comparative Example 3]
For 100 parts by weight of modified polyphenylene ether resin [trade name: Noryl 115-7001, manufactured by Japan GE], the flame retardant synthesized in Reference Examples 1 to 5 and a commercially available flame retardant [triphenyl phosphate] for comparison were used. Add 15% each by weight, mix using a tumbler blender, melt knead at a temperature of 280 ° C, and extrude from an extruder with a diameter of 30 mm to form a pellet-shaped resin composition. This is an injection molding machine [cylinder temperature 260 ° C, mold temperature 60 ° C] to produce a 1/16 inch thick test piece, and its flame retardancy was examined. The results of these tests were as shown in Table 3. .
[0031]
[Table 3]
Figure 0003957418
[0032]
[Example 16 ]
High impact polystyrene resin [trade name: Dick Styrene GH-6300-1, manufactured by Dainippon Ink Co., Ltd.] 100 parts by weight, 30% by weight of diphenyl (cyclohexylamide) phosphate synthesized in Reference Example 1 In addition, after mixing using a tumbler blender, it is melt kneaded at a temperature of 230 ° C. and extruded from an extruder with a diameter of 30 mm to form a pellet-shaped resin composition, which is processed by an injection molding machine (cylinder temperature 230 ° C.). When a 1/16 inch thick test piece was prepared and its flame retardancy was examined, the test result of flammability indicated V-2.
[0033]
[Example 17 ]
To 100 parts by weight of polybutylene terephthalate resin [trade name: Planac BT-1000, manufactured by Dainippon Ink Co., Ltd.], the diphenyl (cyclohexylamide) phosphate synthesized in Reference Example 1 was added at a rate of 30% by weight, and the tumbler was added. After mixing using a blender, it is melt-kneaded at a temperature of 250 ° C and extruded from an extruder with a diameter of 30 mm to form a pellet-shaped resin composition, which is processed by an injection molding machine [cylinder temperature 250 ° C] to obtain a thickness. When a 1/16 inch test piece was prepared and its flame retardancy was examined, the test result of flammability was V-2.
[0034]
[Example 18 ]
To 100 parts by weight of acrylonitrile butadiene styrene resin [trade name: Clarastic S-3716, manufactured by Sumika A & L Co.] 30% by weight of diphenyl (cyclohexylamide) phosphate synthesized in Reference Example 1 was added, and a tumbler blender. , And then melted and kneaded at a temperature of 240 ° C., extruded from an extruder with a diameter of 30 mm to obtain a pellet-shaped resin composition, which was processed with an injection molding machine [cylinder temperature 240 ° C.], and had a thickness of 1 A / 16 inch test piece was prepared and its flame retardancy was examined. The result of the flammability test showed V-2.
[0035]
[Examples 19 to 23 and Comparative Example 4]
In order to investigate the hydrolysis resistance of the phosphoric amides synthesized in Reference Examples 1 to 5 and the commercially available flame retardant [triphenyl phosphate], 2.5 mmol of each flame retardant was added to an aqueous methanol solution (methanol / (Water = 100/5, V / V) Dissolve in 5 ml, add 1/10 mole of sodium hydroxide to the phosphoric acid compound and let stand overnight. By high-speed chromatography, each hydrolysis resistance (%) The results of measuring were as shown in Table 4.
According to these test results, it was recognized that the phosphoric acid amides of the present invention were clearly superior in hydrolysis resistance compared to triphenyl phosphate.
[0036]
[Table 4]
Figure 0003957418
[0037]
[Examples 24 to 25 and Comparative Example 5]
About the phosphoric acid amide synthesized in Reference Examples 1 and 4 and the commercially available flame retardant “triphenyl phosphate”, the amount of phosphine gas generated by thermal decomposition at the time of kneading with the resin was examined.
That is, with respect to the modified polyphenylene ether resin [trade name: Noryl 115-7001, manufactured by Japan GE Co., Ltd.], 15 parts by weight of each flame retardant was blended and mixed using a tumbler blender. When the phosphine gas concentration in the container atmosphere in the melt-kneaded state was measured with a gas detector tube, the test results were as shown in Table 5.
From these results, it was recognized that the amount of phosphine gas generated can be reduced when the phosphoric acid amides of the present invention are heat mixed with a resin.
[0038]
[Table 5]
Figure 0003957418
[0039]
【The invention's effect】
Since the flame retardant resin composition of the present invention contains a specific non-halogen phosphoric acid amide as a flame retardant, the flame retardant resin composition can impart excellent flame retardancy to a synthetic resin, and is also difficult to resin. The practical effects such as the hydrolysis resistance of the flame retardant and the workability at the time of kneading the resin and the flame retardant are remarkable.

Claims (1)

ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン−酢酸ビニル共重合体、エチレン−プロピレン共重合体、エチレン−α−オレフィン共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸共重合体、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキッド樹脂、エポキシ樹脂、ポリスチレン、発泡ポリスチレン、アクリルニトリル−スチレン共重合体、アクリルニトリル−スチレン−ブタジエン共重合体、石油樹脂、ポリメチルメタクリレート、ポリアミド樹脂、ポリカーボネート樹脂、ポリカーボネート・ABS混合樹脂、ポリアセタール樹脂、ポリエチレンテレフタレートまたはポリブチレンテレフタレート樹脂から選択される樹脂100重量部に対して、下記の化1の一般式で表わされる化合物から選択される、少なくとも1種のリン酸アミド類を有効成分として1〜40重量部含有することを特徴とする難燃性樹脂組成物。
Figure 0003957418
(但し式中、Rは水素原子、アルキル基、シクロヘキシル基、アリル基、フェニル基、アラルキル基を表わす。)
Polyphenylene ether resin, modified polyphenylene ether resin, polyethylene resin, polypropylene resin, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-α-olefin copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic Acid copolymer, phenol resin, urea resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, polystyrene, expanded polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-styrene-butadiene copolymer, petroleum resin , Selected from polymethyl methacrylate, polyamide resin, polycarbonate resin, polycarbonate / ABS mixed resin, polyacetal resin, polyethylene terephthalate or polybutylene terephthalate resin Against fat 100 parts by weight, selected from the compounds represented by the general formula of Chemical Formula 1 below, a flame retardant, characterized in that it contains 1 to 40 parts by weight of at least one phosphorus acid amides as active ingredients Resin composition.
Figure 0003957418
(In the formula, R 1 represents a hydrogen atom, an alkyl group, a cyclohexyl group, an allyl group, a phenyl group, or an aralkyl group.)
JP33299498A 1998-09-18 1998-11-24 Flame retardant resin composition Expired - Fee Related JP3957418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33299498A JP3957418B2 (en) 1998-09-18 1998-11-24 Flame retardant resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26409098 1998-09-18
JP10-264090 1998-09-18
JP33299498A JP3957418B2 (en) 1998-09-18 1998-11-24 Flame retardant resin composition

Publications (2)

Publication Number Publication Date
JP2000154277A JP2000154277A (en) 2000-06-06
JP3957418B2 true JP3957418B2 (en) 2007-08-15

Family

ID=26546348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33299498A Expired - Fee Related JP3957418B2 (en) 1998-09-18 1998-11-24 Flame retardant resin composition

Country Status (1)

Country Link
JP (1) JP3957418B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593516A (en) * 2012-03-30 2012-07-18 厦门大学 Flame-retardant lithium ion battery electrolyte and method for preparing same

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414060B1 (en) * 1999-07-07 2002-07-02 Albemarle Corporation Flame retardant polycarbonate-ABS polymer compositions
JP4548901B2 (en) * 2000-06-14 2010-09-22 株式会社Adeka Flame retardant epoxy resin composition
KR100439331B1 (en) * 2000-08-29 2004-07-07 제일모직주식회사 Flame-Retardant Thermoplastic Resin Composition
KR100372569B1 (en) 2000-10-31 2003-02-19 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
KR100400964B1 (en) * 2000-11-28 2003-10-10 제일모직주식회사 Oligomeric Phosphorus Acid Ester Morpholide Compound and Flame Retardant Thermoplastic Resin Compsition Containing Thereof
JP4753475B2 (en) * 2001-01-30 2011-08-24 株式会社Adeka Epoxy resin composition
KR100405198B1 (en) * 2001-07-16 2003-11-12 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
KR100435571B1 (en) * 2001-07-20 2004-06-09 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
KR100427531B1 (en) 2001-09-13 2004-04-30 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
KR20030023264A (en) * 2001-09-13 2003-03-19 제일모직주식회사 Flameproof Styrenic Resin Composition
KR100437535B1 (en) * 2001-09-28 2004-06-30 제일모직주식회사 Thermoplastic Flameproof Resin Composition
KR100442938B1 (en) * 2001-12-10 2004-08-04 제일모직주식회사 Flame Retardant Thermoplastic Polycarbonate Resin Composition
KR100442939B1 (en) * 2001-12-11 2004-08-04 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
KR100442937B1 (en) * 2001-12-11 2004-08-04 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
KR100451839B1 (en) * 2002-02-02 2004-10-08 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
KR100650910B1 (en) 2004-10-13 2006-11-27 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
JP4632351B2 (en) * 2005-01-31 2011-02-16 日華化学株式会社 Polyurethane resin aqueous dispersion and method for producing flame retardant polyester fiber using the same
EP1976929A4 (en) 2005-12-30 2012-07-18 Cheil Ind Inc Flame retardant polycarbonate thermoplastic resin composition having good extrusion moldability and impact resistance
KR100885819B1 (en) 2007-12-18 2009-02-26 제일모직주식회사 Branched acrylic copolymer with high refractive index and preparation method thereof
KR101004040B1 (en) 2007-12-18 2010-12-31 제일모직주식회사 Scratch-Resistant Flameproof Thermoplastic Resin Composition with improved compatibility
KR100902352B1 (en) 2008-03-13 2009-06-12 제일모직주식회사 Thermoplastic resin composition with improved compatibility
KR100886348B1 (en) 2008-04-14 2009-03-03 제일모직주식회사 Flame-retardant scratch-resistant thermoplastic resin composition with improved compatibility
KR101188349B1 (en) 2008-12-17 2012-10-05 제일모직주식회사 Polycarbonate resin composition with improved transparency and scratch-resistance
JP5484078B2 (en) * 2010-01-06 2014-05-07 東ソ−・エフテック株式会社 Nonaqueous electrolyte containing fluorine-containing phosphoric ester amide
WO2013191227A1 (en) * 2012-06-18 2013-12-27 大京化学株式会社 Method for producing phosphoric acid ester amides
CN102926202B (en) * 2012-09-25 2014-12-03 台州学院 Flame-retardant coating and preparation method and application thereof
EP2881408B1 (en) 2013-12-04 2017-09-20 Lotte Advanced Materials Co., Ltd. Styrene-based copolymer and thermoplastic resin composition including the same
US9902850B2 (en) 2014-06-26 2018-02-27 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition
US9856371B2 (en) 2014-06-27 2018-01-02 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and low-gloss molded article made therefrom
US9850333B2 (en) 2014-06-27 2017-12-26 Lotte Advanced Materials Co., Ltd. Copolymers and thermoplastic resin composition including the same
US9790362B2 (en) 2014-06-27 2017-10-17 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and molded article made using the same
KR101822697B1 (en) 2014-11-18 2018-01-30 롯데첨단소재(주) Thermoplastic resin composition with excellent appearance and molded article using thereof
US10131769B2 (en) * 2014-12-05 2018-11-20 Sabic Global Technologies B.V. Flame-retardant polystyene composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593516A (en) * 2012-03-30 2012-07-18 厦门大学 Flame-retardant lithium ion battery electrolyte and method for preparing same
CN102593516B (en) * 2012-03-30 2014-09-03 厦门大学 Flame-retardant lithium ion battery electrolyte and method for preparing same

Also Published As

Publication number Publication date
JP2000154277A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
JP3957418B2 (en) Flame retardant resin composition
JP3885263B2 (en) Nitrogen-containing organophosphate compound and flame retardant resin composition comprising the same
US5773556A (en) Low-flammability polyamide molding materials
US7439289B2 (en) Benzoylresorcinol-based phosphate ester compounds as flame retardants
JPH09272759A (en) Salt of phosphonous acid and its use as flame retardant for plastic
JP2000154181A (en) New 2-substituted guanamine compound and flame retardant resin composition containing 2-substituted guanamine compound as active component
EP3176212B1 (en) Flame-retardant resin composition and article molded from same
US5102932A (en) Flame retardants for polymers
JP2021138664A (en) Organic phosphorus compound, thermoplastic resin composition, and electronic apparatus
JP2003238580A (en) New phosphoric acid ester amide compound and flame- retardant resin composition
JP7431436B2 (en) Flame-retardant polypropylene resin composition
JP2000327834A (en) Flame-retardant resin composition
JPH0657774B2 (en) Flame-retardant polypropylene resin composition
JPH11263885A (en) Flame-retardant polyolefin resin composition and molded article thereof
JP2001040149A (en) Flame-retardant resin composition
JP4040926B2 (en) Flame retardant fiber
JPS608055B2 (en) Flame retardant polyamide resin composition
DE102023000325B3 (en) Thiazole compounds as flame retardants containing phosphorus, nitrogen and sulfur and their use
EP0915131A1 (en) Flame-retarded thermoplastic resin composition
JPH0662818B2 (en) Flame-retardant polypropylene resin composition
EP0253007A1 (en) Stabilized polymers, novel stabilizers, and synthesis thereof
JP2000063365A (en) Isocyanuric acid salt of new 2-substituted guanamine compound and flame-retardant resin composition containing isocyanuric acid salt of 2-substituted guanamine compound as active ingredient
JP2001354684A (en) Nonhalogen nitrogen-containing organophosphorus compound and flame-retardant resin composition containing the same
JP3427941B2 (en) Flame retardant polyamide resin composition
JP3899569B2 (en) Flame retardant polyolefin resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees