JP3953826B2 - Insertion type electromagnetic current meter - Google Patents

Insertion type electromagnetic current meter Download PDF

Info

Publication number
JP3953826B2
JP3953826B2 JP2002041165A JP2002041165A JP3953826B2 JP 3953826 B2 JP3953826 B2 JP 3953826B2 JP 2002041165 A JP2002041165 A JP 2002041165A JP 2002041165 A JP2002041165 A JP 2002041165A JP 3953826 B2 JP3953826 B2 JP 3953826B2
Authority
JP
Japan
Prior art keywords
fluid
measured
sensor unit
type electromagnetic
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002041165A
Other languages
Japanese (ja)
Other versions
JP2002333354A (en
Inventor
俊宏 小野瀬
民雄 石原
功治 斉藤
康二 玉置
國宏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002041165A priority Critical patent/JP3953826B2/en
Publication of JP2002333354A publication Critical patent/JP2002333354A/en
Application granted granted Critical
Publication of JP3953826B2 publication Critical patent/JP3953826B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被測定流体が流れる配管の外部から挿入し、配管内の流体流速を測定する挿入形電磁流速計に関する。
【0002】
【従来の技術】
上水道の給水配管網の漏水や滞留水調査を行うための測定機器として、消火栓や空気弁を利用して測定を行う流速計または流量計がある。
【0003】
これらの機器には、代表的なものとして超音波式と電磁式とが有り、超音波式としては、例えば特開平3−231155号公報や特開平6−81378号公報に開示された例がある。また、電磁式としては、例えば実開昭60−86922号公報や特開昭60−179613号公報に開示された例がある。
【0004】
【発明が解決しようとする課題】
超音波式は、配管の外側にセンサを取付け測定できるため、水道管内に異物を入れること無く測定できる長所が有る反面、微小流速の測定が困難であるほか、配管内にスケールが付着している場合には検出困難な状態になってしまう場合がある。また消火栓を利用して測定を行う場合においても、水道管が土砂に埋まってしまい露出していない消火栓ピットも多い。これを解決するために、管内に挿入して測定する挿入形の超音波流量計も開発されているが、消火栓等のわずかな開口を利用して発信器の設置位置を考慮しなければならない必要上、構造が複雑になってしまう。
【0005】
一方、電磁式は、配管を切断して電磁流量計を設置することはできないため、消火栓や空気弁部から配管内に流速センサを挿入して測定する挿入形の電磁式流速計が用いられてきた。
【0006】
電磁式流速計は、配管内に挿入するため構造が複雑になりやすいことと、挿入したセンサ部にカルマン渦が発生しセンサ部がその反力で振動し、これにより電極近傍の電位分布や磁束分布が安定せず測定精度が低下していた。上水道の配管網の健全性評価用の流速計としては10MM/S以下の検出感度が望まれるが、この様な要求に合う流速計は無く、より高感度の流速計が待望されている。
【0007】
本発明の目的は上記した従来の課題を解決し、上水道の配水管網の健全性評価の目的に適した高感度な流速計を提供することにある。
【0008】
【課題を解決するための手段】
上記目的における本発明の特徴は、配管内の被測定流体の流速を測定するセンサ部と、当該センサ部によって得られた測定値を外部へ伝達する伝送線を有する支持部とを有し、前記配管の開口から配管内に前記センサ部を挿入し、前記被測定流体の流速を測定する挿入形電磁流速計において、前記センサ部は、当該センサ部筐体中に、前記被測定流体の流れる方向に平行して貫通する測定流路を有することである。
【0009】
また好ましくは、前記測定流路の上部に、コイル及び磁極からなる磁界発生手段を備え、更に、少なくとも前記磁界発生手段と前記測定流路の側面を覆う長さを有する一対の磁極板を備えたことである。
【0010】
また好ましくは、前記センサ部筐体は、その挿入方向と直交する断面形状が、被測定流体の流れの方向に対し流線形であり、且つ前記測定流路は、前記センサ部の挿入軸の中心軸上に形成されていることである。
【0011】
【発明の実施の形態】
本発明の実施例を図面を用いて説明する。図1は、上水道の配水管路網の健全性を監視するために、管路網の途中に設けられた消火栓に地下ピット内に設置する、水理及び水質の監視システムの基本的な構成を示す図である。
【0012】
地下に埋設された、上水道用の配水管1の途中に設けられた消火栓2は、管路網中の所定の間隔で配置されており、水道水3の流速、流向、水質、温度、圧力などの諸情報を監視するのに適している。特に地下式の消火栓ピット4は、所定期間測定器を設置し連続監視するのに適している。
【0013】
消火栓2には火災などの非常時に消火ホースが接続できるアダプタがついているが、本発明では、このアダプタを改造して種々のセンサを取付け、前記諸情報を所定期間連続監視する監視システムを提供する。
【0014】
アダプタ5には、ホース接続口6の他にセンサ挿入口7が設けてあり、該センサ挿入口7の上端開口部8から流速計検出部9が挿入され、その先端に保持された流速計センサ10は、前記配水管1内に達しており、前記水道水3の流速をセンシングする。また、ケーブル11は、流速計検出部9及び支持棒14内を通って流速計センサ10に接続されており、ケーブル11を介して流速計センサ10の測定信号が流速計変換部12に伝達され演算され流速に対応した測定値を得る。
【0015】
該流速計変換部12の内部には、流速測定データを所定期間格納するデータロガー13が内蔵されている。更にデータロガー13には、外部の諸情報(電気信号)を格納する機能を有している。
【0016】
一方、流速計センサ10を保持している支持棒14には、配水管1内の水道水3を管外に導くサンプリング口16が形成され、また当該サンプリング口16には流速計検出部9及び支持棒14内を通る流路15が接続されており、サンプリング口16から導入された水道水を流量計検出部9の外に導く。この時流量計検出部9には、水圧センサ17とサンプリングチューブ18が取付けられている。水圧センサ17の測定信号は、ケーブル19を介して前記流速計変換部12に内蔵されたデータロガー13に伝達され格納される。また、前記サンプリングチューブ18内を流れる水道水3は多項目水質計20に導かれる。
【0017】
該多項目水質計20の内部には、残留塩素センサ21、導電率センサ22などが配置され、またサンプリングチューブ18には、水温センサ23が配置され、前記水道水3の水質を連続または間欠的に監視する。これら各センサの出力は演算部24に導かれ各測定値として演算出力される。
【0018】
出力された測定信号は、ケーブル25を介して前記流速計変換部12に内蔵されたデータロガー13に伝達され格納される。
【0019】
一方、前記サンプリングチューブ18の途中には減圧弁26が接続され、水質計に導かれる水道水3の圧力を一定にし、サンプリング流量を一定に保っている。
【0020】
多項目水質計20を通過した水道水3は配水口27から消火栓ピット4内に排水される。排水は地下浸透式であるため使用水量が制限されている(20cm3/分以下)ので、使用する水質計はシリコンウエハをマイクロ加工したマイクロセルを使用した小形の多項目水質計が適している。(例えば、特開2000−88841号公報にその例を示す。)
また、バッテリユニット28は、ケーブル29,30を介して、流速計変換部12及び多項目水質計20に電力を供給する。
【0021】
この様な連続監視装置において、所定期間流速、流向、水質、水温、水圧を連続監視し、その測定値をデータロガー13内に格納する。この時格納されたデータは測定終了後携帯パソコン31に吸い上げられ、通信回線やフロッピディスクなどの媒体32を介して、上位の管理用コンピュータ33にデータを送り一元管理する。また、データロガー13内のデータは無線や公衆回線電話網を介して管理用コンピュータ33で連続監視することもできる。この場合にはデータロガー13に特定小電力無線や携帯電話の送信機能を内蔵させ、アンテナ34を介して電波信号35としてピット外部に送信する。この際アンテナは、消火栓ピットの蓋の鍵穴(図示せず)の近傍に配置し電波を地上に送信する。
【0022】
前記消火栓ピット4での計測を同時に多数個所で行うことにより、水道水3の配水管路網内の挙動を監視することができ、漏水や停滞水や水質悪化などを生じないよう管路網の適正な配置と維持管理を行う上でのデータベースとすることができる。
【0023】
次に、図2〜図4において本発明の挿入形の電磁式流速計センサ部の詳細について説明する。図2は流速計センサ10の外観図、図3は流速計センサ10の断面図、図4は図3の断面図において磁界発生時の状態を示す図である。
【0024】
まず図2において、矢印101方向は被測定流体である水道水3の流れを示すが、流線形をした流速計センサ10の近傍に達すると矢印102のように分岐する。
【0025】
その一部は、流速センサ10の中心軸上にあいた長円形断面をした貫通穴103の内側を流れ、他は流線形をした流速計センサ10の外側面に沿って流れ、下流側で再び合流する。
【0026】
前記貫通穴103は、水道水3の流れ方向及びその直交方向に於いても流速計センサ10の挿入方向の中心軸に対し対称形に配置してあり、挿入方向が長軸となるよう形成してある。また、前記流速計センサ10の外周部は金属又は合成樹脂などで成形されているが、貫通穴103の内面は合成樹脂などの絶縁物で覆われている。
【0027】
また、貫通穴103の断面積は、流速センサ10の断面積の10%以上を占め、流速計センサ10の下流側に発生するカルマン渦を低減するに十分な断面積を有していることが望ましい。
【0028】
次に、図3において説明する。図3の各図は、図2の直交する3軸の各断面を示す。図3(1)は、図2の流速計センサ10の挿入方向に沿った中心断面で、且つ水道水3の流れ方向101に直交する断面を示している。流速計センサ10は、その外周部を金属又は合成樹脂からなる筐体201で覆われている。
前記流速計センサ10の中央下部には、前述の貫通穴103が合成樹脂などの絶縁材料により形成され、その内側を水道水3が流れている。
【0029】
貫通穴103の両側面には、磁性体からなる一対の磁極板206,207が配置される。また、磁極板206,207の上部には磁界を発生させるためのコイル208と磁極209が保持されている。コイル208に方形波の励磁電流を流して励起することにより、両磁極板の間には図4(1)(3)に示すように、ほぼ均一な磁束密度を有する交番磁界210が形成される。図4のセンサ形状は図3と同一である。
【0030】
貫通穴103の長軸側側面の一方または両側には、複数個の電極202,203,204が、各々絶縁されて貫通穴内面205に露出し、接液するよう配備されている。また、この電極202,203,204は、磁極板207には接触しないように配置されている。つまり、磁極板207には、電極を通すための逃げ穴が設けられている。
【0031】
この結果、導電性の流体である水道水が磁界と直交して移動するために、ファラディの電磁誘導の法則に従い、起電力が発生する。この起電力を前記電極202,204で検出し、流速に比例した電圧信号を得る原理である。一方電極203は接地電極であり、前記電圧信号を増幅する場合の基準電位としている。
【0032】
次に 図3(2)に、図2の流速計センサ10の挿入方向に沿った中心断面で、且つ水道水3の流れ方向101に平行な断面を示す。(図3(1)と直交断面)筐体201の形状は、その中心軸に対して線対称となるように形成されている。また、図3(1)で説明した筐体201内の202〜209までの各部品も、図3(2)に示すように筐体201の中心軸上に配置してある。各部品の形状は、筐体201の中心軸に対して線対称であることが望ましい。流路103の高さhは、図3(1)に示す幅wの2倍以上大きくし、管路面積に対して大きな起電力が得られるようにしてあり、またその長さLは高さhの1/2倍より長く形成して流れと電位分布の安定化に適した形状としてある。
【0033】
図3(3)は、図3(2)を流路103の中心軸に沿った断面を下から見た図である。(図3(1)(2)と直交断面)
筐体201の断面外形は流線型をしており、中央に被測定流体の流れに沿って貫通穴103が設けられている。形状は筐体201の両中心軸に対し、線対称になるよう形成してあり、流体の流れ方向に対して同一の特性となるような構造を採っている。
【0034】
次に、図5において説明する。図5は配水管1の消火栓取り付け部の流れ方向と直交する断面である。上方より支持棒14の先端についた流速計センサ10を配水管1内に挿入し、前記流速計センサ10の側面に設けられた複数個のガイド部501、502内に保持されたストッパ503を前記配水管1の内面に押し当てる。このとき、ストッパ503の長さを所定寸法に選んでおけば、前記流速センサ10の貫通穴103を配水管1の中心と合致させることが可能である。
【0035】
本構造では、貫通穴103内が外側の流れと遮断されているため、外側の流れの乱れを受けにくい他、磁極板206,207で電気的、磁気的シールドされていることにより起電力の電位分布が安定しているという長所が有る。また、筐体201を金属などの導体で形成すれば、電気的シールドがより完全になり、特性の安定性向上が期待できる。また筐体201を導体で形成した場合は接地用電極203を省略して筐体201を接地電極の代用として使用することも出来る。
【0036】
また、カルマン渦の発生が少なく流速計センサ10が振動しにくいこと、貫通穴10を長円形に形成したことにより磁束密度を大きく、且つ電極間起電力を大きく採ることができS/N比の高い信号が得られるなどの長所がある。
【0037】
【発明の効果】
本発明によれば、以下の効果が期待できる。
1.流速計センサの内側も被測定流体が流れるため、カルマン渦の発生が少なく流速計センサが振動しない。
2.流速計センサの内側に被測定流体が流れるため、電極近傍の被測定流体の流れに乱れが発生しにくい。
3.被測定流体が流れる貫通穴内部は、近接対向した2枚の磁極板によって均一で安定した磁界分布が期待できる。
4.貫通穴の形状が磁界と直交した方向を、長軸としているため、電極間起電力が大きく、S/N比の大きな流速信号が期待できる。
5.流速計センサが小形で、流線形をしていることと、内部に貫通穴を有していることで、流体抵抗が少なく配水管内でセンサ位置が安定している。
6.筐体や流路が中心軸に対して、線対称に構成してあるため、正逆両方向の流れに対し同一特性の流速測定が期待できる。
7.上記により、感度が高く測定信号の安定した電磁式流速計が実現できる。
8.調整可能なストッパにより、流速センサの挿入位置の調整が容易である。
9.流速と水質および水温水圧などの測定が同時に行うことができ、充実した水理水質データが得られる。
10.水理、水質測定の作業性が向上する。
【図面の簡単な説明】
【図1】本発明の一実施例に係る全体を示すシステムの構成図。
【図2】上記実施例に用いる流速センサの外観図。
【図3】流速センサの直交する3方向の断面図。
【図4】図3の磁束分布説明図。
【図5】水道管の短軸断面図。
【符号の説明】
1…配水管、3…流体、7…センサ挿入口、9…流速計検出部、10…流速センサ、202,203,204…電極、206,207…磁極板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insertion type electromagnetic velocimeter that is inserted from the outside of a pipe through which a fluid to be measured flows and measures a fluid flow velocity in the pipe.
[0002]
[Prior art]
There are current meters and flow meters that measure using water hydrants and air valves as measuring devices for water leakage and stagnant water surveys in water supply piping networks.
[0003]
Typical examples of these devices include an ultrasonic type and an electromagnetic type. Examples of the ultrasonic type include those disclosed in Japanese Patent Laid-Open Nos. 3-231155 and 6-81378. . Examples of the electromagnetic type are disclosed in, for example, Japanese Utility Model Laid-Open No. 60-86922 and Japanese Patent Laid-Open No. 60-179613.
[0004]
[Problems to be solved by the invention]
The ultrasonic type can be measured by attaching a sensor to the outside of the pipe, so it has the advantage of being able to measure without putting foreign matter in the water pipe, but it is difficult to measure the micro flow velocity, and the scale is attached to the pipe. In some cases, it may be difficult to detect. In addition, when performing measurement using a fire hydrant, there are many fire hydrant pits that are not exposed because the water pipe is buried in the earth and sand. In order to solve this problem, an insertion type ultrasonic flowmeter that is inserted into the tube and measured has been developed. However, it is necessary to consider the installation position of the transmitter using a small opening such as a fire hydrant. Moreover, the structure becomes complicated.
[0005]
On the other hand, since the electromagnetic type cannot install an electromagnetic flow meter by cutting a pipe, an insertion type electromagnetic current meter that measures by inserting a flow rate sensor into the pipe from a fire hydrant or an air valve has been used. It was.
[0006]
Electromagnetic anemometers are likely to be complicated in structure because they are inserted into piping, and Karman vortices are generated in the inserted sensor part, and the sensor part vibrates due to the reaction force. The distribution was not stable and the measurement accuracy was reduced. A detection sensitivity of 10MM / S or less is desired as an anemometer for soundness evaluation of water supply pipe networks, but there is no anemometer that meets such requirements, and a more sensitive anemometer is awaited.
[0007]
An object of the present invention is to solve the above-described conventional problems and provide a highly sensitive anemometer suitable for the purpose of evaluating the soundness of a water distribution pipe network.
[0008]
[Means for Solving the Problems]
The feature of the present invention in the above object includes a sensor unit that measures the flow velocity of the fluid to be measured in the pipe, and a support unit that includes a transmission line that transmits a measurement value obtained by the sensor unit to the outside. In the insertion type electromagnetic velocimeter that inserts the sensor part into the pipe from the opening of the pipe and measures the flow velocity of the fluid to be measured, the sensor portion has a flow direction of the fluid to be measured in the sensor portion housing. It has a measurement flow path penetrating in parallel with the.
[0009]
Preferably, the measurement flow path further includes a magnetic field generation unit including a coil and a magnetic pole, and further includes a pair of magnetic pole plates having a length covering at least the magnetic field generation unit and a side surface of the measurement flow path. That is.
[0010]
Further preferably, the sensor section housing has a cross-sectional shape orthogonal to the insertion direction thereof being streamlined with respect to the flow direction of the fluid to be measured, and the measurement flow path is the center of the insertion axis of the sensor section. It is formed on the shaft.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. Figure 1 shows the basic configuration of a hydraulic and water quality monitoring system installed in an underground pit on a fire hydrant provided in the middle of a pipeline network in order to monitor the soundness of the water distribution pipeline network. FIG.
[0012]
Fire hydrants 2 provided in the middle of the water supply pipe 1 buried underground are arranged at predetermined intervals in the pipeline network, and the flow rate, flow direction, water quality, temperature, pressure, etc. of the tap water 3 It is suitable for monitoring various information. In particular, the underground fire hydrant pit 4 is suitable for continuous monitoring by installing a measuring instrument for a predetermined period.
[0013]
The fire hydrant 2 has an adapter to which a fire hose can be connected in the event of an emergency such as a fire. However, the present invention provides a monitoring system for remodeling the adapter and attaching various sensors to continuously monitor the various information for a predetermined period. .
[0014]
In addition to the hose connection port 6, the adapter 5 is provided with a sensor insertion port 7, and a velocimeter sensor 9 is inserted through the upper end opening 8 of the sensor insertion port 7 and held at the tip thereof. 10 reaches the inside of the water distribution pipe 1 and senses the flow rate of the tap water 3. The cable 11 is connected to the anemometer sensor 10 through the anemometer detector 9 and the support rod 14, and the measurement signal of the anemometer sensor 10 is transmitted to the anemometer converter 12 via the cable 11. The calculated value corresponding to the flow velocity is calculated.
[0015]
A data logger 13 that stores flow velocity measurement data for a predetermined period is built in the flow velocity meter conversion unit 12. Further, the data logger 13 has a function of storing various external information (electrical signals).
[0016]
On the other hand, the support rod 14 holding the anemometer sensor 10 is formed with a sampling port 16 for guiding the tap water 3 in the distribution pipe 1 to the outside of the pipe. A flow path 15 passing through the support rod 14 is connected, and the tap water introduced from the sampling port 16 is guided out of the flow meter detection unit 9. At this time, a water pressure sensor 17 and a sampling tube 18 are attached to the flow meter detection unit 9. The measurement signal of the water pressure sensor 17 is transmitted to and stored in the data logger 13 built in the current meter conversion unit 12 via the cable 19. Further, the tap water 3 flowing in the sampling tube 18 is guided to the multi-item water quality meter 20.
[0017]
The multi-item water quality meter 20 is provided with a residual chlorine sensor 21, a conductivity sensor 22 and the like, and a water temperature sensor 23 is provided in the sampling tube 18 to continuously or intermittently adjust the water quality of the tap water 3. To monitor. The outputs of these sensors are guided to the calculation unit 24 and are calculated and output as measured values.
[0018]
The output measurement signal is transmitted to and stored in the data logger 13 built in the velocimeter conversion unit 12 via the cable 25.
[0019]
On the other hand, a pressure reducing valve 26 is connected in the middle of the sampling tube 18 to keep the pressure of the tap water 3 led to the water quality meter constant and to keep the sampling flow rate constant.
[0020]
The tap water 3 that has passed through the multi-item water quality meter 20 is drained from the water outlet 27 into the fire hydrant pit 4. Since the drainage is an underground seepage type, the amount of water used is limited (20 cm 3 / min or less), so a small multi-item water quality meter using a microcell made by micro-processing a silicon wafer is suitable for the water quality meter to be used. . (For example, JP-A-2000-88841 shows an example thereof.)
Further, the battery unit 28 supplies power to the velocimeter conversion unit 12 and the multi-item water quality meter 20 via the cables 29 and 30.
[0021]
In such a continuous monitoring device, the flow rate, flow direction, water quality, water temperature, and water pressure are continuously monitored for a predetermined period, and the measured values are stored in the data logger 13. The data stored at this time is taken up by the portable personal computer 31 after the measurement is completed, and the data is sent to the upper management computer 33 via the medium 32 such as a communication line or a floppy disk for centralized management. Further, the data in the data logger 13 can be continuously monitored by the management computer 33 via a wireless or public telephone network. In this case, the data logger 13 incorporates a transmission function of a specific low-power radio or a mobile phone, and transmits it as a radio signal 35 to the outside of the pit via the antenna 34. At this time, the antenna is arranged in the vicinity of the keyhole (not shown) of the lid of the fire hydrant pit and transmits radio waves to the ground.
[0022]
By performing measurements at the fire pit pit 4 at a number of locations at the same time, it is possible to monitor the behavior of the tap water 3 in the distribution pipeline network, and to prevent leakage, stagnant water, deterioration of water quality, etc. The database can be used for proper arrangement and maintenance.
[0023]
Next, the details of the insertion-type electromagnetic velocimeter sensor unit of the present invention will be described with reference to FIGS. 2 is an external view of the anemometer sensor 10, FIG. 3 is a cross-sectional view of the anemometer sensor 10, and FIG. 4 is a diagram showing a state when a magnetic field is generated in the cross-sectional view of FIG.
[0024]
First, in FIG. 2, the direction of the arrow 101 indicates the flow of the tap water 3 that is the fluid to be measured, and branches as indicated by the arrow 102 when reaching the vicinity of the streamlined velocity sensor 10.
[0025]
A part of it flows inside the through hole 103 having an elliptical cross section on the central axis of the flow velocity sensor 10, and the other flows along the outer surface of the streamline flow velocity sensor 10 and merges again on the downstream side. To do.
[0026]
The through hole 103 is arranged symmetrically with respect to the central axis in the insertion direction of the velocimeter sensor 10 even in the direction of flow of the tap water 3 and the direction orthogonal thereto, and is formed so that the insertion direction becomes a long axis. It is. Further, the outer peripheral portion of the anemometer sensor 10 is formed of metal or synthetic resin, but the inner surface of the through hole 103 is covered with an insulator such as synthetic resin.
[0027]
Further, the cross-sectional area of the through hole 103 occupies 10% or more of the cross-sectional area of the flow velocity sensor 10 and has a cross-sectional area sufficient to reduce Karman vortices generated on the downstream side of the flow velocity sensor 10. desirable.
[0028]
Next, description will be given with reference to FIG. Each figure of FIG. 3 shows each cross section of three orthogonal axes of FIG. FIG. 3 (1) shows a central cross section along the insertion direction of the anemometer sensor 10 of FIG. 2 and a cross section orthogonal to the flow direction 101 of the tap water 3. The outer peripheral part of the anemometer sensor 10 is covered with a casing 201 made of metal or synthetic resin.
The above-described through hole 103 is formed of an insulating material such as a synthetic resin at the lower center of the anemometer sensor 10, and the tap water 3 flows inside thereof.
[0029]
A pair of magnetic pole plates 206 and 207 made of a magnetic material are disposed on both side surfaces of the through hole 103. In addition, a coil 208 and a magnetic pole 209 for generating a magnetic field are held above the magnetic pole plates 206 and 207. By exciting the coil 208 with a square-wave excitation current, an alternating magnetic field 210 having a substantially uniform magnetic flux density is formed between the two magnetic pole plates, as shown in FIGS. The sensor shape of FIG. 4 is the same as FIG.
[0030]
On one side or both sides of the long-axis side surface of the through hole 103, a plurality of electrodes 202, 203, 204 are respectively insulated and exposed on the inner surface 205 of the through hole, and arranged so as to come into contact with the liquid. The electrodes 202, 203, and 204 are arranged so as not to contact the magnetic pole plate 207. That is, the magnetic pole plate 207 is provided with a clearance hole for passing the electrode.
[0031]
As a result, since tap water, which is a conductive fluid, moves perpendicular to the magnetic field, an electromotive force is generated according to Faraday's law of electromagnetic induction. This is the principle by which the electromotive force is detected by the electrodes 202 and 204 to obtain a voltage signal proportional to the flow velocity. On the other hand, the electrode 203 is a ground electrode and serves as a reference potential when the voltage signal is amplified.
[0032]
Next, FIG. 3 (2) shows a cross section at the center cross section along the insertion direction of the anemometer sensor 10 of FIG. 2 and parallel to the flow direction 101 of the tap water 3. (Cross-sectional view orthogonal to FIG. 3 (1)) The shape of the casing 201 is formed so as to be line-symmetric with respect to the central axis. In addition, the components 202 to 209 in the casing 201 described with reference to FIG. 3A are also arranged on the central axis of the casing 201 as illustrated in FIG. It is desirable that the shape of each component is axisymmetric with respect to the central axis of the housing 201. The height h of the flow path 103 is larger than twice the width w shown in FIG. 3 (1) so that a large electromotive force can be obtained with respect to the pipeline area, and the length L is the height. The shape is longer than ½ times h and is suitable for stabilizing the flow and potential distribution.
[0033]
FIG. 3 (3) is a view of FIG. 3 (2) as seen from below the cross section along the central axis of the flow path 103. (Cross section perpendicular to Fig. 3 (1) and (2))
The cross-sectional outer shape of the housing 201 is streamlined, and a through hole 103 is provided in the center along the flow of the fluid to be measured. The shape is formed so as to be line symmetric with respect to both central axes of the casing 201, and the structure has the same characteristics with respect to the fluid flow direction.
[0034]
Next, description will be made with reference to FIG. FIG. 5 is a cross section orthogonal to the flow direction of the hydrant mounting portion of the water distribution pipe 1. The flow velocity sensor 10 attached to the tip of the support rod 14 is inserted into the water distribution pipe 1 from above, and the stoppers 503 held in a plurality of guide portions 501 and 502 provided on the side surfaces of the flow velocity sensor 10 are provided. Press against the inner surface of the water pipe 1. At this time, if the length of the stopper 503 is selected to be a predetermined dimension, the through hole 103 of the flow rate sensor 10 can be aligned with the center of the water distribution pipe 1.
[0035]
In this structure, since the inside of the through-hole 103 is blocked from the outer flow, it is difficult to be disturbed by the outer flow, and the potential of the electromotive force is obtained by being electrically and magnetically shielded by the magnetic pole plates 206 and 207. The advantage is that the distribution is stable. Further, if the casing 201 is formed of a conductor such as metal, the electrical shield becomes more complete, and improvement in the stability of characteristics can be expected. When the housing 201 is formed of a conductor, the grounding electrode 203 can be omitted and the housing 201 can be used as a substitute for the grounding electrode.
[0036]
In addition, the generation of Karman vortex is small and the anemometer sensor 10 is less likely to vibrate, and the through hole 10 is formed in an oval shape, so that the magnetic flux density can be increased and the electromotive force between the electrodes can be increased. There are advantages such as high signal.
[0037]
【The invention's effect】
According to the present invention, the following effects can be expected.
1. Since the fluid to be measured also flows inside the current sensor, the Karman vortex is hardly generated and the current sensor does not vibrate.
2. Since the fluid to be measured flows inside the anemometer sensor, the flow of the fluid to be measured in the vicinity of the electrode is unlikely to be disturbed.
3. Inside the through hole through which the fluid to be measured flows, a uniform and stable magnetic field distribution can be expected by two magnetic pole plates facing each other.
4). Since the long axis is a direction in which the shape of the through hole is orthogonal to the magnetic field, an electromotive force between the electrodes is large and a flow rate signal having a large S / N ratio can be expected.
5). Since the anemometer sensor is small and streamlined and has a through hole inside, the sensor position is stable in the water pipe with little fluid resistance.
6). Since the casing and the flow path are symmetrical with respect to the central axis, the flow velocity measurement with the same characteristics can be expected for the flow in both forward and reverse directions.
7). As described above, an electromagnetic current meter with high sensitivity and stable measurement signal can be realized.
8). Adjustment of the insertion position of the flow rate sensor is easy due to the adjustable stopper.
9. Measurements of flow velocity, water quality, water temperature, water pressure, etc. can be performed at the same time, and rich hydraulic water quality data can be obtained.
Ten. The workability of hydraulics and water quality measurement is improved.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing an entire system according to an embodiment of the present invention;
FIG. 2 is an external view of a flow rate sensor used in the embodiment.
FIG. 3 is a cross-sectional view of the flow rate sensor in three orthogonal directions.
4 is an explanatory diagram of magnetic flux distribution in FIG. 3; FIG.
FIG. 5 is a short-axis cross-sectional view of a water pipe.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Water distribution pipe, 3 ... Fluid, 7 ... Sensor insertion port, 9 ... Current meter detection part, 10 ... Flow velocity sensor, 202, 203, 204 ... Electrode, 206, 207 ... Magnetic pole plate.

Claims (8)

配管内の被測定流体の流速を測定するセンサ部と、当該センサ部によって得られた測定値を外部へ伝達する伝送線を有する支持部とを有し、前記配管の開口から配管内に前記センサ部を挿入し、前記被測定流体の流速を測定する挿入形電磁流速計において、
前記センサ部は、当該センサ部筐体中に、前記被測定流体の流れる方向に平行して貫通する測定流路を有し、
前記測定流路の上部に、コイル及び磁極からなる磁界発生手段を備え、更に、少なくとも前記磁界発生手段と前記測定流路の側面を覆う長さを有する一対の磁極板を備え、
前記測定流路の内壁に、流速検出用の一対の電極と流体に接地される接地電極とが配置されていることを特徴とする挿入形電磁流速計。
A sensor unit that measures a flow velocity of the fluid to be measured in the pipe, and a support unit that has a transmission line that transmits a measurement value obtained by the sensor unit to the outside, and the sensor is inserted into the pipe from the opening of the pipe In the insertion type electromagnetic velocimeter for measuring the flow velocity of the fluid to be measured,
The sensor unit, while the housing of the sensor unit, have a measured flow path through in parallel to the direction of flow of the fluid to be measured,
Provided with magnetic field generating means comprising a coil and a magnetic pole on the upper part of the measurement flow path, and further comprising a pair of magnetic pole plates having a length covering at least the magnetic field generation means and the side surface of the measurement flow path,
An insertion type electromagnetic velocimeter characterized in that a pair of electrodes for detecting a flow velocity and a ground electrode grounded to a fluid are arranged on the inner wall of the measurement flow path .
請求項1において、
前記流速検出用の一対の電極と前記接地電極とは、前記センサ部の挿入軸に沿って列状に3つ配置されており、中心の電極が前記接地電極であることを特徴とする挿入形電磁流速計。
In claim 1,
The pair of electrodes for detecting the flow velocity and the ground electrode are arranged in three rows along the insertion axis of the sensor unit, and the center electrode is the ground electrode. Electromagnetic current meter.
請求項1において、
前記センサ部筐体は、その挿入方向と直交する断面形状が、被測定流体の流れる方向に対し流線形であり、
且つ被測定流体の流れる方向の中心軸、及び被測定流体の流れる方向と直交する方向の中心軸に対し、線対称に形成されていることを特徴とする挿入形電磁流速計。
In claim 1,
The housing of the sensor unit has a cross-sectional shape orthogonal to the insertion direction, which is streamlined with respect to the direction in which the fluid to be measured flows,
An insertion-type electromagnetic velocimeter formed symmetrically with respect to a central axis in a direction in which the fluid to be measured flows and a central axis in a direction orthogonal to the direction in which the fluid to be measured flows.
請求項1において、
前記測定流路の被測定流体の流れる方向の長さLは、当該測定流路の高さhの0.5倍以上を有することを特徴とする挿入形電磁流速計。
In claim 1,
The length L of the measurement channel in the direction of flow of the fluid to be measured is 0.5 times or more the height h of the measurement channel.
請求項において、
前記測定流路の高さhは、前記測定流路の被測定流体の流れる方向と直交する面の幅Wの2倍以上を有することを特徴とする挿入形電磁流速計。
In claim 4 ,
The insertion type electromagnetic velocimeter characterized in that the height h of the measurement channel is at least twice the width W of the surface orthogonal to the flow direction of the fluid to be measured in the measurement channel.
請求項1において、
前記測定流路の断面積は、前記センサ部筐体の断面積の10%以上となるように形成されることを特徴とする挿入形電磁流速計。
In claim 1,
The insertion type electromagnetic velocimeter is characterized in that a cross-sectional area of the measurement flow path is formed to be 10% or more of a cross-sectional area of the sensor unit housing.
請求項1において、
前記測定流路の内壁は、絶縁物で被覆されることを特徴とする挿入形電磁流速計。
In claim 1,
An insertion type electromagnetic velocimeter characterized in that an inner wall of the measurement channel is covered with an insulator.
請求項1において、
前記センサ部筐体の外壁に、当該センサ部の挿入方向に沿って配置され、且つ挿入方向に対して位置調節が可能なストッパ部材を備えたこと特徴とする挿入形電磁流速計。
In claim 1,
An insertion-type electromagnetic velocimeter comprising a stopper member disposed along an insertion direction of the sensor unit and capable of adjusting a position with respect to the insertion direction on an outer wall of a housing of the sensor unit.
JP2002041165A 2001-02-19 2002-02-19 Insertion type electromagnetic current meter Expired - Lifetime JP3953826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002041165A JP3953826B2 (en) 2001-02-19 2002-02-19 Insertion type electromagnetic current meter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001041987 2001-02-19
JP2001-41987 2001-02-19
JP2002041165A JP3953826B2 (en) 2001-02-19 2002-02-19 Insertion type electromagnetic current meter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006340389A Division JP2007147631A (en) 2001-02-19 2006-12-18 Insertion type electromagnetic flow rate meter

Publications (2)

Publication Number Publication Date
JP2002333354A JP2002333354A (en) 2002-11-22
JP3953826B2 true JP3953826B2 (en) 2007-08-08

Family

ID=26609630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002041165A Expired - Lifetime JP3953826B2 (en) 2001-02-19 2002-02-19 Insertion type electromagnetic current meter

Country Status (1)

Country Link
JP (1) JP3953826B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931722A (en) * 2015-03-23 2015-09-23 杭州电子科技大学 Circuit for measuring flow velocity of drainage pipe network

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0329450D0 (en) * 2003-12-19 2004-01-28 Abb Ltd Electromagnetic flow meter insert
JP4493010B2 (en) * 2004-05-06 2010-06-30 愛知時計電機株式会社 Flow rate / residual chlorine concentration measuring instrument and tap water flow rate / residual chlorine concentration measurement method
GB2440964B (en) 2006-08-18 2011-08-10 Abb Ltd Flow meter
KR101151373B1 (en) 2010-07-07 2012-06-14 한국수자원공사 Automatic flow pattern monitering system
JP5529803B2 (en) * 2011-05-12 2014-06-25 住重環境エンジニアリング株式会社 Water quality control device, water quality management system, water quality management device, and water quality management method.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931722A (en) * 2015-03-23 2015-09-23 杭州电子科技大学 Circuit for measuring flow velocity of drainage pipe network
CN104931722B (en) * 2015-03-23 2018-02-16 杭州电子科技大学 A kind of measuring circuit of drainage pipeline networks flow velocity

Also Published As

Publication number Publication date
JP2002333354A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
JP2007147631A (en) Insertion type electromagnetic flow rate meter
CN101401011B (en) Electric field sensor for marine environments
KR101888188B1 (en) Ultrasonic water meter with freeze protection function, leak detecting system including the ultrasonic water meter and leaking point edtecting method usinf the system
CN104678229B (en) A kind of grounding net of transformer substation corrosion monitoring system
CN105223413B (en) A kind of marine ship seawater pipeline stray current detecting device
JP2004520590A (en) Flowmeter
JP3953826B2 (en) Insertion type electromagnetic current meter
CN107179104A (en) A kind of magneto liquid metal vortex-shedding meter and its application
CN206496792U (en) A kind of water supply network operational parameter detection site device
CN215114687U (en) Electromagnetic flowmeter capable of measuring low-conductivity liquid
JP2010512476A (en) Method and apparatus for detecting and / or quantifying water leaks
CN207132929U (en) A kind of flow probe
KR101573679B1 (en) Magnetic folwmeter having grounding ring
CN203249653U (en) Intelligent open channel flow meter
CN104458108B (en) Method for measuring pressure drop of liquid metal pipe flow magnetic fluid under high-intensity magnetic field
CN207894462U (en) A kind of wide-range compares electromagnetic flow transducer
CN115327158A (en) Liquid section velocity field micro-channel array electromagnetic detection system and method
CA1304602C (en) Apparatus for and method of determining liquid flow in open channels and conduits
RU127905U1 (en) FLUID METER FLOW METER
CN210293326U (en) Multi-parameter electromagnetic flowmeter
CN209857977U (en) Be applied to not full pipe metering device of open channel low discharge, high velocity of flow
KR102038706B1 (en) Electromagnetic flowmeter
CN116734934B (en) Compact electromagnetic flowmeter, installation method and flow measuring method
Harnett et al. Calibration and field deployment of low-cost fluid flow-rate sensors using a wireless network
CN218955807U (en) Non-contact radar current meter monitoring station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070308

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

R150 Certificate of patent or registration of utility model

Ref document number: 3953826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

EXPY Cancellation because of completion of term